Lecture 1: Graph minors

23/05/2022
Lecturer: Marco Bressan

A graph is a pair $G=(V, E)$ where $E \subseteq\binom{V}{2}$. We only consider finite graphs and write $n=|V(G)|$ and $m=|E(G)|$. With a graph G we often mean the isomorphism class of G (the set of all graphs isomorphic to G). Given a graph $G=(V, E)$ and $U \subseteq V$, we denote by $G[U]=\left(U, E \cap\binom{U}{2}\right)$ the subgraph of G induced by U. If H is a subgraph of G (not necessarily induced) then we write $H \subseteq G$. The neighborhood of $v \in V$ is $N(v)=\{u \in V:\{u, v\} \in E\}$. For any $a, b \in \mathbb{N}$ let $[a, b]=\{a, \ldots, b\}$ and $[a]=[1, a]$.

Some important graphs are:

- the complete graph K_{n}, where $V\left(K_{n}\right)=[n]$ and $E\left(K_{n}\right)=\binom{n}{2}$
- the complete bipartite graph $K_{\ell, r}$, where $V\left(K_{\ell, r}\right)=L \dot{\cup} R,|L|=\ell$ and $|R|=r$, and $E=\{\{u, v\}: u \in L, v \in R\}$. Here $\dot{\cup}$ denotes disjoint union.
- P_{n}, the path on n vertices
- C_{n}, the cycle on n vertices

1 Graph minors

The following operations are defined on every graph $G=(V, E)$:

- deletion of a vertex $v \in V$: yields the graph $G \backslash v=G[V \backslash\{v\}]$
- deletion of an edge $e \in E$: yields the graph $G \backslash e=(V, E \backslash\{e\})$
- contraction of an edge $e=\{u, v\} \in E$: yields the graph $G / e=\left(V^{\prime}, E^{\prime}\right)$,

$$
\begin{align*}
& V^{\prime}=V \backslash\{u, v\} \cup\{u v\} \tag{1}\\
& E^{\prime}=E \backslash\{\{x, u\},\{x, v\}: x \in V\} \cup\{\{u v, x\}: x \in N(u) \cup N(v) \backslash\{u, v\}\} \tag{2}
\end{align*}
$$

Definition 1.1. A graph H is a minor of a graph G, written $H \preceq G$, if H can be obtained from G by a sequence of vertex deletions, edge deletions, and edge contractions. It is a proper minor if $H \neq G$.

Note that by H we mean any graph isomorphic to H (see notes above). Note also that minors and subgraphs are different.

Exercise 1. Define the property of being a subgraph using the three operations above, then find H, G such that $H \preceq G$ but $H \nsubseteq G$. What about the vice versa? What about induced subgraphs?

Exercise 2. Is P_{n} a minor of K_{n} ? Is K_{n} a minor of $K_{\ell, r}$? And vice versa?
Exercise 3. What are the minors of a tree? Of a forest? What graphs have a K_{3} minor?

A graph property is a set (or family, or class) of graphs that is closed under isomorphism. For instance, $\mathcal{F}=\{G: G$ is a forest $\}$ is the property of being acyclic. If H is not a minor of G then we say G is H-minor-free and write $H \npreceq G$. A family of graphs \mathcal{F} is H-minor-free if $H \npreceq G$ for all $G \in \mathcal{F}$.

Exercise 4. If $H \npreceq G$, is also $H^{\prime} \npreceq G$ for every $H^{\prime} \preceq H$? And vice versa?
Lemma 1.2. The family of acyclic graph is precisely the family of K_{3}-minor-free graphs.

2 Basic properties

Prove that \preceq is transitive, that is:
Lemma 2.1. If $H \preceq G$ and $G \preceq F$ then $H \preceq F$.
A subdivision of G is any graph obtained from G by replacing every edge with a nontrivial (i.e., with at least one edge) path. The ℓ-subdivision of G is the graph obtained by replacing every edge of G with a copy of $P_{\ell+1}$. For instance, the 0 -subdivision of G is G itself.

Exercise 5. Prove that if G is a subdivision of H then $G \succeq H$.
Here is a first intuitive characterization of minors:
Lemma 2.2. $H \preceq G$ iff H can be obtained by contracting edges of some $F \subseteq G$.
Proof. If H can be obtained by contracting edges of $F \subseteq G$, then $H \preceq G$, since F is obtained by deleting vertices and edges of G.

Now suppose $H \preceq G$. Let $O=o_{1}, \ldots, o_{\ell}$ be the sequence of operations that produces H from G. If $O=O_{1} O_{2}$ where O_{1} is a sequence of deletions and O_{2} a sequence of contractions, then H is a contraction of a subgraph of G and we are done. Suppose instead that there is $i \in[\ell-1]$ such that o_{i} is a contraction of $e=\{u, v\}$ and o_{i+1} is a deletion. We define a sequence of operations O^{\prime} according to o_{i+1} as follows:

- if o_{i+1} deletes a vertex $w \neq u v$ then obtain O^{\prime} by switching o_{i} and o_{i+1}.
- if o_{i+1} deletes $u v$ then obtain O^{\prime} by replacing o_{i}, o_{i+1} with the deletion of u and v.
- if o_{i+1} deletes an edge $e^{\prime}=\{x, y\} \nexists u v$ then obtain O^{\prime} by switching o_{i} and o_{i+1}.
- if o_{i+1} deletes an edge $e^{\prime}=\{u v, y\}$ then obtain O^{\prime} by replacing o_{i}, o_{i+1} with the deletion of every edge between y and $\{u, v\}$ followed by the contraction of e.

Observe that in any case O^{\prime} is equivalent to O.
Now let $N(O)$ be the number of pairs (i, j) with $j>i$ such that o_{i} is a contraction and o_{j} is a deletion. Note that $N\left(O^{\prime}\right)<N(O)$; hence, repeating the construction above yields a sequence O^{*} equivalent to O such that $N\left(O^{*}\right)=0$. But $N\left(O^{*}\right)=0$ means $O^{*}=O_{1}^{*} O_{2}^{*}$, which by the observation above completes the proof.

Definition 2.3. Let H and G be graphs. A model of H in G is a function $f: V(H) \rightarrow 2^{V(G)}$ such that:

1. $\forall u, v \in V(H), u \neq v, f(u) \cap f(v)=0$
2. $\forall v \in V(H), G[f(v)]$ is connected
3. $\forall\{u, v\} \in E(H)$, in G there is an edge between $f(u)$ and $f(v)$

Here is an even more intuitive characterization of minors:
Lemma 2.4. $H \preceq G$ if and only if there is a model of H in G.
Proof. Suppose there is a model f of H in G. Delete all vertices in $V(G) \backslash \cup_{v \in V(H)} f(v)$, then delete all edges in $E(G)$ between any $f(u)$ and $f(v)$ such that $\{u, v\} \notin E(H)$. This yields a subgraph of G on $\cup_{v \in V(H)} f(v)$, and by contracting all edges of $G[f(v)]$ for all $v \in V(H)$, we obtain H. By Lemma 2.2 this implies $H \preceq G$.

Now suppose $H \preceq G$. By Lemma $2.2 H$ can be obtained by contracting edges of some $F \subseteq G$. Note that the set of edges contracted must forms a spanning forest of F in the form $\left\{T_{u}\right\}_{u \in V(H)}$; so that, for every $u \in V(H)$, contracting all edges of T_{u} yields u. Setting $f(u)=$ $V\left(T_{u}\right)$ yields a model of H in G.

By varying the set of operations allowed, we obtain variants of the notion of minor.
Definition 2.5. A graph H is an induced minor of a graph G, written $H \preceq G$, if H can be obtained from G by a sequence of vertex deletions and edge contractions, and it is a topological minor of G if it can be obtained from G by a sequence of edge contractions.

Exercise 6. Adapt Lemma 2.4 for induced minors and topological minors.

3 Hadwiger's Conjecture

Let G be a graph and $k \in \mathbb{N}$. A k-coloring of G is a function $c: V(G) \rightarrow[k]$. A coloring c is proper if $c(u) \neq c(v)$ for all $\{u, v\} \in E$.

Definition 3.1. The chromatic number $\chi(G)$ of a graph G is:

$$
\begin{equation*}
\chi(G)=\min \{k \in \mathbb{N}: G \text { has a proper } k \text {-coloring }\} \tag{3}
\end{equation*}
$$

Exercise 7. Prove that $\chi\left(K_{k}\right)=k$ for all $k \in \mathbb{N}$.
Exercise 8. Prove that $\chi(G) \leq 2$ if and only if G is bipartite. More in general prove that $\chi(G)=$ k if and only if $V(G)=\dot{U}_{i \in[k]} V_{i}$ where V_{i} is an independent set of G for every $i \in[k]$.
Definition 3.2. The Hadwiger number $h(G)$ of G is:

$$
\begin{equation*}
h(G)=\max \left\{k \in \mathbb{N}: K_{k} \preceq G\right\} \tag{4}
\end{equation*}
$$

This is often referred to as the most important open problem in graph theory:
Conjecture 3.3 (Hadwiger's Conjecture, 1943). $\chi(G) \leq h(G)$ for every G.
Exercise 9. Show the existence of arbitrarily large graphs G with $\chi(G)=h(G)$, or with $\chi(G)=$ $\mathcal{O}(1)$ and $h(G)=\Omega(\sqrt{n})$.

Here are some cases of Hadwiger's conjecture for small $h(G)$:

- The conjecture holds when $h(G)=1$. Indeed, $h(G)=1$ means G has no edges, in which case G has a proper 1-coloring, so $\chi(G) \leq 1$.
- The conjecture holds for $h(G)=2$. Indeed, $h(G)=2$ means G is a forest, in which case G has a proper 2-coloring, so $\chi(G) \leq 2$.
- we know the conjecture holds for $3 \leq h(G) \leq 6$ as well; for $h(G) \geq 7$ we do not know

4 Forbidden minors

Some properties can be characterized by forbidden minors.
Definition 4.1. For any set of graphs \mathcal{H} we define $\operatorname{Forb}(\mathcal{H})=\{G: G \nsucceq H, \forall H \in \mathcal{H}\}$.
For instance:
Lemma 4.2. The class of acyclic graphs is Forb $\left(\left\{K_{3}\right\}\right)$.
The class \mathcal{H} is called obstruction set or Kuratowski set for Forb \mathcal{H}. Hence $\mathcal{H}=\left\{K_{3}\right\}$ is the obstruction set for acyclicity. Obstruction sets give us the "reason" behind a property, and a "certificate" that a given graph does not possess that property. We can prove that $\mathcal{H}=\left\{K_{5}, K_{3,3}\right\}$ is the obstruction set for planarity:

Theorem 4.3 (Wagner, 1937). The class of planar graphs is $\operatorname{Forb}\left(K_{5}, K_{3,3}\right)$.
Proof. We start by recalling Kuratowski's theorem: a graph G is planar if and only if $H \nsubseteq G$ whenever H is the subdivision of K_{5} or $K_{3,3}$.

Suppose first G is nonplanar. Then by Kuratowski’s theorem $H \subseteq G$, and thus $H \preceq G$, for some subdivision H of K_{5} or $K_{3,3}$. But then H has K_{5} or $K_{3,3}$ as minor, and by transitivity of \preceq this holds for G as well.

Suppose instead G is planar. Observe that a planar graph has only planar minors. Indeed, vertex deletion and edge deletion clearly preserve planarity; just note that edge contraction preserves planarity, too. But K_{5} and $K_{3,3}$ are nonplanar by Kuratowski’s theorem; therefore $K_{5}, K_{3,3} \npreceq$ G.

Note that for $h(G)=4$ Wagner's theorem and Hadwiger's conjecture imply the four-color theorem (which says that if G is planar then $\chi(G) \leq 4$). Indeed, if G is planar then by Wagner's theorem $h(G) \leq 4$, thus by Hadwiger's conjecture $\chi(G) \leq 4$.

Exercise 10. Is is true that $\operatorname{Forb}\left(K_{4}\right)$ is the class of 4-colorable graphs?

