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A graph is a pair G = (V,E) where E ⊆
(
V
2

)
. We only consider finite graphs and write

n = |V (G)| and m = |E(G)|. With a graph G we often mean the isomorphism class of G
(the set of all graphs isomorphic to G). Given a graph G = (V,E) and U ⊆ V , we denote by
G[U ] = (U,E ∩

(
U
2

)
) the subgraph of G induced by U . If H is a subgraph of G (not necessarily

induced) then we write H ⊆ G. The neighborhood of v ∈ V is N(v) = {u ∈ V : {u, v} ∈ E}.
For any a, b ∈ N let [a, b] = {a, . . . , b} and [a] = [1, a].

Some important graphs are:

• the complete graph Kn, where V (Kn) = [n] and E(Kn) =
(
n
2

)
• the complete bipartite graph Kℓ,r, where V (Kℓ,r) = L∪̇R, |L| = ℓ and |R| = r, and
E = {{u, v} : u ∈ L, v ∈ R}. Here ∪̇ denotes disjoint union.

• Pn, the path on n vertices

• Cn, the cycle on n vertices

1 Graph minors

The following operations are defined on every graph G = (V,E):

• deletion of a vertex v ∈ V : yields the graph G \ v = G[V \ {v}]
• deletion of an edge e ∈ E: yields the graph G \ e = (V,E \ {e})
• contraction of an edge e = {u, v} ∈ E: yields the graph G/e = (V ′, E′),

V ′ = V \ {u, v} ∪ {uv} (1)

E′ = E \
{
{x, u}, {x, v} : x ∈ V

}
∪
{
{uv, x} : x ∈ N(u) ∪N(v) \ {u, v}

}
(2)

Definition 1.1. A graph H is a minor of a graph G, written H ⪯ G, if H can be obtained from
G by a sequence of vertex deletions, edge deletions, and edge contractions. It is a proper minor if
H ̸= G.

Note that by H we mean any graph isomorphic to H (see notes above). Note also that minors and
subgraphs are different.

Exercise 1. Define the property of being a subgraph using the three operations above, then find
H,G such that H ⪯ G but H ̸⊆ G. What about the vice versa? What about induced subgraphs?

Exercise 2. Is Pn a minor of Kn? Is Kn a minor of Kℓ,r? And vice versa?

Exercise 3. What are the minors of a tree? Of a forest? What graphs have a K3 minor?
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A graph property is a set (or family, or class) of graphs that is closed under isomorphism. For
instance, F = {G : G is a forest} is the property of being acyclic. If H is not a minor of G then
we say G is H-minor-free and write H ̸⪯ G. A family of graphs F is H-minor-free if H ̸⪯ G for
all G ∈ F .

Exercise 4. If H ̸⪯ G, is also H ′ ̸⪯ G for every H ′ ⪯ H? And vice versa?

Lemma 1.2. The family of acyclic graph is precisely the family of K3-minor-free graphs.

2 Basic properties

Prove that ⪯ is transitive, that is:

Lemma 2.1. If H ⪯ G and G ⪯ F then H ⪯ F .

A subdivision of G is any graph obtained from G by replacing every edge with a nontrivial
(i.e., with at least one edge) path. The ℓ-subdivision of G is the graph obtained by replacing every
edge of G with a copy of Pℓ+1. For instance, the 0-subdivision of G is G itself.

Exercise 5. Prove that if G is a subdivision of H then G ⪰ H .

Here is a first intuitive characterization of minors:

Lemma 2.2. H ⪯ G iff H can be obtained by contracting edges of some F ⊆ G.

Proof. If H can be obtained by contracting edges of F ⊆ G, then H ⪯ G, since F is obtained by
deleting vertices and edges of G.

Now suppose H ⪯ G. Let O = o1, . . . , oℓ be the sequence of operations that produces H from
G. If O = O1O2 where O1 is a sequence of deletions and O2 a sequence of contractions, then H
is a contraction of a subgraph of G and we are done. Suppose instead that there is i ∈ [ℓ− 1] such
that oi is a contraction of e = {u, v} and oi+1 is a deletion. We define a sequence of operations
O′ according to oi+1 as follows:

• if oi+1 deletes a vertex w ̸= uv then obtain O′ by switching oi and oi+1.

• if oi+1 deletes uv then obtain O′ by replacing oi, oi+1 with the deletion of u and v.

• if oi+1 deletes an edge e′ = {x, y} ̸∋ uv then obtain O′ by switching oi and oi+1.

• if oi+1 deletes an edge e′ = {uv, y} then obtain O′ by replacing oi, oi+1 with the deletion
of every edge between y and {u, v} followed by the contraction of e.

Observe that in any case O′ is equivalent to O.
Now let N(O) be the number of pairs (i, j) with j > i such that oi is a contraction and oj is

a deletion. Note that N(O′) < N(O); hence, repeating the construction above yields a sequence
O∗ equivalent to O such that N(O∗) = 0. But N(O∗) = 0 means O∗ = O∗

1O
∗
2, which by the

observation above completes the proof.

Definition 2.3. Let H and G be graphs. A model of H in G is a function f : V (H) → 2V (G)

such that:
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1. ∀u, v ∈ V (H), u ̸= v, f(u) ∩ f(v) = 0

2. ∀v ∈ V (H), G[f(v)] is connected

3. ∀{u, v} ∈ E(H), in G there is an edge between f(u) and f(v)

Here is an even more intuitive characterization of minors:

Lemma 2.4. H ⪯ G if and only if there is a model of H in G.

Proof. Suppose there is a model f of H in G. Delete all vertices in V (G) \ ∪v∈V (H)f(v), then
delete all edges in E(G) between any f(u) and f(v) such that {u, v} /∈ E(H). This yields a
subgraph of G on ∪v∈V (H)f(v), and by contracting all edges of G[f(v)] for all v ∈ V (H), we
obtain H . By Lemma 2.2 this implies H ⪯ G.

Now suppose H ⪯ G. By Lemma 2.2 H can be obtained by contracting edges of some
F ⊆ G. Note that the set of edges contracted must forms a spanning forest of F in the form
{Tu}u∈V (H); so that, for every u ∈ V (H), contracting all edges of Tu yields u. Setting f(u) =
V (Tu) yields a model of H in G.

By varying the set of operations allowed, we obtain variants of the notion of minor.

Definition 2.5. A graph H is an induced minor of a graph G, written H ⪯ G, if H can be obtained
from G by a sequence of vertex deletions and edge contractions, and it is a topological minor of
G if it can be obtained from G by a sequence of edge contractions.

Exercise 6. Adapt Lemma 2.4 for induced minors and topological minors.

3 Hadwiger’s Conjecture

Let G be a graph and k ∈ N. A k-coloring of G is a function c : V (G) → [k]. A coloring c is
proper if c(u) ̸= c(v) for all {u, v} ∈ E.

Definition 3.1. The chromatic number χ(G) of a graph G is:

χ(G) = min{k ∈ N : G has a proper k-coloring} (3)

Exercise 7. Prove that χ(Kk) = k for all k ∈ N.

Exercise 8. Prove that χ(G) ≤ 2 if and only if G is bipartite. More in general prove that χ(G) =
k if and only if V (G) = ∪̇i∈[k]Vi where Vi is an independent set of G for every i ∈ [k].

Definition 3.2. The Hadwiger number h(G) of G is:

h(G) = max{k ∈ N : Kk ⪯ G} (4)

This is often referred to as the most important open problem in graph theory:

Conjecture 3.3 (Hadwiger’s Conjecture, 1943). χ(G) ≤ h(G) for every G.

Exercise 9. Show the existence of arbitrarily large graphs G with χ(G) = h(G), or with χ(G) =
O(1) and h(G) = Ω(

√
n).
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Here are some cases of Hadwiger’s conjecture for small h(G):

• The conjecture holds when h(G) = 1. Indeed, h(G) = 1 means G has no edges, in which
case G has a proper 1-coloring, so χ(G) ≤ 1.

• The conjecture holds for h(G) = 2. Indeed, h(G) = 2 means G is a forest, in which case
G has a proper 2-coloring, so χ(G) ≤ 2.

• we know the conjecture holds for 3 ≤ h(G) ≤ 6 as well; for h(G) ≥ 7 we do not know

4 Forbidden minors

Some properties can be characterized by forbidden minors.

Definition 4.1. For any set of graphs H we define Forb(H) = {G : G ̸⪰ H, ∀H ∈ H}.

For instance:

Lemma 4.2. The class of acyclic graphs is Forb({K3}).

The class H is called obstruction set or Kuratowski set for ForbH. Hence H = {K3} is
the obstruction set for acyclicity. Obstruction sets give us the “reason” behind a property, and a
“certificate” that a given graph does not possess that property. We can prove that H = {K5,K3,3}
is the obstruction set for planarity:

Theorem 4.3 (Wagner, 1937). The class of planar graphs is Forb(K5,K3,3).

Proof. We start by recalling Kuratowski’s theorem: a graph G is planar if and only if H ̸⊆ G
whenever H is the subdivision of K5 or K3,3.

Suppose first G is nonplanar. Then by Kuratowski’s theorem H ⊆ G, and thus H ⪯ G, for
some subdivision H of K5 or K3,3. But then H has K5 or K3,3 as minor, and by transitivity of ⪯
this holds for G as well.

Suppose instead G is planar. Observe that a planar graph has only planar minors. Indeed, ver-
tex deletion and edge deletion clearly preserve planarity; just note that edge contraction preserves
planarity, too. But K5 and K3,3 are nonplanar by Kuratowski’s theorem; therefore K5,K3,3 ̸⪯
G.

Note that for h(G) = 4 Wagner’s theorem and Hadwiger’s conjecture imply the four-color
theorem (which says that if G is planar then χ(G) ≤ 4). Indeed, if G is planar then by Wagner’s
theorem h(G) ≤ 4, thus by Hadwiger’s conjecture χ(G) ≤ 4.

Exercise 10. Is is true that Forb(K4) is the class of 4-colorable graphs?
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