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The following result will be used below:

Theorem 0.1 (Robertson-Seymour). For every graph H there exists an algorithm that, for every
G, decides if H < G in time O(|V(G)[?).

1 Minor-closed graph families

Recall that a graph property is a family of graphs closed under isomorphism. Many important
properties are minor-closed, that is, closed under taking minors.

Definition 1.1. A graph family F is minor-closed if G € F implies H € F for every H < G.

Exercise 1. Decide if the following graph properties are minor-closed: being acyclic, being pla-
nar, having maximum degree at most k, having diameter at most k.

Theorem 1.2. F is minor-closed if and only if F = Forb(H) for some H.

Proof. Let F = {G : G ¢ F} be the complement of F.

If F is minor-closed then every G' € F satisfies G % H for all H € F, while every G ¢ F
satisfies G = G € F. Hence F = Forb(F), which proves for % = F proves the claim.

Now let 7 = Forb(#). If F is not minor-closed, then there is G € F such that G = G’ for
some G’ € F, which thus satisfies G’ = H for some H € H. But then by transitivity G = H,
which implies G' ¢ F, a contradiction. O

Theorem|[I.2]says that every minor-closed graph property has an obstruction set and viceversa.

2 The Robertson-Seymour theorem

The following result is among the deepest in graph theory:

Theorem 2.1 (The Robertson-Seymour graph minor theorem). In any infinite sequence of graphs
Go, G, ... there are indices i < j such that G; < Gj.

Note that the claim Theorem [2.1]does not hold for the subgraph relation C (why?). To appre-
ciate Theorem [2.1]let us see two of its consequences.



Consequence #1.
Theorem 2.2. F is minor-closed if and only if it has a finite obstruction set.

Proof. The backward direction is trivial. For the forward direction, define:
Hr ={H|Hec FandBH' € F : H < H} (1)

It is easy to see that 7 = Forb(Hx). Indeed, if G € F then G % H for all H € Hr since
Hr C F;if G ¢ F then G = H for some H € F,and by construction H x contains either H or
a proper minor. Now let Hy, H», ..., be any enumeration of H r. By Theorem Hr must be
finite, otherwise H; < H for some 7 < j, contradicting the definition of H r. O

Consequence #2.
Theorem 2.3. Every minor-closed graph property can be decided in time O(|V (G)|?).

Proof. Let F be the property. By Theorem [2.2] F has a finite obstruction set . To decide
whether any given G is in F, list every H € H and check whether H < G in time O(|V(G)|?)
using the algorithm of Theorem[0.1] Since H is fixed (i.e., not part of the input) then the running
time is polynomial in the input size. O

This implies, for instance, the existence of a polynomial-time algorithm for planarity testing.
Unfortunately, the constants hidden in the running time of the algorithm of Theorem [0.1] make the
algorithm impractical.

3 Proof of the graph minor theorem for trees

The proof of Theorem [2.1]is nontrivial; it took two decades and several hundred pages. Here, we
prove it for the special case of trees:

Theorem 3.1. In any infinite sequence of trees there are two trees T, T' such that T < T".

3.1 Colorings and monochromatic subsets

A k-coloring of a set A is a function ¢ : A — [k]. For any set X let [X]" be the set of all h-sized
subsets of X. Thus, a k-coloring of [X]" assigns a color to every h-sized subset of X. Given a
k-coloring of [ X", we say Y C X is monochromatic if c is constant over [Y]" (for k = 2 think of
a clique with vertex set X and a k-coloring c of the edges; a monochromatic subset is a sub-clique
whose edges have all the same color).

Theorem 3.2. Let c,h € N and X an infinite set. If [ X]" is coloured with c colors then X has an
infinite monochromatic subset.

Proof. We use induction on h. For h = 1 the claim is trivial. Let then h > 1 and assume the
claim holds for h — 1. Let Xo = X, choose any zg € Xo, and consider [Xp \ {zo}]"~!. We
define a coloring of [ X \ {xo}]"~! by letting ¢(Z) = c({zo} U Z) forevery Z € [Xo\ {zo}]" L.
By inductive hypothesis, there is an infinite Yo C X \ {0} such that every Z € [Yp]"~! has the



same color; call it ¢. Clearly c({z¢} U Z) = ¢ for all Z € [Yy]", too. Let X; = Yp, choose
any x; € X1, and repeat.

We obtain an infinite sequence of sets X = Xy 2 X; D ... and elements (x;);>0 With colors
(¢i)i>0. As the colors are finite, there is an infinite set Y = {x;, : j > 0} with the same color. By
construction, ¢(Z) is constant for all Z € [Y]", hence Y is monochromatic. O

3.2  Well-quasi-orderings

A relation =< over a set X is a quasi-ordering if it is:

e reflexive: x < xforallx € X

e transitive: x < yand y < zimpliesz = z,forall z,y, 2z € X

(Note that the minor relation is a quasi-ordering). If neither z < y nor y =< =z, then x and y are
incomparable. A set of pairwise incomparable elements is an antichain. A sequence (z;);>0 is
decreasing if x; > x;11 for all ¢ > 0, and is nondecreasing if r; < x;41 for all ¢ > 0. Increasing
and nonincreasing sequences are defined similarly. A sequence is good if it contains a good pair,
that is, a pair of elements x; < x; with 7 < j; otherwise the sequence is bad. A quasi-ordering <

on X is a well-quasi-ordering if every infinite sequence xg, x1, ... over X is good.

Lemma 3.3. X is well-quasi-ordered by < if and only if X contains neither an infinite antichain
nor an infinite decreasing sequence.

Proof. For the forward direction, if < is a well-quasi-ordering then by definition every infinite
sequence contains a good pair and therefore cannot be an antichain or a decreasing sequence.

For the backward direction, let (x;);en be any infinite sequence over X and consider the 3-
coloring of [N]? defined as follows, assuming without loss of generality that i < j:

1 ZT; = €j
c({i,j}) =14 2 x>z 2)
3 x;,x; incomparable

By Theorern there is an infinite Y C N such that all elements of [Y]? have the same colour.
In other words there is an infinite subsequence of (x;);c that is either increasing, or decreasing,
or an antichain. But the last two possibilities are ruled out by hypothesis. Hence (x;);>n contains
an infinite nondecreasing sequence. O

The proof above actually shows:
Corollary 3.4. X is well-quasi-ordered by = if and only if every infinite sequence in X has an
infinite nondecreasing subsequence.
3.3 Well-quasi-orderings of finite subsets

For any set X we denote by [X]|<“ the set of all finite subsets of X. Every quasi-order < over X
can be extended to [X]|<“: for every A, B € [X]<“ let A < B if and only if there is an injection
f:A— Bsuchthata < f(a) forall a € A. It is easy to see that < is a quasi-order on [X]<%.



Lemma 3.5. If X is well-quasi-ordered by < then so is [X|<“.

Proof. Suppose X is well-quasi-ordered by =< but [X]<% is not. Thus [X]|<“ contains an infinite
sequence that is bad. We construct a bad infinite sequence (A;);>¢ that shows that X is not well-
quasi-ordered by =<, a contradiction. Let Ay € [X]<“ be the smallest nonempty set such that there

exists a bad infinite sequence in [X]|<“ starting with Ay. Now, for every i = 0,1,. .., we choose
Ai11 € [X]<¥ of minimum cardinality such that there is a bad sequence in [X]<“ starting with
Ay, ..., Aiy1. The sequence (A;);>o thus obtained is clearly a bad sequence.

For every i > 0 choose an arbitrary a; € A;. By Corollary the sequence (a;);>0 has an
infinite nondecreasing subsequence (a;;);>0. For every j > 0 define B;;, = A;; \ {a;,}, and
consider the sequence:

S:AO)"'aAioflaBi();Bil"" (3)

This sequence S must be good, because if it was bad, then after choosing Ao, . .., A;,—1 we should
have chosen B, instead of A;,. Hence S contains a good pair. We claim that this implies (A4;);>0
being good, a contradiction.

Choose any good pair in S. If the pair is in the form A;, A; then this implies directly that
(A;)i>0 is good. If the pair is in the form A;, B; then observe that B; < A;, hence (by transitivity)
A; < Aj,s0 A, Aj is again good. If the pair is in the form B;, B; then since A; = B; U {a;} and
A; = B;j U{a;}, and since a; = aj, then once again A; < A;. Therefore in any case (A;);>¢ is
good, which is absurd since it was bad by construction. O

3.4 The proof
We can now prove the graph minor theorem for trees.
Theorem 3.6 (Kruskal, 1960). The set of finite trees is well-quasi-ordered by the minor relation.

Proof. The proof actually gives a stronger claim: it holds for rooted trees under the following
relation < which is a stronger version of the minor one. Given a tree 1" with root ¢, the tree-order
< over V(T) is such that x < y iff z lies on the path T'(r,y) between r and y. Given two trees
T, T’ withroots r,r’, let T' < T" iff there is an isomorphism ¢ from a subdivision of 7" to a subtree
T"” C T that preserves the tree order, i.e., such that if x < y then ¢(x) < ¢(y). It is not hard to
see that < is a quasi-ordering over the family of rooted trees.

Now suppose by contradiction that the claim was false. As in the proof of Lemma [3.5] con-
struct a bad infinite sequence (7;);>o of rooted trees by letting 7,1 be any smallest tree (i.e. with
the fewest vertices) that extends Ty, . .., T;. For every ¢ > 0 let r; be the root of T; and let A; be
the set of rooted trees in 7; \ 7; (the roots are the neighbors of r;). We prove that (A4;);>( contains
a pair A;, A; with ¢ < j such that for every T' € A; there is a distinct 7" € A; satisfying T < T".
It is then easy to see that T; = T};. Hence (T3)i>0 contains a good pair, which is absurd.

Let A = Uj>0A;. We prove that A is well-quasi-ordered. By Lemma [3.3] this implies that
[A]<“ is well-quasi-ordered too, and therefore (A;);>o, which is an infinite subsequence over
[A]<%, contains a good pair. Let (T%);>q be any infinite sequence in A. For every k > 0 choose
n(k) such that T% € Ay (k) and let k* = arg ming>q n(k). Look at the sequence:

S =Ty, ..., Tpey—1, TF , TFH1, . 4)



Note that S is good: if it was bad, then in the construction of (7;);>0 we would have chosen Tk
instead of T}, (1), as V(TF)| < V(T ())|- The same arguments of the proof of Lemma show
that any good pair in S has the form T*!, T%2, and thus is a good pair in (T*) k>0, as claimed. [
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