
Lecture 3: Tree decompositions and the Excluded Grid Theorem
30/05/2022

Lecturer: Marco Bressan

1 Dynamic programming

Computing the size of the largest independent set is NP-hard. Consider however the following toy
dynamic program on the graph of Figure 1. We “sweep” G from right to left using a sequence of
6-vertex sets X1, . . . , X7. For each i let X left

i , X
right
i denote the left and right vertices of Xi and

let Vi = ∪i
j=1Xi. For i = 1 we list all subsets of Xi = Vi. For every S ⊆ X left

i this yields the
size of the largest independent set in Vi whose restriction to X left

i is S. Call this number α(i, S).
Now suppose we know α(i − 1, ·) for some i > 1. We list every independent subset A of Xi,
and if S = A ∩ X left

i , then the largest independent set in Vi whose restriction to X left
i is S has

size |S| + α(i − 1, A ∩ X
right
i). Thus we can compute α(i, S) for every subset S of X left

i . This
eventually yields us the size of largest independent set in G as maxS⊆X left

7
α(7, S).

Figure 1: α(G) via dynamic programming. Left: X1 and X left
1 . Right: X6, X

left
6 and V6.

One property exploited by the dynamic program above is that, for every i, there are no edges
in G between the two “sides” of G identified by X left

i .

Definition 1.1. Let G = (V,E). A set X ⊆ V (G) is a (vertex) separator for A,B ⊆ V if every
path between A and B contains a vertex of X .

One can observe that X left
i is a separator for Vi, V \ Vi. Another way to put it is using separations:

Definition 1.2. A separation in a graph G = (V,E) is a pair of sets (A,B) such that A∪B = V
and that G has no edges between A \ B and B \ A. The set A ∩ B is called the separator and
|A ∩B| is called the order of (A,B).

In the example above (Vi,∪j>iXj) is a separation for every i.
Another crucial property is that these separators form a sequence X1, X2, . . . so that we can

check every edge at least once and “in the right order”. These properties can be captured formally
and generalized from a sequence to a tree.

1

2 Tree decompositions and treewidth

Definition 2.1. A tree decomposition of a graph G = (V,E) is a pair T = (T, {Bt}t∈V (T)) where
Bt ⊆ V (G) for all t ∈ V (T) such that:

1. ∪t∈V (T)Bt = V

2. ∀e ∈ E ∃t ∈ V (T) : e ⊆ Bt

3. Bt1 ∩Bt2 ⊆ Bt for every t1, t2 ∈ V (T) and every t on the unique path between them

The width of a tree decomposition T is

w(T) = max
t∈V (T)

|Bt| − 1 (1)

The treewidth of a graph G is

tw(G) = min{w(T) : T tree decomposition of G} (2)

Figure 2: A graph G and its tree decomposition (By David Eppstein - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3011976)

Tree decompositions and treewidth play a central role in graph algorithms, graph minor theory,
and algorithmic metatheorems. For example:

Theorem 2.2. If G is given together with a tree decomposition of width k, then one can find a
maximum independent set in G in time 2k · kO(1) · |V (G)|.

Similar results hold for many other NP-hard problems. In fact there exist “metatheorems”
saying that, for some function f , every problem of a certain kind (e.g. expressible in a certain
logic) can be solved in time f(k) · V (G) whenever tw(G) ≤ k.

Exercise 1. Find a tree decomposition for a tree. What is its width?

2.1 Properties

Tree decompositions can be thought of as “sequences of separations”, but they are actually trees.
Let G be any graph and T = (T, {Bt}t∈V (T)) be a tree decomposition of G.

2

https://commons.wikimedia.org/w/index.php?curid=3011976

Lemma 2.3. Let e = {t1, t2} ∈ E(T), let T1, T2 with t1 ∈ V (T1) and t2 ∈ V (T1) be the trees of
T \ e, and let V1 = ∪t∈V (T1)Bt and V2 = ∪t∈V (T2)Bt. Then (V1, V2) is a separation in G.

Proof. We use the properties of Definition 2.1. First, by construction V1∪V2 = ∪t∈V (T)Bt, which
by property (1) is V (G). Suppose (V1, V2) was not a separation. Thus G contains an edge {u, v}
with u ∈ V1 \ V2 and v ∈ V2 \ V1. Now, by property (2), there is t ∈ V (T) such that {u, v} ⊆ Bt.
But since t ∈ V (T1) ∪ V (T2), at least one of u, v appears in V1 ∩ V2, a contradiction.

Here is a very useful property of tree decompositions.

Lemma 2.4. For any v ∈ V (G) let T (v) = T [{t ∈ V (T) : v ∈ Bt}]. Then T (v) is connected.

Exercise 2. Prove lemma Lemma 2.4 and show it is equivalent to property (3) of Definition 2.1.

2.2 Special cases

Claim 2.5. If G is a tree then tw(G) = 1.

Proof. Let G be a tree. Let T be the 1-subdivision of G. For every t ∈ V (T), if t = u ∈ V (G)
then let Bt = {u}, and if t = uv for {u, v} ∈ E(G) then let Bt = {u, v}. It is straightforward to
verify that T = (T, {Bt}t∈V (T)) satisfies Definition 2.1 and that w(T) = 1.

Claim 2.6. tw(Kn) = n− 1.

We prove Lemma 2.6 below.

Exercise 3. The n-by-n grid ⊞n is defined by:

V (⊞n) = {(i, j) : i, j ∈ [n]} (3)

E(⊞n) = {{(i, j), (i′, j′)} : (i, j), (i′, j′) ∈ V (⊞n) : |i− i′|+ |j − j′| = 1} (4)

Can you find a tree decomposition for ⊞n of width 2n− 1? And of width n?

2.3 Treewidth and minors

Lemma 2.7. If H ⪯ G then tw(H) ≤ tw(G).

Proof. Let T = (T, {Bt}) be a tree decomposition of G, and consider the following cases:

• if G′ = G \ e, then let T ′ = T .

• if G′ = G \ v, then let T ′ = (T, {Bt \ {v}}t∈V (T)).

• if G′ = G/e with e = {u, v} then T ′ = (T, {B′
t}t∈V (T)), where B′

t = Bt if Bt ∩ e = ∅
and B′

t = Bt \ e ∪ {uv} otherwise.

One can check that in all cases T ′ is a tree decomposition of G′, and clearly w(T ′) ≤ w(T).

As a consequence:

Corollary 2.8. For every k ∈ N the family Fk of graphs with treewidth at most k is minor-closed.

By the graph minor theorem Fk is characterized by a finite obstruction set H. Unfortunately
we do not know H save for small values of k (e.g., for k = 1 we have H = {K3} since F1 is
precisely the family of acyclic graphs).

3

2.4 Brambles

Two subsets X,X ′ ⊆ V (G) touch if X ∩X ′ ̸= ∅ or G has an edge between X and X ′.

Definition 2.9. A bramble in G is a collection β = {X1, . . . , Xk} of subsets of V (G) such that:

1. G[Xi] is connected for all i ∈ [k]

2. Xi and Xj touch for all i, j ∈ [k]

A set S ⊆ V (G) is a hitting set for β if S ∩Xi ̸= ∅ for all Xi ∈ β. The order ord(β) of β is the
size of a smallest hitting set. The bramble number of G is

bn(G) = max{ord(β) : β bramble of G} (5)

Figure 3: A bramble of order 4 in the 3-by-3 grid graph ⊞3 (By David Eppstein - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=20487288)

Example 2.10. β = {{v} : v ∈ V (G)} is a bramble of order n for G = Kn, hence bn(Kn) = n.

Before proving the next theorem we need some ancillary results.

Lemma 2.11. If G[X] ⊆ G is connected then T [X] = T [{t ∈ V (T) : X∩Bt ̸= ∅}] is connected.

Proof. By Lemma 2.4 T [v] is connected for every v ∈ X . Now consider any edge {u, v} in G[X].
By property (2) of Definition 2.1 there is t ∈ V (T) with {u, v} ⊆ Bt. But t ∈ T [u] ∩ T [v], thus
T [u] ∪ T [v] is connected. The proof is completed by iterating over a spanning tree of G[X].

The following lemma can be proven by induction (we omit the proof).

Lemma 2.12 (Helly property for trees.). If T1, . . . , Tk are subtrees of a tree T , and V (Ti) ∩
V (Tj) ̸= ∅ for all i, j ∈ [k], then ∩i∈[k]Ti ̸= ∅.

Theorem 2.13. Every graph G satisfies tw(G) ≥ bn(G)− 1.

Proof. We use of the Helly property for trees (which we do not prove): if T1, . . . , Tk are subtrees
of a tree T , and V (Ti) ∩ V (Tj) ̸= ∅ for all i, j ∈ [k], then ∩i∈[k]Ti ̸= ∅; that is, there is a vertex
contained in every Ti. Let β be a bramble of maximum order in G and let T = (T, {Bt}t∈V (T))
be any tree decomposition of G. We prove that some Bt is a hitting set for β.

4

https://commons.wikimedia.org/w/index.php?curid=20487288

For any X ∈ β, since G[X] is connected, by Lemma 2.11 T [X] is connected. Moreover for
every X,X ′ ∈ β, since X and X ′ touch, the same argument used in the proof of Lemma 2.11
shows that T (X) ∩ T (X ′) ̸= ∅. By Lemma 2.12, there exists t ∈ ∩X∈βT (X). Thus Bt satisfies
Bt ∩X ̸= ∅ for all X ∈ β. Hence Bt is a hitting set for β, and |Bt| ≥ ord(β).

Since β was chosen of maximum order, then ord(β) = bn(G). Thus |Bt| ≥ bn(G) and
w(T) ≥ bn(G)− 1. Since this holds for every T , we conclude that tw(G) ≥ bn(G)− 1.

Example 2.14. Let G = ⊞n. For every i = 1, . . . , n let Ri = {(i, j) : j ∈ [n]} and Ci = {(j, i) :
i ∈ [n]}; these are the i-th row and i-th column. Consider:

β = {Ri ∪ Ci : i ∈ [n]} (6)

It is easy to see that β has order n, since any set of less than n vertices misses some row and some
column. Hence bn(G) ≥ n and thus tw(G) ≥ n − 1. In fact, with a slight modification one can
show that bn(G) ≥ n+ 1 and thus tw(G) ≥ n.

Figure 4: Illustration that ⊞n has a bramble of order n + 1 and thus tw(⊞n) ≥ n. Credit to the
authors of Treewidth Lower Bounds with Brambles, Algorithmica 51(1):81-98, 2008.

In fact, Robertson and Seymour proved:

Theorem 2.15 (Treewidth Duality Theorem). Every graph G satisfies tw(G) = bn(G)− 1.

2.5 The Excluded Grid Theorem

We conclude with another deep result due to Robertson and Seymour.

Theorem 2.16 (The Excluded Grid Theorem). There exists a function f : N → N such that, for
every n ∈ N, every graph of treewidth at least f(n) contains ⊞n as a minor.

Hence every graph of treewidth at least (say) 1.000 has (say) a ⊞10 minor, every graph of treewidth
at least (say) 1.000.000 has (say) a ⊞100 minor, and so on. This provides a beautiful “explanation
of treewidth”: it is attributable to a canonical graph, the grid. Note that this is not true if in place
of ⊞n one uses, say, Kn (which at first sight may seem an obvious choice).

An equivalent form of Theorem 2.16 is:

Theorem 2.17 (The Excluded Grid Theorem). There exists a function f : N → N such that every
graph that is ⊞n-minor-free has treewidth less than f(n).

5

Moreover, every graph of treewidth k must be ⊞n-minor-free for every n > k, otherwise
the treewidth would be larger than k. Thus every graph has a grid minor that “determines” its
treewidth. This can be thought of as an approximate version of an obstruction set for graphs of
treewidth bounded by k. In particular, an infinite family of graphs F has unbounded treewidth (i.e.
for every k ≥ N it contains a graph of treewidth ≥ k) if and only if it has unbounded grid minors
(i.e. for every n ≥ N it contains a graph with the n-by-n grid as minor). In fact, one usually says
that grid minors are obstructions for the treewidth.

6

	Dynamic programming
	Tree decompositions and treewidth
	Properties
	Special cases
	Treewidth and minors
	Brambles
	The Excluded Grid Theorem

