
Kernel Principal Component Analysis

Laura Pavone

Università degli Studi di Milano

I declare that this material, which I now submit for assessment, is entirely my own work
and has not been taken from the work of others, save and to the extent that such work has been
cited and acknowledged within the text of my work. I understand that plagiarism, collusion, and
copying are grave and serious offences in the university and accept the penalties that would be
imposed should I engage in plagiarism, collusion or copying. This assignment, or any part of
it, has not been previously submitted by me or any other person for assessment on this or any
other course of study.

Abstract

A new method for performing a nonlinear form of principal component analysis is
proposed. By the use of integral operator kernel functions, one can efficiently compute
principal components in high-dimensional feature spaces, related to input space by some
nonlinear map. First we study some kernels properties and theorems and then we give
the derivation of the method and also present experimental results on polynomial feature
extraction for pattern recognition.

1 Introduction

Principal component analysis (PCA) is a powerful technique for extracting structure from
possibly high-dimensional data sets. It is readily performed by solving an eigenvalue problem.
PCA is an orthogonal transformation of the coordinate system in which we describe our data.
The new coordinate values by which we represent the data are called principal components.
It is often the case that a small number of principal components is sufficient to account for
most of the structure in the data. We are interested not in principal components in input
space but in principal components of variables, or features, which are nonlinearly related to
the input variables. Among these there are variables obtained by taking arbitrary higher-order
correlations between input variables. In the case of image analysis, this amounts to finding
principal components in the space of products of input pixels. To this end, we are computing
dot products in feature space by means of kernel functions in input space. So we need some
technical results about kernels of RKHS (Reproducing Kernel Hilbert Spaces).

1

2 Kernels: something useful

Definition 2.1. • An inner product on an R-vector space H is a mapping (f, g) 7→ ⟨f, g⟩H
from H2 to R that is bilinear, symmetric and such that ⟨f, f⟩H > 0 ∀f ∈ H\{0}.

• A vector space endowed with an inner product is called pre-Hilbert. It is endowed with a

norm defined as ∥f∥H = ⟨f, f⟩
1
2

H .

• A Hilbert space is a pre-Hilbert space complete for the norm ∥ · ∥H . That is, any Cauchy
sequence in H converges in H.

Definition 2.2. A positive definite (p.d.) kernel on a set X is a function K : X ×X → R that
is symmetric:

∀(x, x′) ∈ X2, K(x, x′) = K(x′, x),

and which satisfies, for all N ∈ N, (x1, x2, ..., xN) ∈ XN and (a1, a2, ..., aN) ∈ RN

N∑
i=1

N∑
j=1

aiajK(xi, xj) ≥ 0

Remark 2.3. Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and any set of points
(x1, x2, ..., xN) ∈ XN , the matrix K such that [K]ij := K(xi, xj) is positive semidefinite.

Kernel methods are algorithms that take such matrices as input.

Lemma 2.1. Let X = Rd. The function K : X2 → R defined by:

∀(x, x′) ∈ X2, K(x, x′) = ⟨x, x′⟩Rd (1)

is p.d. (it is often called the linear kernel).

A more ambitious p.d. kernel is the following:

Lemma 2.2. Let X be any set and Φ : X → Rd. Then the function K : X2 → R defined as
follows is p.d.:

∀(x, x′) ∈ X2, K(x, x′) = ⟨Φ(x),Φ(x′)⟩Rd (2)

But we are mostly interested in the converse statement.

2.1 Aronszajn’s theorem

Theorem 2.3 (Aronszajn, 1950). K is a p.d. kernel on the set X if and only if there exist
a Hilbert space H and a mapping Φ : X → H such that

∀x, x′ ∈ X, K(x, x′) = ⟨Φ(x),Φ(x′)⟩H (3)

The proof is split up into 2 parts: the finite and the infinite case. We now give the proof of
the first one. For the infinite case we need some other informations and results (in the next
paragraph).

Proof. Finite case
Assume X = {x1, x2, ..., xN} is finite of size N .
Any p.d. kernel K : X ×X → R is entirely defined by the N ×N symmetric positive semidef-
inite matrix [K]ij := K(xi, xj). It can therefore be diagonalized on an orthonormal basis of
eigenvectors (u1, u2, ..., uN), with non-negative eigenvalues 0 ≤ λ1 ≤ ... ≤ λN , i.e.

K(xi, xj) =

[N∑
l=1

λlulu
T
l

]
ij

=

N∑
l=1

λl[ul]i[ul]j = ⟨Φ(xi),Φ(xj)⟩RN

with
Φ(xi) = (

√
λ1[u1]i, ...,

√
λN [uN]i)

T .

2

For the infinite case, we have to introduce some tools.
Among the Hilbert spaces H mentioned in Aronszjan’s theorem, one of them, called RKHS, is
of interest to us.

Definition 2.4. Let X be a set and H ⊂ RX be a class of functions forming a (real) Hilbert
space with inner product ⟨·, ·⟩H . The function K : X2 → R is called a reproducing kernel (r.k.)
of H if

• H contains all functions of the form: ∀x ∈ X, Kx : t 7→ K(x, t);

• For every x ∈ X and f ∈ H the reproducing property holds: f(x) = ⟨f,Kx⟩H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space (RKHS).

The principle of RKHS gives us a simple recipe to do machine learning:

1. Map data x in X to a high-dimensional Hilbert space H (the RKHS) through a kernel
mapping Φ : X → H, with Φ(x) = Kx.

2. In H, consider simple linear models f(x) = ⟨f,Φ(x)⟩H ;

3. If X = Rp, a linear function in Φ(x) may be nonlinear in x.

Theorem 2.4. A Hilbert space of functions H ⊂ RX is a RKHS if and only if for any x ∈ X,
the mapping f 7→ f(x) (from H to R) is continuous.

Corollary 2.4.1. Convergence in a RKHS implies pointwise convergence on any point, i.e., if
(fn)n∈N converges to f ∈ H , then (fn(x))n∈N converges to f(x) for any x ∈ X.

Theorem 2.5. If H is a RKHS, then it has a unique r.k.
Conversely, a function K can be the r.k. of at most one RKHS.

As a consequence we can talk of ”the” kernel of a RKHS, or ”the” RKHS of a kernel.

Proof. • If a r.k. exists then it is unique.
Infact let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

∥Kx −K ′
x∥2H = ⟨Kx −K ′

x,Kx −K ′
x⟩H

= ⟨Kx −K ′
x,Kx⟩H − ⟨Kx −K ′

x,K
′
x⟩H

= Kx(x)−K ′
x(x)−Kx(x) +K ′

x(x) = 0

H being a Hilbert space, only the zero function has a norm equal to 0. This shows that
Kx = K ′

x as functions, i.e., Kx(y) = K ′
x(y) for any y ∈ X or, equivalently, K(x, y) =

K ′(x, y). In other words, K = K ′.

• The RKHS of a r.k. K is unique.
To prove the converse, first consider a RKHS H1 with r.k. K. By definition of the r.k.,
we know that all the functions Kx for x ∈ X are in H1, therefore their linear span

H0 =

{ n∑
i=1

αiKxi
: n ∈ N, α1, ..., αn ∈ R, x1, ..., xn ∈ X

}
is a subspace of H1. Now we observe that if f ∈ H1 is orthogonal to H0, then in particular
it is orthogonal to Kx for any x which implies f(x) = ⟨f,Kx⟩H1

= 0, i.e., f = 0. In other
words, H0 is dense in H1.
Moreover the H1 norm for functions in H0 only depends on the r.k. K, because it is given
for a function f =

∑n
i=1 αiKxi ∈ H0 by

∥f∥2H1
=

n∑
i=1

n∑
j=1

αiαj⟨Kxi
,Kxj

⟩H1
=

n∑
i=1

n∑
j=1

αiαjK(xi, xj). (4)

3

Suppose now that H2 is also a RKHS that admits K as r.k. Then by the same argument,
the space H0 is dense in H2, and the H2 norm in H0 is given by (4). In particular, for
any f ∈ H0, ∥f∥H1 = ∥f∥H2 .
Now let f ∈ H1. By density of H0 in H1, there is a sequence (fn)n in H0 such that
∥fn−f∥H1

→ 0. The converging sequence (fn)n is in particular a Cauchy sequence for the
H1 norm, and since this norm coincides with the H2 norm on H0, (fn)n is also a Cauchy
sequence for the H2 norm and converges in H2 to a function g ∈ H2. By the previous
Corollary applied to both H1 and H2, we see that, for any x ∈ X, limn→+∞ fn(x) =
f(x) = g(x). In other words, f = g and therefore f ∈ H2. By the arbitrariness of f this
shows that H1 ⊂ H2 and, by symmetry of the argument, that H1 = H2. We now need to
check that the norms in H1 and H2 coincide, which results from:

∥f∥H1
= lim

n→+∞
∥fn∥H1

= lim
n→+∞

∥fn∥H2
= ∥f∥H2.

Theorem 2.6. A function K : X ×X → R is p.d. if and only if it is a r.k.

Proof. ⇐) A r.k. is symmetric thanks to the reproducing property. Infact for any (x, y) ∈ X2:

K(x, y) = ⟨Kx,Ky⟩H = ⟨Ky,Kx⟩H = K(y, x).

It is also p.d. because for any N ∈ N, (x1, x2, ..., xN) ∈ XN and (a1, a2, ..., aN) ∈ RN :

N∑
i,j=1

aiajK(xi, xj) =

N∑
i,j=1

aiaj⟨Kxi
,Kxj

⟩H = ∥
N∑
i=1

aiKxi
∥2H ≥ 0.

⇒) Conversely, let H0 be the vector subspace of RX spanned by the functions {Kx}x∈X . For
any f, g ∈ H0, given by:

f =

m∑
i=1

aiKxi
, g =

n∑
j=1

bjKyj

let:

⟨f, g⟩H0
:=

m∑
i=1

n∑
j=1

aibjK(xi, yj) =

m∑
i=1

aig(xi) =

n∑
j=1

bjf(yj).

This shows that ⟨f, g⟩H0
does not depend on the expansion of f and g and also shows that

⟨·, ·⟩H0
is a symmetric bilinear form and ∀x ∈ X and f ∈ H0, ⟨f,Kx⟩H0

= f(x).
K is assumed to be p.d., therefore:

∥f∥2H0
=

m∑
i,j=1

aiajK(xi, xj) ≥ 0.

By Cauchy-Schwarz, ∀x ∈ X :

| f(x) |= ⟨f,KX⟩H0 ≤ ∥f∥H0K(x, x)
1
2

therefore ∥f∥H0
= 0 ⇒ f = 0. H0 is therefore a pre-Hilbert space endowed with the inner

product ⟨., .⟩H0
. For any Cauchy sequence (fn)n≥0 in (H0, ⟨., .⟩H0

), we note that:

∀(x,m, n) ∈ X × N2, | fm(x)− fn(x) |≤ ∥fm − fn∥H0
K(x, x)

1
2

Therefore for any x the sequence (fn(x))n≥0 is Cauchy in R and has therefore a limit. If we
add to H0 the functions defined as the pointwise limits of Cauchy sequences, the space becomes
complete after some technical effort (completion) and is therefore a Hilbert space, with K as
r.k.

Now the proof of Aronszajn’s theorem with X infinite set is an easy application of the
previous results.

4

Proof. Infinite case
If K is p.d. over a set X then it is the r.k. of a Hilbert space H ⊂ RX . Let the mapping
Φ : X → H defined by: ∀x ∈ X,Φ(x) = Kx. By the reproducing property:

∀(x, y) ∈ X2, ⟨Φ(x),Φ(y)⟩H = ⟨Kx,Ky⟩H = K(x, y).

When X is a compact set and K is continuous, another important result holds, the Mercer’s
theorem (we will use it in kernel PCA).

2.2 Mercer’s Theorem

Definition 2.5. A kernel K on a set X is called a Mercer kernel if:

• X is a compact metric space;

• K: X ×X → R is a continuous p.d. kernel (w.r.t. the Borel topology).

Definition 2.6. Let H be a Hilbert space

• a linear operator is a continuos linear mapping from H to itself;

• a linear operator L is called compact if, for any bounded sequence {fn}n, the sequence
{Lfn}n has a subsequence that converges;

• L is called self-adjoint if, for any f, g ∈ H:

⟨f, Lg⟩ = ⟨Lf, g⟩

• L is called positive if it is self-adjoint and for any f ∈ H:

⟨f, Lf⟩ ≥ 0.

Now let ν be any Borel measure on X and L2
ν(X) the Hilbert space of (equivalence classes of)

square integrable functions on X. For any function K : X2 → R let the transform:

∀f ∈ L2
ν(X), (LKf)(x) =

∫
K(x, t)f(t)dν(t). (5)

Lemma 2.7. If K is a Mercer kernel, then LK is a compact and bounded linear operator over
L2
ν(X), self-adjoint and positive.

Proof. The proof is divided into 5 parts:

1. LK is a mapping from L2
ν(X) to L2

ν(X).
∀f ∈ L2

ν(X) and ∀(x1, x2) ∈ X2:

| (LKf)(x1)− (LKf)(x2) | =
∣∣∣∣∫ (K(x1, t)−K(x2, t))f(t)dν(t)

∣∣∣∣
= ⟨Kx1

−Kx2
, f⟩ ≤ ∥Kx1

−Kx2
∥L2

ν(X)∥f∥L2
ν(X)

≤
√
ν(X)max

t∈X
| K(x1, t)−K(x2, t) | ∥f∥L2

ν(X).

where the first inequality holds thanks to Cauchy-Schwarz.
K being continuous and X compact, K is uniformly continuous, therefore LKf is contin-
uous. In particular, LKf ∈ L2

ν(X).

5

2. LK is linear and continuous (that is equivalent to bounded).

Linearity is obvious. Instead for continuity we notice that for all f ∈ L2
ν(X) and x ∈ X:

| (LKf)(x) | =
∣∣∣∣∫ K(x, t)f(t)dν(t)

∣∣∣∣
≤

√
ν(X)max

t∈X
| K(x, t) | ∥f∥L2

ν(X)

≤
√
ν(X)CK∥f∥L2

ν(X).

where CK = max
x,t∈X

| K(x, t) |< +∞. Therefore:

∥LKf∥L2
ν(X) =

(∫
(LKf)(t)

2dν(t)

) 1
2

≤ ν(X)CK∥f∥L2
ν(X).

3. LK is compact.
In order to prove the compactness of LK recall a definition and a criterion (Ascoli Theo-
rem).

Definition 2.7. Let C(X) denote the set of continuous functions on X endowed with
infinite norm ∥f∥∞ = max

x∈X
| f(x) | .

A set of functions G ⊂ C(X) is called equicontinuous if:

∀ϵ > 0, ∃δ > 0, ∀(x, y) ∈ X2 s.t. ∥x− y∥ < δ ⇒ ∀g ∈ G, | g(x)− g(y) |< ϵ. (6)

Theorem 2.8 (Ascoli). A set H ⊂ C(X) is relatively compact (i.e. its closure is
compact) if and only if it is uniformly bounded and equicontinuous.

We now complete the proof of compactness.
So let (fn)n≥0 be a bounded sequence of L2

ν(X), i.e. (∥fn∥L2
ν(X) ≤ M). The sequence

(LKfn)n≥0 is a sequence of continuous functions, uniformly bounded because:

∥LKfn∥∞ ≤
√
ν(X)CK∥fn∥L2

ν(X) ≤
√
ν(X)CKM.

It is equicontinuous because (recall K uniformly continuous):

| LKfn(x1)− LKfn(x2) |≤
√
ν(X)max

t∈X
| K(x1, t)−K(x2, t) |M.

By Ascoli theorem, we can extract a sequence uniformly convergent in C(X), and there-
fore in L2

ν(X) since X is compact.

4. LK is self-adjoint.
K being symmetric, for all f, g ∈ L

⟨f, Lg⟩L2
ν(X) =

∫
f(x)(Lg)(x)dν(x) =

∫ ∫
f(x)g(t)K(x, t)dν(x)dν(t) = ⟨Lf, g⟩L2

ν(X)

thanks to Fubini.

5. LK is positive.
It is possible to approximate the integral by finite sums:

⟨f, Lf⟩L2
ν(X) =

∫ ∫
f(x)f(t)K(x, t)dν(x)dν(t) = lim

k→+∞

ν(X)

k2

k∑
i,j=1

K(xi, xj)f(xi)f(xj) ≥ 0

because K is positive definite.

6

In order to give the proof of the main result of this section, we need to recall the following:

Theorem 2.9. Let L be a compact, self-adjoint, linear operator on a Hilbert space H. Then
there exists in H a complete orthonormal system (ψ1, ψ2, ...) of eigenvectors of L, with real
eigenvalues (λ1, λ2, ...) which are non-negative if L is positive.

Thanks to the previous results, this theorem can be applied to LK . In that case the eigen-
functions ψk associated to the eigenvalues λk ̸= 0 can be considered as continuous functions,
because:

ψk =
1

λk
LKψk. (7)

We are finally ready to present and give the proof of Mercer’s theorem:

Theorem 2.10 (Mercer). Let X be a compact metric space, ν a nondegenerate Borel measure
on X (i.e. ν(U) > 0 for any nonempty open set U ⊂ X) , and K a continuous p.d. kernel. Let
λ1 ≥ λ2 ≥ ... ≥ 0 denote the nonnegative eigenvalues of LK and (ψ1, ψ2, ...,) the corresponding
eigenfunctions. Then all functions ψk are continuous, and for any x, t ∈ X :

K(x, t) =
∞∑
k=1

λkψk(x)ψk(t) (8)

where the convergence is absolute for each x, t ∈ X , and uniform on X ×X.

Proof. For the sake of clarity the proof is split up into 5 parts.

1. ∀k ≥ 1 such that λk > 0, ψk ∈ H (RKHS of K).
If λk > 0, we have

∀x ∈ X,ψk(x) =
1

λk
Lkψk(x) =

1

λk

∫
K(x, t)ψk(t)dν(t) = lim

n→+∞

ν(X)

λkn

n∑
i=1

K(x, ti)ψk(ti)

for a set t1, t2, ... conveniently chosen. Besides, set hn := ν(X)
λkn

∑n
i=1K(·, ti)ψk(ti) ∈ H

for any n ∈ N and, for any n,m ∈ N ,

⟨hn, hm⟩H =
ν(X)2

λ2knm

n∑
i=1

m∑
j=1

ψk(ti)ψk(tj)K(ti, tj).

Therefore,

lim
n,m→+∞

⟨hn, hm⟩H =
1

λ2k

∫ ∫
K(t, t′)ψk(t)ψk(t

′)dν(t)dν(t′) =: R,

and
lim

n,m→+∞
∥hn − hm∥2 = R+R− 2R = 0

(hn)n is therefore a Cauchy sequence in H, which converges to a function h ∈ H. In
particular, for any x ∈ X ,

h(x) = lim
n→+∞

hn(x) = ψk(x),

and finally ψk = h⇒ ψk ∈ H.

7

2. {
√
λkψk : λk > 0} is an orthonormal system (ONS) of H.

Let i, j ≥ 1 such that λi, λj > 0. Then
√
λiψi,

√
λjψj ∈ H and

⟨
√
λiψi,

√
λjψj⟩H = ⟨ 1√

λi

∫
Ktψi(t)dν(t),

√
λjψj⟩H

=

√
λj
λi

∫
⟨Kt, ψj⟩Hψi(t)dν(t) =

√
λj
λi

∫
⟨Kt, ψj⟩Hψj(t)ψi(t)dν(t)

=

√
λj
λi

⟨ψi, ψj⟩L2
ν(X) = δij .

3. For any x ∈ X
∑

k:λk>0 λkψk(x)
2 ≤ CK .

For any x ∈ X , Kx ∈ H and ∥Kx∥2H = K(x, x) ≤ CK .
Therefore, since {

√
λkψk : λk > 0} is an ONS of H:

CK ≥ ∥Kx∥2H ≥
∑

k:λk>0

⟨Kx,
√
λkψk⟩2H =

∑
k:λk>0

λkψk(x)
2.

4. For any x ∈ X, the series of functions t 7→
∑

i λiψi(x)ψi(t) converges uniformly
to a continuous function gx.
By Cauchy- Schwarz, for any fixed x ∈ X and for any t ∈ X (restricting the sum to the
indices i ≥ 1 such that λi > 0):∣∣∣∣m+l∑

i=m

λiψi(x)ψi(t)

∣∣∣∣ ≤ m+l∑
i=m

|λiψi(x)ψi(t)|

≤
(m+l∑

i=m

λiψi(x)
2

) 1
2
(m+l∑

i=m

λiψi(t)
2

) 1
2

≤ CK

(m+l∑
i=m

λiψi(t)
2

) 1
2

,

which tends to 0 uniformly in t ∈ X . Therefore
∑

i λiψi(x)ψi(t) converges uniformly in t
for fixed x. Thus the series of the function t 7→

∑
i λiψi(x)ψi(t) is continuous and conver-

gences uniformly to a continuous function gx (because it’s an uniform limit of continuous
objects). The inequalities above also give us the absolute convergence.

5. Kx = gx ∈ L2
ν .

On the other hand, we can expand Kx over the ONB {ψk, k ≥ 1} of L2
ν(X):

Kx =
∑
k≥1

⟨Kx, ψk⟩L2
ν(X)ψk =

∑
k≥1

(Lψk)(x)ψk =
∑
k≥1

λkψk(x)ψk =
∑

k≥1:λk>0

λkψk(x)ψk,

therefore Kx = gx in L2
ν , i.e. ∥Kx − gx∥L2

ν
= 0.

Since ν in nondegenerate, and both Kx and gx are continuous, this implies

∀t ∈ X, Kx(t) = gx(t) =
∑
i

λiψi(x)ψi(t).

Since step (4) can be repeated for any fixed t and any x, we obtain:∣∣∣∣m+l∑
i=m

λiψi(x)ψi(t)

∣∣∣∣≤ C2
K

so the convergence of the series (8) is uniform and absolute in X ×X.

8

Remark 2.8. The eigensystem (λk and ψk) depends on the choice of the measure ν: different
measures lead to different feature spaces for a given kernel and a given space X.
Now let l2 denote the Hilbert space of real-value sequences u = (uk)k∈N such that

∑
k∈N u

2
k <

+∞, endowed with the inner product ⟨u, v⟩ =
∑

k∈N ukvk.

Finally we obtain:

Theorem 2.11. Let LK ∈ L2
ν(X), (λ1, λ2, ...) and (ψ1, ψ2, ...) as in Mercer’s theorem. Then

it holds that for any x, y ∈ X :

K(x, y) =

∞∑
k=1

λkψk(x)ψk(y) = ⟨Φ(x),Φ(y)⟩l2

with Φ : X → l2 defined by Φ(x) = (
√
λkψk(x))k∈N.

In the next section we will introduce PCA and see how kernels are involved in this setting.

3 PCA

3.1 A brief introduction to standard PCA

Let S = {x1, ..., xM} be a set of vectors (xi ∈ RN). PCA is a classical algorithm in multivariate
statistics to define a set of orthogonal directions that capture the maximum variance. One of
its most common applications is low-dimensional representation of high-dimensional points.
It consists of an orthogonal transformation of the coordinate system in which we describe
our data. The new coordinate values by which we represent the data are called principal
components. It is readily performed by solving an eigenvalue problem.
Assume that the data are centered, i.e. 1

M

∑M
i=1 xi = 0. The orthogonal projection onto a

direction w ∈ R is the function hw : RN → R defined by hw(x) = xT w
∥w∥ .

In order to be able to generalize Standard PCA algorithm to the nonlinear case, we formulate
it in a way that uses exclusively dot products.
We now describe standard PCA algorithm. Given a set of centered observations xk, PCA
diagonalizes the covariance matrix

C =
1

M

M∑
j=1

xjx
T
j . (9)

Remark 3.1. More precisely, the covariance matrix is defined as the expectation of xxT ; for
convenience, we shall use the same term to refer to the estimate in equation (9) of the covariance
matrix from a finite sample.

To do this, we have to solve the eigenvalue equation

λv = Cv (10)

for eigenvalues λ ≥ 0 and v ∈ RN\{0}. As Cv = 1
M

∑M
j=1(xj · v)xj , all solutions v with λ ̸= 0

must lie in the span of x1, ..., xM ; hence, equation (10) in that case is equivalent to

λ(xk · v) = (xk · Cv) for all k = 1, ...,M. (11)

In the next paragraph we will describe the same computation in an other dot product space F ,
which is related to the input space by a possibly nonlinear map,

Φ : RN → F, x 7→ X. (12)

Note that F , which we will refer to as the feature space, could have an arbitrarily large, possibly
infinite, dimensionality. Here and in the following, uppercase characters are used for elements
of F , and lowercase characters denote elements of RN .

9

3.2 PCA in Feature Spaces

Again, we assume that we are dealing with centered data, that is
∑M

k=1 Φ(xk) = 0. Using the
covariance matrix in F ,

C̄ =
1

M

M∑
j=1

Φ(xj)Φ(xj)
T (13)

(if F is infinite dimensional, we think Φ(xj)Φ(xj)
T as the linear operator that maps X ∈ F

to Φ(xj)(Φ(xj)T · X). We now have to find eigenvalues λ ≥ 0 and eigenvectors V ∈ F\{0}
satisfying

λV = C̄V. (14)

All solutions V with λ ̸= 0 must lie in the span of Φ(x1), ...,Φ(xM). For us, this has two useful
consequences. First, we may instead consider the set of equations,

λ(Φ(xk) · V) = (Φ(xk) · C̄V) for all k = 1, ...,M, (15)

and, second, there exist coefficients αi , i = 1, ...,M, such that,

V =

M∑
i=1

αiΦ(xi). (16)

Combining equations (15) and (16), we get

λ

M∑
i=1

αi(Φ(xk) · Φ(xi)) =
1

M

M∑
i=1

αi(Φ(xk) ·
M∑
j=1

(Φ(xj))(Φ(xj) · (Φ(xi)) for all k = 1, ...,M,

Defining an M ×M matrix K by

Kij := (Φ(xi) · (Φ(xj)), (17)

this reads
MλKα = K2α, (18)

where α denotes the column vector with entries α1, ..., αM . To find solutions of the last equation
we can solve, instead,

Mλα = Kα. (19)

Since K is symmetric, it has an orthonormal basis of eigenvectors βi with corresponding eigen-
values µi; thus, for all i, we have Kβi = µiβ

i, i = 1, ...,M . First suppose λ, α satisfy equation
(18). Then expand α in K’s eigenvector basis as α =

∑M
i=1 aiβ

i. By substituing in (18), we
obtain

Mλ = µi or ai = 0 or µi = 0 (20)

Note that the above are not exclusive ors. We next assume that λ, α satisfy equation (19), to
carry out a similar derivation. In that case, we find

Mλ = µi or ai = 0. (21)

Comparing equations (20) and (21), we notice that all solutions of the latter satisfy the former.
However, they do not give its full set of solutions: given a solution of equation (19), it can be
always added multiples of eigenvectors of K with eigenvalue 0 and still satisfy equation (18),
with the same eigenvalue.
This means that there exist solutions of equation (18) that belong to different eigenvalues yet
are not orthogonal in the space of the αk. It does not mean, however, that the eigenvectors
of C̄ in F are not orthogonal. Indeed, if α is an eigenvector of K with eigenvalue 0, then the
corresponding vector

∑M
i=1 αiΦ(xi) is orthogonal to all vectors in the span of the Φ(xj) in F ,

since (Φ(xj) ·
∑M

i=1 αiΦ(xi)) = (Kα)j = 0 for all j = 1, ...M , which means that
∑M

i=1 αiΦ(xi) =
0. Thus, the above difference between the solutions of equations (18) and (19) is irrelevant, since

10

we are interested in vectors in F rather than vectors in the space of the expansion coefficients
of equation (16). Thus it is sufficient to diagonalize K to find all relevant solutions of equation
(18).

Let λ1 ≥ λ2 ≥ λM denote the eigenvalues of K and α1, ..., αM the corresponding complete
set of eigenvectors, with λp being the first nonzero eigenvalue (assuming Φ ̸= 0). We normalize
αp, ..., αM by requiring that the corresponding vectors in F be normalized, that is,

(V k · V k) = 1 for all k = p, ...M.

By virtue of equations (16) and (19), this translates into a normalization condition for αp, ..., αM :

1 =

M∑
i,j=1

αk
i α

k
j (Φ(xi) · Φ(xj)) =

M∑
i,j=1

αk
i α

k
jKij = (αk ·Kαk) = λk(α

k · αk).

For the purpose of principal component extraction, we need to compute projections onto the
eigenvectors V k in F , k = p, ...,M . Let x be a test point, with an image Φ(x) in F ; then

(V k · Φ(x)) =
M∑
i=1

αk
i (Φ(xi) · Φ(x)) (22)

may be called its nonlinear principal components corresponding to Φ. Note that neither (17)
or (22) requires the Φ(xi) in explicit form- they are only needed in dot products. Therefore, we
are able to use kernel functions for computing these dot products without actually performing
the map Φ.

4 Kernel PCA

In F , we can thus assert that PCA is the orthogonal basis transformation with the following
properties (assuming that the eigenvectors are sorted in descending order of the eigenvalue size):

• the first q (q ∈ {1, ...,M}) principal components, that is, projections on eigenvectors,
carry more variance than any other q orthogonal directions;

• the principal components are uncorrelated;

• the first q principal components have maximal mutual information with respect to the
inputs.

In order to compute dot products of the form K(x, y) = (Φ(x) · Φ(y)), we use kernel rep-
resentations, which allow us to compute the value of the dot product in F without having to
carry out the map Φ. The general question that function K does correspond to a dot product
in some space F has been discussed a lot.
In section (2) we tried to offer a solution, in particular we pointed out (and discussed) Aronszajn
(2.3) and Mercer’s (2.10) theorems and, finally, theorem (2.11) .

Infact we recall that it gives the conditions under which we can construct the mapping Φ
from the Eigenfunction decomposition of K. We fix the space L2 and obtain:

K(x, y) =

∞∑
i=1

λiψi(x)ψi(y)

with positive coefficients λi, (ψi · ψj) = δij and Φ(x) := (
√
λiψi(x))i∈N is a map into a space

where K acts as the Euclidean dot product, i.e. (Φ(x) · Φ(y)) = K(x, y).

The application of equation K(x, y) = (Φ(x) · Φ(y)) to our problem is straightforward. We
simply substitute an a priori chosen kernel function K(x, y) for all occurrences of (Φ(x) ·Φ(y)).

11

Figure 1: The basic idea of kernel PCA. In some high-dimensional feature space F (bottom
right), we are performing linear PCA, just like a PCA in input space (top). Since F is nonlin-
early related to input space (via Φ), the contour lines of constant projections onto the principal
eigenvector (drawn as an arrow) become nonlinear in input space. Note that we cannot draw
a preimage of the eigenvector in input space, because it may not even exist. Crucial to kernel
PCA is the fact that there is no need to carry out the map into F . All necessary computations
are carried out by the use of a kernel function K in input space (here: R2).

The choice of K then implicitly determines the mapping Φ and the feature space F .
A common example is the polynomial kernel:

K(x, y) = (x · y)d =

(N∑
j=1

xjyj

)d

=

N∑
j1,jd=1

xj1 ...xjdyj1 ...yjd = (Cd(x) · Cd(y)) (23)

where Cd maps x to the vector Cd(x) whose entries are all possible d-th degree ordered products
of the entries of x.

4.1 The algorithm

To perform kernel-based PCA (see Figure 1), the following steps have to be carried out:

1. we compute the matrix with Kij = K(xi, xj);

2. we solve equation (17) by diagonalizing K and normalize the eigenvector expansion coef-
ficients αn by requiring λn(α

n · αn) = 1;

3. To extract the principal components (corresponding to the kernel K) of a test point x,

we then compute projections onto the eigenvectors by (V n · Φ(x)) =
∑M

i=1 α
n
i K(xi, x).

4.2 Centering in High-Dimensional Space

In the previous sections we supposed centered observations. But in general they aren’t so we
shall drop this assumption. Given any Φ and any set of observations x1, ..., xM , the points

Φ̃(xi) = Φ(xi)−
1

M

M∑
i=1

Φ(xi) (24)

12

are centered. Thus the assumption of section (4) now hold and we go on defining covariance
matrix through K̃ij = (Φ̃(xi) · Φ̃(xj)) in F . We arrive at the already known eigenvalue problem

λ̃α̃ = K̃α̃, with α̃ being the expansion coefficients of an eigenvector (in F) in terms of the

points in equation (24), Ṽ =
∑M

i=1 α̃iϕ̃(xi). But we do not have the centered data, so we

cannot compute K̃ directly; however, we can express it in terms of its noncentered counterpart
K.

Lemma 4.1. Covariance matrix K̃ can be expressed in terms of Covariance matrix K.

Proof. Some notations:

K̃ij := (Φ̃(xi) · Φ̃(xj)); Kij := (Φ(xi) · Φ(xj));

matrices defined by 1ij := 1 ∀i, j and (1M)ij :=
1

M
∀i, j.

Making K̃ij = (Φ̃(xi) · Φ̃(xj)) explicit:

K̃ij = (Φ̃(xi) · Φ̃(xj))

= (Φ(xi)−
1

M

M∑
m=1

Φ(xm)) · (Φ(xj)−
1

M

M∑
n=1

Φ(xn))

= Φ(xi)
TΦ(xj)−

1

M

M∑
m=1

Φ(xm)TΦ(xj))

− 1

M

M∑
n=1

Φ(xi)
TΦ(xn)) +

1

M2

M∑
m,n=1

Φ(xm)TΦ(xn))

= Kij −
1

M

M∑
m=1

1imKmj −
1

M

M∑
n=1

Kin1nj +
1

M2

M∑
m,n=1

1imKmn1nj

= (K − 1MK −K1M + 1MK1M)ij

As before, the solutions α̃k are normalized by normalizing the corresponding vectors Ṽ k in
F which translates into λ̃k(α̃

k · α̃k) = 1.
For feature extraction, we compute projections of centered Φ-images of test patterns t onto the
eigenvectors of the covariance matrix of the centered points,

(Ṽ k · Φ̃(t)) =
∑
i=1

Mα̃k
i (Φ̃(xi) · Φ̃(t)). (25)

Consider a set of test points t1, ..., tL, and define two L×M matrices byKtest
ij = (Φ(ti)·Φ(xj))

and K̃test
ij = (Ktest − 1′MK − Ktest1M + 1′MK1M)ij where 1′M is the L ×M matrix with all

entries equal to 1
M .

4.3 Computational complexity

A fifth-order polynomial kernel on a 256-dimensional input space yields a 1010-dimensional
feature space. For two reasons kernel PCA can deal with this huge dimensionality. First, we do
not need to look for eigenvectors in the full space F , but just in the subspace spanned by the
images of our observations xk in F . Second, we do not need to compute dot products explicitly
between vectors in F because we are using kernel functions. If K is easy to compute, as for
polynomial kernels, for example, the computational complexity is hardly changed by the fact
that we need to evaluate kernel functions rather than just dot products.

13

Figure 2: 2-d toy example with data generated in the following way: x-values have uniform
distribution in [−1, 1], y-values are generated from yi = x2i + ξ, where ξ is normal noise with
standard deviation 0.2.

5 Experiments

To provide some insight into how PCA behaves, we show a set of experiments with an artificial
two dimensional data set (Figure 2). Polynomial kernels of degree 1 through 4 are used. Besides,
from top to bottom, the first 3 eigenvectors are shown (in order of decreasing Eigenvalue size).
Linear PCA (on the left) leads to only two nonzero eigenvalues, as the input dimensionality
is 2. In contrast, nonlinear PCA allows the extraction of further components. In the figure,
note that nonlinear PCA produces contour lines (of constant feature value), which reflect the
structure in the data better than in linear PCA. In all cases, the first principal component
varies monotonically along the parabola underlying the data.
In the nonlinear cases, the second and the third components show behaviour that is similar
for different polynomial degrees. The third component, which comes with small eigenvalues
(rescaled to sum to 1), seems to pick up the variance caused by the noise, as can be nicely seen
in the case of degree 2. Dropping this component would thus amount to noise reduction.

For an investigation of the utility of kernel PCA features for a realistic pattern recognition
problem, Vapnik & Chervonenkis [5] and then Cortes & Vapnik [6] trained a separating hyper-
plane classifier on nonlinear features extracted from the US postal service (USPS) handwritten
digits database by kernel PCA. This database contains 9300 examples of dimensionality 256;
2000 of them make up the test set. For computational reasons, they decided to use a subset of
3000 training examples for the dot product matrix.
Using polynomial kernels (23) of degrees d = 1, .., 7 and extracting the first 2n (n = 5, ...11)
principal components, they found the following results. In the case of linear PCA (d = 1) the
best classification performance (8.6% error) is attained for 128 components. Extracting the
same number of nonlinear components (d = 2, ..., 7) in all cases lead to superior performance
(around 6% error). Moreover in the nonlinear case, the performance can be further improved
by using a larger number of components (Figure 3).
Using d > 2 and 2048 components, they obtained around 4% error which coincides with the best
result reported for standard nonlinear Support vector machines (Scholkopf, Burges & Vapnik,

14

Figure 3: Test error rate on the USPS handwritten digits database for linear Support Vector
machines trained on nonlinear principal components extracted by PCA with polynomial kernel
from degrees 1 through 7.

[8]). This result is much better than linear classifiers operating directly on the image data. We
also believe that choosing a suitable kernel with respect to the problem could further improve
the results.

6 Conclusion

Kernel PCA is a nonlinear generalization of PCA in the sense that if we use kernel K(x, y) =
(x · y), we recover original PCA.
To get nonlinear forms of PCA, we simply choose a nonlinear kernel. Moreover, kernel PCA is
a generalization of PCA in the respect that it is performing PCA in feature spaces of arbitrarly
large (possibly infinite) dimension.
We now want to collect the advantages (and some disadvantages) of kernel PCA.
First of all kernel PCA can deal with huge dimensionality because we do not need to look for
eigenvectors in the full space F , but just in the subspace spanned by the images of our obser-
vations xk in F and we do not need to compute dot products explicitly between vectors in F .
Besides, in experiments, we found two advantages of nonlinear kernels. First, nonlinear princi-
pal components afforded better recognition rates than corresponding numbers of linear principal
components; and, second, the performance for nonlinear components can be improved by using
more components than is possible in the linear case.
Lastly, compared to other techniques for nonlinear feature extraction, kernel PCA doesn’t re-
quire nonlinear optimization but just the solution of an Eigenvalue problem and different kernels
led to fine classification performances. The general question of how to select the ideal kernel
for a given task, however, is an open problem.
The main drawback of kernel PCA compared to linear PCA is that up to date we do not have
a simple method for reconstructing patterns from their principal components.
Possible applications: Linear PCA is being used in numerous technical and scientific appli-
cation. As some further examples not discussed in the present report so far, we mention noise
reduction, density estimation and the analysis of natural image statistics. Kernel PCA can be
applied to all domains where traditional PCA has been used for feature extraction before, with
little extra computational effort.

15

Acknowledgement

To write this paper I used mainly the lecture notes ”Machine Learning with Kernel Methods”
[1] with regard to the Kernel theory but I also consult [2] and [3] for integral operators.
For Kernel PCA I mainly based my work on [4].

References

[1] J. Mairal, J.-P. Vert, Machine Learning with Kernel Methods, Lecture notes.
Last version, 2020.

[2] H. Hochstadt, Integral equations, John Wiley & Sons Inc, 1989.

[3] R. Courant & D. Hilbert, Methods of mathematical physics (Vol. 1), Inter-
science publisher, Inc, New York, 1953.

[4] B. Schölkopf, A. J. Smola & K.-R. Müller, Nonlinear component analysis
as a kernel eigenvalue problem., Technical Report 44, Max-Planck-Institut für
biologische, 1996.

[5] V. Vapnik & A. Chervonenkis, Theory of pattern recognition, 1974.

[6] C. Cortes & V. Vapnik, Support vector networks. Machine Learning, 1995.

[7] B. Schölkopf, C. Burges & V. Vapnik, Extracting support data for a given
task, 1995.

16

	Introduction
	Kernels: something useful
	Aronszajn's theorem
	Mercer's Theorem

	PCA
	A brief introduction to standard PCA
	PCA in Feature Spaces

	Kernel PCA
	The algorithm
	Centering in High-Dimensional Space
	Computational complexity

	Experiments
	Conclusion

