
Machine Learning — Statistical Methods for Machine Learning

Kernel functions

Instructor: Nicolò Cesa-Bianchi version of June 16, 2019

In practice, linear predictors may exhibit a high test error. In most cases this is due to underfitting
rather than overfitting, which is an indication that the Bayes optimal predictor is hardly linear and
therefore linear predictors suffer from high bias.

A popular technique to reduce this bias is feature expansion, which constructs new features by
nonlinear combinations of the base features. Formally, this can be viewed in terms of a function
φ : Rd → V mapping data points x ∈ Rd to a higher-dimensional space V. This mapping helps
reduce the bias because linear classifiers in V correspond to nonlinear classifiers in Rd.

For example, consider the quadratic feature-expansion map φ : R2 → R6 defined by φ(x1, x2) =(
1, x21, x

2
2, x1, x2, x1x2

)
. Recall that a homogeneous hyperplane in R6 with coefficients given by

w = (w1, . . . , w6) is the set of points
{
z ∈ R6 : w>z = 0

}
. Now note that w>φ(x) = w1 +w2x

2
1 +

w3x
2
2+w4x1+w5x2+w6x1x2. The sets

{
x ∈ R2 : w1 + w2x

2
1 + w3x

2
2 + w4x1 + w5x2 + w6x1x2 = 0

}
describe second-degree surfaces in the Euclidean bidimensional space. These surfaces include el-
lipses, parabolas, and hyperbolas.

In general, we may consider polynomial feature expansion maps φ : Rd → RN that use features
of the form

∏k
s=1 xvs for all v ∈ {1, . . . , d}k and for all k = 0, 1, . . . , n (the previous example is a

special case for d = 2 and n = 2). Fix such a φ and consider the classifier h : Rd → {−1, 1} defined
by

h(x) = sgn
(
w>φ(x)

)
where w>φ(x) =

N∑
i=1

wi φ(x)i

This nonlinear classifier in Rd corresponds to a linear classifier in the space

φ
(
Rd
)
≡
{
z ∈ RN : (∃x ∈ Rd)φ(x) = z

}
.

Note, however, that

N =

n∑
k=0

∣∣{1, . . . , d}k∣∣ =

n∑
k=0

dk =
dn+1 − 1

d− 1

This implies that N = Θ(dn) is exponential in the degree n, and computing φ becomes infeasible
even for moderately large n.

This computational barrier can be fully sidestepped using the so-called kernel trick, which can
be applied to many algorithms for learning linear predictors. For example, recall the Perceptron
update rule wt+1 = wt + ytxt where w1 = 0. Then, the linear classifiers learned through the
Perceptron are of the form

h(x) = sgn

(∑
s∈S

ysx
>
s x

)

1



where S is the set of indices s of training examples (xs, ys) on which the Perceptron made an
update. If we run the Perceptron in the space φ

(
Rd
)
, the linear classifier h becomes

hφ
(
x
)

= sgn

(∑
s∈S

ysφ(xs)
>φ(x)

)
.

Hence, in order to compute hφ(x) quickly we need a way of computing quickly each term φ(xs)
>φ(x).

The kernel trick helps us find an efficiently computable kernel function K : Rd×Rd → R such that

K(x,x′) = φ(x)>φ(x′) per ogni x,x′ ∈ Rd. (1)

For example, the quadratic kernel, corresponding to the quadratic feature-expansion map

φ(x1, x2) =
(
1, x21, x

2
2,
√

2x1,
√

2x2,
√

2x1x2
)

is K(x,x′) =
(
1 + x>x′

)2
, as one can easily verify (the presence of the

√
2 coefficients, which is

needed for the math, does not change the class of linear predictors that are representable using the
mapping).

Given a kernel K, we can then write the linear classifier generated by the Perceptron as

hK(x) = sgn

(∑
s∈S

ysK(xs,x)

)
. (2)

Below here, we give the pseudo-code of the Kernel Perceptron algorithm.

Algorithm: Kernel Perceptron
Let S be the empty set.

Per ogni t = 1, 2, . . .

1. Get next example (xt, yt)

2. Compute ŷt = sgn

(∑
s∈S

ysK(xs,xt)

)

3. If ŷt 6= yt add t to S

The polynomial kernel Kn(x,x′) =
(
1 + x>x′

)n
for all n ∈ N generalizes the quadratic kernel

defined earlier. Using Newton’s Binomial Theorem, we can explicitely compute the map φn tale
che Kn(x,x′) = φn(x)>φn(x′),

(
1 + x>x′

)n
=

n∑
k=0

(
n

k

)(
x>x′

)k
. (3)

Now observe that (
x>x′

)k
=

(
d∑
i=1

xix
′
i

)k
=

∑
v∈{1,...,d}k

(
k∏
s=1

xvsx
′
vs

)
.

2



Therefore,

φn(x) =

(√(
n

k

) k∏
s=1

xvs

)
k=0,...,n, v∈{1,...,d}k

. (4)

In other words, the feature map φn : Rd → RN associated with the polynomial kernel Kn sends
each x ∈ Rd to a vector whose components are indexed by all monomials

∏k
s=1 xvs of degree at

most n and weighted by the roots of the binomial coefficients.

Another type of kernel is the Gaussian kernel,

Kγ(x,x′) = exp

(
− 1

2γ

∥∥x− x′∥∥2) γ > 0 .

In order to derive the map φγ associated with Kγ we proceeed as follows,

exp

(
− 1

2γ

∥∥x− x′∥∥2) = exp

(
− 1

2γ

(
‖x‖2 +

∥∥x′∥∥2)) exp

(
1

γ

(
x>x′

))
= exp

(
−‖x‖

2

2γ

)
exp

(
−‖x

′‖2

2γ

) ∞∑
n=0

1

n!

(
x>x′

)n
γn

(5)

where we used the Taylor series expansion ex = 1 + x+ x2

2! + · · · . A closer look at (5) reveals that
the Gaussian kernel is a linear combination of infinitely many polynomial kernels (3) of increasing
degree, each weighted by the reciprocal of the factorial of its degree. The parameter γ is a scaling

factor for the products x>x′. Finally, the factors e−‖x‖
2/(2γ)e−‖x

′‖2/(2γ) normalize with respect to
x and x′ giving Kγ(x,x) = 1 for each x ∈ Rd.

Note that predictors of the form (2) that utilize Gaussian kernels predict any point x using a linear
combination (with coefficients yt) of Gaussians e−z

2/(2γ) centered on xs for s ∈ S and evaluated at
x.

The Gaussian kernel is universal in the following sense: for each γ > 0, for each continuous function
f : Rd → R, and for each ε > 0, there exists g ∈ Hγ , with

Hγ =

{
N∑
i=1

αiKγ(xi, ·) : x1, . . . ,xN ∈ Rd, α1, . . . , αN ∈ R, N ∈ N

}
(6)

such that h approximates f with error bounded by ε. An important consequence of this fact is
that learning algorithms that use Gaussian kernels are potentially consistent (that is, the expected
risk of their predictors converges to the Bayes risk as the sample size grows to infinity).

A learning algorithm producing classifiers of the form h(x) = sgn
(
g(x)

)
, with g ∈ Hγ defined in (6),

is nonparametric. Despite h being a linear classifier, the Gaussian kernel is a linear combination of
infinitely many polynomial kernels, and therefore Hγ is infinite-dimensional.

Given a data space X (not necessarily Rd) and a symmetric function K : X × X → R how can
we check whether K is a kernel? In other words, we want to know whether there exist a feature
map φK : X → HK and an inner product 〈·, ·〉K in HK such that

〈
φK(x), φK(x′)

〉
K

= K(x,x′).
Luckily, there is a very simple way of checking that: K is a kernel if and only if for all m ∈ N and

3



for all x1, . . . ,xm ∈ X , the m ×m matrix K such that Ki,j = K(xi,xj) is positive semidefinite.
That is, z>Kz ≥ 0 for all z ∈ Rm.

The above result tells us the conditions under which φK exists for a given K. On the other hand,
it does not tell us how φK looks like. In fact, there is no unique representation of the pair φK ,HK
for a given kernel K. However, it can be shown that if K is a kernel, then we can always represent
φK as φK(x) = K(x, ·) e HK as

HK ≡

{
N∑
i=1

αiK(xi, ·) : x1, . . . ,xN ∈ X , α1, . . . , αN ∈ R, N ∈ N

}
which is a generalization of the space (6) for Gaussian kernels.

Since φK is the feature map for K, we must have
〈
φK(x), φK(x′)

〉
K

= K(x,x′). Therefore, we

also know that
〈
φK(x), φK(x′)

〉
K

= K(x,x′). Now, recalling that the inner product is a bilinear
operator, we can compute the inner product between φK(x) = K(x, ·) and any f ∈ HK ,

〈
f,K(x, ·)

〉
K

=
N∑
i=1

αi
〈
K(xi, ·),K(x, ·)

〉
K

=
N∑
i=1

αiK(xi,x) = f(x)

The equality
〈
f,K(x, ·)

〉
K

= f(x) is important and is known as reproducing property. For this
reason, HK is also known as reproducing kernel Hilbert space (RKHS). Note that, whereas a linear
predictor w ∈ Rd predicts using w>x, a linear predictor f ∈ HK predicts using

〈
f, φK(x)

〉
K

=
f(x).

Next, we see how the inner product
〈
f, g
〉
K

between two arbitrary f, g ∈ HK is computed, where

f =
N∑
i=1

αiK(xi, ·) and g =
M∑
j=1

αjK(x′j , ·)

Using once more the bilinearity of inner products,

〈
f, g
〉
K

=

〈
N∑
i=1

αiK(xi, ·),
M∑
j=1

βjK(x′j , ·)

〉
K

=
N∑
i=1

αi

〈
K(xi, ·),

M∑
j=1

βjK(x′j , ·)

〉
K

=

N∑
i=1

M∑
j=1

αiβj
〈
K(xi, ·),K(x′j , ·)

〉
K

=
N∑
i=1

M∑
j=1

αiβjK(xi,x
′
j)

We can lift to any RKHS the bounds we derived for learning algorithms that can be run with
kernels. For instance recall the bound on the number of mistakes provided by the Perceptron
convergence theorem,

‖u‖2
(

max
t
‖x‖2

)
4



which holds for any u ∈ Rd such that ytu
>xt ≥ 1 for t = 1, . . . ,m.

In a generic RKHS HK , the linear separator u is some g ∈ HK such that yt f(xt) ≥ 1 for t =
1, . . . ,m. The squared norm ‖xt‖2 = x>t xt becomes ‖φK(x)‖2K =

〈
K(x, ·),K(x, ·)

〉
K

= K(x,x).

Finally ‖u‖2 is replaced by

‖f‖2K =

∥∥∥∥∥
N∑
i=1

αiK(xi, ·)

∥∥∥∥∥
2

K

=

〈
N∑
i=1

αiK(xi, ·),
N∑
j=1

αjK(xj , ·)

〉
K

=
N∑

i,j=1

αiαjK(xi,xj) .

Linear predictors in RKHS can incur overfitting. For example, by increasing the degree n of
a polynomial kernel Kn we reduce the training error because higher-degree curves can be used to
separate the training points. If the degree is too high, the predictor will overfit. A similar reasoning
applies to Gaussian kernelsKγ . The γ parameter corresponds to the width of the Gaussians centered
on training points xs. If γ is small relatively to the typical squared distances ‖xs − x‖2 between
training and test points, then the classification of a test point x is essentially determined by the
training point closest to it. This implies a training error equal or close to zero, because —similarly
to 1-NN classifiers— the training points are almost never misclassified. Once again, the resulting
predictor is likely to overfit. On the other hand, for values of γ that are large with respect to
the squared distances ‖xs − x‖2, the Gaussians centered on training points are very wide, and the
resulting predictors are similar to k-NN classifiers when k is chosen close to the training set size,
which is likely to cause underfitting.

We established that any symmetric function K : X × X → R is a kernel if and only if the kernel
matrix K is positive semidefinite. This is an important result, because it holds irrespective to the
choice of the data space X . We can therefore define kernels on any set X : be it a set of matrices,
sequences, trees, graphs, and so on. Kernels can be viewed as a way to encapsulate the data space,
offering a uniform interface to a learning algorithm that can be efficiently run in the corresponding
RKHS. In order to guide the intuition when designing a kernel function on a given data space X ,
one should recall that K(x, x′) implements an inner product between K(x, ·) and K(x′, ·) in some
RKHS. We can then start by defining a notion of similarity on X , and then refine it until arbitrary
kernel matrices are proven to be positive semidefinite.

5


