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We relate sequential risk to statistical risk, assuming the data sequence on which an online algorithm
is run is generated by independent and identically distributed draws from a fixed and unknown
distribution D.

Fix a convex and differentiable loss function `, for example `(ŷ, y) = (ŷ − y)2 for regression or
`(ŷ, y) = [1 − yŷ]+ for classification. As usual with online learning, we focus on linear predictors
h(x) = w>x. The statistical risk of a linear predictor w ∈ Rd is defined by

`D(w) = E
[
`
(
w>X, Y

)]
where (X, Y ) is drawn from D on Rd × R.

In statistical learning a training set S is a random sample (X1, Y1), . . . , (Xm, Ym) drawn from D.
This induces a sequence `1, . . . , `m of convex loss functions defined by `t(w) = `

(
w>xt, yt

)
. When

running an online learning algorithm, such as OGD, on this sequence we obtain a corresponding
sequence w1, . . . ,wm of linear predictors. We want to derive an upper bound on the statistical risk
of a linear predictor derived from this sequence. In particular, we consider the average predictor

w =
1

m

m∑
t=1

wt .

Since ` is convex in w, Jensen inequality gives us

`D(w) = E
[
`
(
w>X, Y

)]
≤ E

[
1

m

m∑
t=1

`
(
w>t X, Y

)]
=

1

m

m∑
t=1

`D(wt)

where the last equality holds because of linearity of expectation. Hence, the risk of the average
predictor is upper bounded by the average risk of the predictors w1, . . . ,wm.

The crucial step is to connect the average statistical risk to the sequential risk. Observe that,
under the assumption that S is a statistical sample, wt is determined by the first t − 1 examples
(X1, Y1), . . . , (Xt−1, Yt−1). Therefore, by applying the definition of risk to the expected value of
the loss of wt on the t-th example (Xt, Yt), we can write

E
[
`D(wt)− `

(
w>t Xt, Yt

) ∣∣∣ (X1, Y1), . . . , (Xt−1, Yt−1)
]

= 0 . (1)

The above equality means the following: if we condition on the first t − 1 examples, then wt is
determined, and the expected value of `t(wt) with respect to the draw on the t-th example is —by
definition— the risk of wt.
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We write Et−1 to denote expectation conditioned on (X1, Y1), . . . , (Xt−1, Yt−1). If we sum both
sides of (1) over t = 1, . . . ,m and divide by m we get

1

m

m∑
t=1

Et−1

[
`D(wt)− `

(
w>t Xt, Yt

)]
= 0 .

For each t = 1, . . . ,m let Zt be the random variable `D(wt) − `
(
w>t Xt, Yt

)
. Then Z1, . . . , Zm are

all functions of the same random sample S, and such that

1

m

m∑
t=1

Et−1[Zt] = 0 .

We assume `t ∈ [0,M ] so that |Zt| ≤M . Bounded random variables Z1, Z2, . . . such that Et−1[Zt] =
0 are called martingale difference sequence with increments bounded by M . Although these random
variables are not independent, we can still prove a Chernoff-Hoeffding bound of the form

1

m

m∑
t=1

Zt ≤ 2M

√
1

2m
ln

1

δ

with probability at least 1− δ with respect to the random draw of S. This implies

1

m

m∑
t=1

`D(wt) ≤
1

m

m∑
t=1

`
(
w>t Xt, Yt

)
+M

√
2

m
ln

1

δ
(2)

again with probability at least 1− δ. As for the average predictor w, the result we obtain can be
formulated as

`D(w) ≤ 1

m

m∑
t=1

`
(
w>t xt, yt

)
+O

(
1√
m

)
with high probability.

In other words, the statistical risk of the average predictor is bounded in probability by the sequen-
tial risk on the training set.

We can work a bit more to obtain a risk bound based on the analysis of the sequential risk.
Consider for example regression with quadratic loss. If we run OGD with projection onto the
set

{
u ∈ Rd : ‖u‖ ≤ U

}
, and assume ‖xt‖ ≤ X and |yt| ≤ UX for each t, we get that for every

realization (x1, y1), . . . , (xm, ym) of the training set

1

m

m∑
t=1

`
(
w>t xt, yt

)
≤ min

u∈Rd : ‖u‖≤U

1

m

m∑
t=1

`
(
u>xt, yt

)
+ 8(UX)2

√
2

m
.

Substituting the right-hand side in (2), and observing that for the square loss M = 4(UX)2, we
can then write

`D(w) ≤ min
u∈Rd : ‖u‖≤U

1

m

m∑
t=1

`
(
u>Xt, Yt

)
+ 12(UX)2

√
2

m
ln

2

δ

with probability at least 1− δ/2 with respect to the random draw of S.
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Finally, letting
u∗ = argmin

u∈Rd : ‖u‖≤U
`D(u)

we clearly have

min
u∈Rd : ‖u‖≤U

1

m

m∑
t=1

`
(
u>xt, yt

)
≤ 1

m

m∑
t=1

`
(
x>t u

∗, yt
)
.

Since, for each t = 1, . . . ,m we have E
[
`
(
X>t u

∗, Yt
)]

= `D(u∗), we can apply the standard Chernoff-

Hoeffding bond and derive

1

m

m∑
t=1

`
(
X>t u

∗, Yt
)
≤ `D(u∗) + 4(UX)2

√
1

2m
ln

2

δ
with probability at least 1− δ/2.

We then got the following explicit bound on the risk of the average predictor

`D(w) ≤ `D(u∗) + 14(UX)2
√

2

m
ln

2

δ

with probability at least 1− δ with respect to the random draw of S.
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