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the same steps as in the proof of Theorem 2, and by Markov’s 
inequality, we find that for every nonexceptional 0, 

or, equivalently, Eel16n - 0 I]” 2 C%/hi, which agrees with (5) if 
C  and E are chosen such that C% = B”. On the other hand, the 
volume of the exception set [now denoted A,(B)] when A, = e Pn 
is overbounded similarly to (A.13) by Vol{A,(B)} 5 l~‘,2~. 
C”/(l - E). By minimizing the latter expression subject to the 
constraint C% = B”, the desired result is obtained. 
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Bounds on Approximate Steepest Descent for 
Likelihood Maximization in Exponential Families 

Nicolo Cesa-Bianchi, Anders Krogh, 
and Manfred K. Warmuth 

Abstract-An approximate steepest descent strategy converging, in 
families of regular exponential densities, to maximum likelihood esti- 
mates of density functions is described. These density estimates are also 
obtained by an application of the principle of min imum relative entropy 
subject to empirical constraints. We prove tight bounds on the increase 
of the log-likelihood at each iteration of our strategy for families of 
exponential densities whose log-densities are spanned by a set of bounded 
basis functions. 

Index Terms-Exponential families, min imum relative entropy estima- 
tion, steepest descent. 

I. INTR~DU~I~N 

Consider the following problem: Given a random sample 
Xl,“‘, x, drawn independently from a distribution P with den- 
sity p, find the maximum likelihood estimate in a family of 
regular exponential densities. This problem of density estimation 
is also known as minimization of relative entropy (Kullback- 
Leibler divergence) subject to empirical constraints (see, e.g., [l], 
[2]). In this work we describe an approximate steepest descent 
strategy’ converging to the MLE in exponential families of 
densities whose log-densities are linear combinations of a set of 
bounded basis functions. We show tight lower and upper bounds 
on the increase of the log-likelihood function (or, equivalently, 
decrease of the relative entropy) at each iteration, as a function 
of the norm of the gradient. 

Let (X, s%‘> be a measurable space. In the following, all 
densities on (X, S’) are understood with respect to a finite 
dominating measure v. We recall the definition of the relative 
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entropy (Kullback-Leibler divergence) D(pllp’) between two Let at = (a:;.., LYE) such that 
densities p and p’ on (X, S’): a; = Eql[ +k 1, for k  = l;.., d, 

D(pllp’) = l,p In +. and & = (G1;.., &) such that 

Choose a positive integer d and let @  = {$1, &;.., +& be a &, = k ,t $J~(.x~), fork = l;.+,d. 

set of bounded basis functions &: X + R. Fix also a reference r=l 

density q” on (X, .S’>. The sequence of densities qf is such that, for each t 2 1 and for 
We will use the notation 8’ 4(x) for the inner product each X E X, 

CkOk&(x).  We now define the regular exponential family Z(Q) 
= {qe: 0 E Rd}of densities q@(x)  = qO(x)exp(O. 4(x> - I/J(~)), 

q’+‘(x) = q’(x) exp [(e’ + Ae’) . $(x> - 1)(0’ + AO’)], (4) 

where the function I) from Rd to R is defined by where 0’ is the parameter vector after the tth iteration (assum- 
ing 0’ = O), and A8’ = 0”’ - 0’ is defined by 

t)(O) = In / es+qo. 
X 

(1) 

For any density p and for any 0 E Rd, define a(p) = 
(a,(p);.., a,(p)> by 

(YJP) = E&&l, for k  = I,..., d, 

and a(0) = (cul(0);.*, ~(0)) by 

ak(~) = ak(qe) = EJ~J, fork = l,.-,d. 

If @  is a set of linearly independent functions,* it is known that 
+ is strictly convex (see, e.g., [3]). As a consequence, also 
D(p(lq,) is strictly convex in 0, which is seen from 

1 
D(pllq,) = Ep In 48 [ 1 - H(p) 

= -E,[O. 4~ - $(O>l - E&ln 4’1 - H(p) 

= e(e) - a(p). f3 + mpllq”), (2) 
where H(p) is the entropy E,[ - In p]. Hence, if @  is linearly 
independent and there exists a 0* E bd minimizing D(p(lq,), 
then 0* is unique. Moreover, VD(pllq,,) = 0 if and only if 
0’ = 8*. 

Finally, observe that for any density p and any vector 0 E Rd, 

VD(pllq,) = a(e) - a(p), 
as can be derived from (1) and (2). 

(3) 

II. DESCRIPTIONOFTHESTFCATEGY 

We now introduce the iterative likelihood maximization strat- 
egy. Let 11.1) be the Euclidean norm. We assume that the 
strategy is parametrized with respect to the choice of the set of 
basis functions @. In order to simplify the analysis, we also 
restrict the range of each basis function & (k = l;..,d) in the 
interval [ - &%?, jm]. This ensures that for all nontrivial 
choices of the set @  of basis functions, for any density p, and for 
any x E X, II+(x) - a(p)11 E [O, 1>.3 We remark that the need 
for normalizing the &‘s can be also interpreted via the notion of 
“comparison density,” as pointed out by an anonymous referee. 

On  each run, the strategy is given as input a reference density 
q” and a random sample x1;.., x, independently drawn from a 
distribution P with density p(x). The output consists of an 
infinite sequence ql, q*, ... of densities in 8(Q). 

2By linear independence of the set of functions we mean that if 
(0 - 0’). 4(x) is constant almost everywhere, then 8 = 0’. 

3Notice that, since we restricted the range of the basis functions, 
114(x) - cy(p>ll = 1 holds only when all basis functions in Cp are con- 
stant -almost everywhere. In this case, the family 8(a) reduces to {q”} 
and the MLE problem becomes vacuous. Therefore, we assume in the 
following that 114(x) - a(p)\1 E [O, 1) holds. 

Ae’ = tanh-’ (II& - a’ll) 
IIf5 - aflI 

(is - a’>. (5) 

It is easily seen that, for all t 2 1, qf is in the exponential family 
8(Q). Notice also that II& - afll < 1 for all t since the &‘s 
have been normalized. 

In the next section we show that the increment (5) corre- 
sponds to exact steepest descent with respect to an approxima- 
tion of the Kullback-Leibler divergence along the direction of 
the gradient. 

III. ANALYSIS 

In this section we prove bounds of the increase of the log-like- 
lihood at each iteration. The log-likelihood function for the 
family Z(Q) is 

l(O) = lnfiq,(xi) = Infiq’(x,) + m(O. ~5 - 9(O)). (6) 
i= 1 i= 1 

Hence, for a set Q, of linearly independent basis functions, the 
maximum likelihood estimate q; in the family a(@) is charac- 
terized by the unique e^ E lRd satisfying the equation 

de”) = &. (7) 
Conditions guaranteeing the existence of the MLE in exponen- 
tial families can be found in [4], [5]. 

Using (21, (61, and (71, we can rewrite the Kullback-Leibler 
divergence as 

D(q;llq,) = 4. fi - I/J(~) + lnfiq”(xi) - I(0) 
i I/ 

m, (8) 
i=l 

where only the last term depends on 0. Therefore, the problem 
of maximizing the log-likelihood function is equivalent to the 
problem of minimizing D(q,-(lq,). Note also that (3) yields 
VD(q,-llq,) = ace> - ii. 

We will make use of the following two inequalities. 
ForallkERandxE[-l,l], 

ekx 5 
ek + e-k ek - e-k 

2 + 
px = cash(k) + x sinh (k). (9) 

2 
For all x  E [ - 1, 11, 

x  tanh-‘(x> I ln$. 

For a convex function g(x), it holds that g(x) I g( - 1) + (1 + 
x)@(l) - g( - 1>))2 for x  E [ - 1, 11. Applying this to g(x) = ekx 
yields inequality (9). Inequality (10) is proven in the Appendix. 

It follows from (8) that the increase of the log-likelihood at 
each iteration equals D(qallq’) - D(qillq’+‘). We now prove 
that this increase is upper and lower bounded within a small 
constant factor by a monotone increasing function of 
IImq&,)ll. 
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Theorem 1. For all t E N, 

~llVD(qgllqt~l12 5 k In 
1 

1 - llvDtq~llqw 
(11) 

I D(q,-llq’) - Nq;llq’+l) (12) 

I ]]VD(q~llq’>lltanh-l (llVD(q~]]q’>]]> (13) 

1 
5 In 

1 - IIvD(q~llq’)l12 . 
(14) 

Proof: Inequality (11) is easily derived from Taylor’s Theo- 
rem. For proving (12) we follow [6]: Let S c X be the finite 
support of the empirical measure on X induced by the sample 
Xl,“‘, x,. Observe that because of the normalization of the $k’~, 
both I]#&> - &JJ and ]]cu(~> - &]I lie in [0, 1) for all x  E X and 
0 E [Wd. Rewrite (4) as 

where 

eAW~) 
q’+ ‘(xl = q’(x) y--, 

t+ 1 
(15) 

z If1 = / 
eAB’+q’ = exp [$(0”‘> - $(@‘>I. (161 

X 

Using (51, (15), (161, and (91, we can show 

mq~llq’) - D(qs^llq’+l) 

= x~s(AOf~d(x))F(x) -In-Z,+, 

= A@*. & - In / exp(A0<. 414’ 
X 

= -In / exp [Ae’. (4 - &)]q’ (17) 
X 

2 -In 
[ 
cosh(IlA0’ll> + sinh ~IIAO’II)~ . (a’ - C?) 1 . (18) 

Let G  be I(VD(q~((q,)l(, where the gradient is evaluated at 
0 = 8’. Then G  = lla’ - &II by (3). By (51, 

]]A0’]] = tanh-’ (G) = In 
l+G d l-~ , (19) 

since it is well known that 

tanh-l(x) = In 
1 +x 
- 
l-x’ 

(20) 

From (18) and (191, after some algebra we obtain 

This proves (12). Inequality (13) is proven using (17), Jensen’s 

inequality, and (5): 

Nq~llq’) - D(q;llq’+‘) = -ln/xexp[AO1. (4 - G)lq’ 

5 - / A0’. (4 - &)q’ 

= Af$ (& - a’) 

= G  tanh-’ (G). 
Finally, (14) is obtained by applying (10). 0 

The choice of A0’ exactly maximizes (18). To see this, note 
that this term is maximized when A 0’ = - n(cr’ - &;> = 
- qVD(qillq’) for some choice of 77 > 0. To find 7, we differen- 
tiate 

z[cosh (TGl - G  sinh (nG)] = G  sinh (nG1 - G* cash (TG). 

Setting the derivative equal to 0 and solving with respect to g 
yields 7~ = [tanh-’ (G)]/G, from which the optimal increment 
(5) is derived. 

We conclude the section by showing a couple of applications 
of Theorem 1 for obtaining lower bounds on the speed of 
convergence of the strategy. 

Corollay 1: For all t 2 1, 

m&g)* 
%gllq’) - mqs^llq’+l) 2 211i _ e’ll . 

Proof? From (11) and (12) in Theorem 1, we obtain 
2CDCqgllq’) - D(q~llq’+‘)) 2 llVD(q,-llq’>ll, which holds for 

any t 2 1. Also, because of the convexity of D(q,-llq,) in 0, by a 
simple geometrical argument we have IIVD(q,-llq’)ll 2 
D(qgllq’>/llfI - 0’11, for all t 2 1. This completes the proof. 0 
For the second result we need a preliminary lemma. 

Lemma 1 ((41): Assume # is an orthonormal basis with 
respect to a density q whose log-density In q is bounded. Let A 
be such that for all 0 E Rd, 

IIH. d~llm I AllO. ~ll~,~~,. (21) 
Then, for any 0, 0’ E Rd, 

D(q,Ilqo8) 2 iI10 - 0’112 exp (-IIIn NIL - 2AllO - 0’11 . 
1 

We are now ready to prove a second recurrence. 
Theorem 2: Let @  be orthonormal with respect to a log- 

bounded density q and such that (21) is satisfied for all 0 E [Wd 
and for some constant A < w. Moreover, assume llln q/q& is 
bounded. Then there are positive constants a = 2 exp (I/In q/qi(l) 
and b = e2A such that for all r > 0, 

D(q&g/) - D(q,-llq,,+l) 2 
D(q&,i) 

2ae” 
holds for all t 2 1 such that 110’ - e^]] I r. 

Proof! Fix r > 0 and assume t 2 1 is such that 110’ - e^]l I r. 
The theorem is proven by considering the following chain of 
inequalities. 

~2UXqgllq’) - D(qs^llq’+l)) 1 IlVD(q&f>ll 

D(qgllq’) 

> IIf! - e’ll 
Nqijllq’) 

QT&fi2’ 
The first inequality is again a consequence of Theorem 1, the 
second is an application of Corollary 1, and the third is derived 
from Lemma 1. 0 
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Finally, we show a corollary asserting exponentially fast con- 
vergence of our strategy in a region close to the optimum. 

Corollary 2: If 110 - I? 1) I r holds for all t > t, and for some 
r > 0, t, 2 1. Then, under the same assumptions of Theorem 2, 

D(q&‘) I 1 - ( &)“‘D(q,jlW.) 

for all t 2 t,. 

IV. CONCLUSIONS 

In this paper we have described a strategy for likelihood 
maximization (relative entropy minimization) in families of expo- 
nential densities, assuming that the log-densities are spanned by 
a set of bounded basis functions. Our  strategy is shown to 
perform steepest descent on an approximation of the relative 
entropy function. Upper and lower bounds on the decrease of 
the relative entropy at each iteration have been proven. Our  
bounds are expressed in terms of a function of the norm of the 
gradient and are tight within a constant factor of 3. Bounds on 
the speed of convergence of our strategy have-also been shoyn. 
An interesting open problem is to show that IlO - O ’+ ’ II < II 0 - 
0’11 holds for all t 2 t, and for some t, 2 1. 

APPENDIX 

Proof of Inequality (IO). Using the equivalence (2), we show 
that the function 

f(x) = Gin(s) + In(1 -x2> 

is nonpositive in the interval [ - 1, 11. Observe that 

f’(x) = f In g - x  ( 1 1 -x2 
= tanh-’ (x) - ’ 

1 -x2’ 

A root of f’ is 0. Also note that f(0) = 0. Since the second 
derivative 

f”(X)=- 2x2 
(1 - XZJ2 

is 0 at x  = 0 and negative elsewhere, x  = 0 is the only ex- 
tremum of f’ and it is a maximum. This completes the proof of 
the lemma. 0 
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Bounds on the Size of Nonnegative Definite 
Circulant Embeddings of Positive Definite 

Toeplitz Matrices 

G. N. Newsam and C. R. Dietrich 

Abstract-Recently Dembo et al. showed that an N X N positive 
definite Toeplitz matrix T could be embedded in a 2M X 2M nonnega- 
tive definite circulant matrix S with M = O(K(Z’)N’). This note shows 
that the size of the embedding can be reduced to M = O(K(T)‘/~N~/~) 
and that this is best possible for the technique presented by Demho et al. 

Index Terns-Circulant embeddings, statistical simulations, Toeplitz 
matrices. 

I. CIRCULANT EMBEDDINGS 

An N x N symmetric Toeplitz matrix T is characterized by 
the vector t = {to, tl;.., tN- 1} of elements in its first row, with 
Tmn = tlmmn,. Let M 2 N and s be any vector such that 

s  =t,, n n = O;.., N  - 1, 

S2M-m = s,, m = l;.., M - 1. 

Then the 2M x 2M symmetric circulant matrix S defined by 
S = s,,-,, is termed a circulant embedding of T since any 
N”;( N  block along the main diagonal of S is just a replication 
of T. In certain applications T is positive definite, and one 
would like to choose s so that S is also nonnegative definite. 

Recently Dembo et al. [l] proved that if T is strictly positive 
definite then a nonnegative definite circulant embedding always 
exists. They did this by constructing such an embedding with 
M = N + (K(T)/J~)N~. (K(T) = hmax(T)/hmin(T) is the ratio 
of largest and smallest eigenvalues of T and is termed the 
condition number of T.) Nonnegative definite embeddings can 
be used to determine the maximum likelihood estimate of a 
Toeplitz covariance matrix by the entropy maximization algo- 
rithm [l], and to generate random vectors from a distribution 
with covariance matrix T [2], [3]. In these cases, computational 
efficiency demands that the embedding size M be as small as 
possible. The purpose of this communication is to explore the 
possibility of reducing the size of the embedding produced by 
the construction in [l]. We show that a different choice of 
embedding function in the construction, coupled with the use of 
tighter inequalities, significantly reduces M; we also show that 
this improved result is essentially the best possible obtainable by 
this construction. Finally we note that in some situations the 
improved construction may still produce impracticably large 
embeddings, and we indicate possible alternative embedding 
strategies for such cases. 

In order to point out the improvements possible, we first 
review the construction as presented in [l]. The construction 
starts by selecting an M 2 N and a symmetric continuous posi- 
tive definite function r(x) such that r(O) = 1, r(x) > 0 for 
1x1 < 1, and r(x) = 0 for 1x1 2 1. For the moment, we do not 
further specify M and r; we will make particular choices when 
their roles become clearer later in the construction. Let r, be 
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