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Abstract

A modulo m function takes value O when the weighted sum of the input variables is congruent to O mod m and takes
value | otherwise. In this work we show a polynomial time algorithm for leaming with equivalence queries the class of
conjunctions of modulo p functions on »n variables, for any fixed prime p. The result is also extended to leamning with

bounded adversarial noise.
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1. Introduction

For all positive integers m let Z,, be the class of

residues modulo m. If n 1s a positive integer and w
a vector in Z . we define the function M,, : Z —
{0.1} by

det 1 O 1itw-x = 0mod m,
A/Iw(x) = .
1 otherwise.

Let {M,:w & Z7 } be the class of modulo m functions
over Z),

m:

The class of modulo 2 (parity ) functions was shown
10 be polytime learnable with at most n equivalence
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queries in [6,7]. In [4] the same number of equiv-
alence queries was proven sufficient for learning the
class of modulo p functions for any prime p. In [5]
this was further extended to arbitrary disjunctions of
modulo p functions, leaving open the corresponding
problem for conjunctions. In this paper we solve the
open problem by showing a polynomial time algo-
rithm for learning the class of conjunctions of modulo
p functions for any fixed prime p.

We will work in the “learning with equivalence
queries” framework (see [1,8]). A problem in this
framework is parametrized by a pair (7,H), where
T is the rarget class and H is the hypothesis class,
both containing {0, 1}-valued functions defined on a
common domain X and such 7 C H. Learning pro-
ceeds in trials. On each trial ¢+ = 1,2,... the learn-
ing algorithm generates a hypothesis H, € H. After-
wards, an element x, € X (called counterexample)
such that T(x,) # H,(x,) for a target T € 7 sat-
isfying T(x,) # H.(x,) forall t=1,...,t—11is
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returned to the algorithm; otherwise. if no such coun-
terexample exists, learning stops. Note that the gen-
eration of the hypothesis H, can be interpreted as a
query asking whether H, is equivalent to an unknown
and fixed target chosen from 7,

We say that an algorithm A for the problem (7, H )
learns with at most ¢ equivalence queries if g is the
maximal length of any sequence of counterexamples
that can be returned to A before learning stops.

2. Main result

With every system S of linear equations over a linear
space X we associate the {0, 1 }-valued function Ty
on X where Tg(x) = 1| if and only it x is a solution
of §. The linear system § can then be viewed as a
representation for the {0, 1 }-valued function Ts.

Let L], be the class of {0, 1 }-valued functions asso-

ciated with linear systems on Z;’,. In [5] the class of

disjunctions of modulo p functions was shown to be
polynomial time learnable by means of an algorithm
that learns the classes £ for all n = 1 and primes p.

Theorem 1 (sce [S]). The class Ly is learnable
with at most n + | equivalence queries in time poly-
nomial in n and p for all positive integers n and
primes p.

Let €] be the class of arbitrary conjunctions of mod-
ulo p functions over Z. In this section we prove that
the same algorithm of Theorem 1, through a difterent
reduction, can also learn C); in time polynomial in r.

Let (M, X)) dus1 and ((H,, X)) ),>1 be families
where H, and H,, are classes of {0, 1}-valued func-
tions defined, respectively, on sets X, and X,. Let
{{ay.7n)nz1 be a family of mappings o, : H,
Hi and 7, 0 X, — X). We say that ((H,, X,) )y is
reducible to ((H),, X)), via ({0, 74))sz1 when-
ever: (1) H(x) = o, (H)(7,(x)) holds for all H ¢
‘H, and all x € X,: (2) 7,tx) as a function of n and
X is computable in time polynomial in n.

To avoid notation, we will just say that H, is re-
ducible to H! via (o,.7,) whenever the domains
X,. X} and the parametrization with respect 1o n are
clear from the context.

Let “o™ denote functional composition. From the
above definition we immediately get the following.

Fact 2. If H, is polynomial time learnable with at
most q equivalence queries and H, is reducible to 'H,,
via (1,,0,). then H, is polynomial time learnable
using hypotheses of the form H o r,, H € H), and
with ar most g equivalence queries.

Using standard number-theoretic tools, we will
prove thath[’: is reducible, in time polynomial in
n, 1o E;’,’V . As, by Theorem I, the latter class is
polynomial time learnable, we get the following.

Theorem 3. For every prime p, the class of conjunc-
tions of modulo p functions over Z;’, is learnable in
time polynomial in n with at most n? ™!

lence queries.

+ 1 equiva-

The proof is based on the classical Fermat little
theorem.

Lemma 4 (Fermat little theorem). If p is a prime
number, then a*~' = | mod p for any integer a not
divisible by p.

Theorem 3 can then be proven as follows.

Proof of Theorem 3. Fix a prime p. Choose a posi-
tive integer k and let the target T be an arbitrary con-
junctions of k functions M,,,....M,, where w; €
Z;ﬁ fori =1,...,k. Then, by definition of modulo p
function, 7 is equivalent to the {0, 1}-valued function
associated with the system of k linear inequalities

wooxZ0modp, i=1,...,k (1)

in n variables x = (xy,...,x,). Applying Fermat lit-
tle theorem to cach inequality we get the equivalent
system of k equations

(wi-x)" '=1modp, i=1.....k (2)

Define the mapping A, : Z) — Z;',’H as follows. Let
 be abijection from {1,...,n} "' to {1,...,a" " '};
then A,(x1,...,x,) = (y1,....yw-1) when-
Vel Vy(ky, k) = Xk Xk Xk, - Note that
Ay(x) Ay (x"y = (x-x)P ! forall x,x' € Z,.
Moreover, A,(x) as a function of the variables n and
x 1s computable in time polynomial in n. Hence
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(W, .x)[>7|
n n
:Z Z (“'L/\ BRI TN i )(_r“ .4._‘],’7])
j1=1 Jp 1=l
= A, (W) - Ay tx). (3

This defines a o, (based on A, ) mapping cach target
T=My, N AM,.k =1 tothe function o, (T)
associated to the linear form

Ap(w)) A, (x) = 1modp, i=1....,k (4)

By (1)-(4) we have. for such a o, T(x) =
an(TY(A,(x)) forall x € Z), and all targets T € ().
Thus C}; is polynomial time reducible to [Z;’," ' via
(on. Ay .
By Theorem 1. L7
mial in n with at most n”~ ' + | counterexamples.

Thus. by Fuct 2, we conclude that C}) is polynomial
!

is lecarnable in time polyno-
1

time learnable with at most n’~
queries. ]

+ 1 equivalence

3. Learning with noise

Theorem 3 can be generalized to handle noise.

In [ 2] an extension of the model of learning with
cquivalence queries was introduced to take in account
the presence of adversarial noisc. In this extension
learning with noise rate r stops at trial t if neither tur-
ther counterexample x, nor target 7 € 7 can be found
such that H,(x,) # T{(x,) and T(x,) # H,.(x;)
for at least a fraction |
..o =1

Thus, we say that an algorithm A learns the target
class 7 with at most ¢ equivalence queries and noise
rate r if at most ¢ counterexamples can be returned to
A before Icarning with noise rate r stops.

In [3] an algorithm for learning with equivalence
queries in presence of adversarial noise was presented.
In particular. this algorithm is applicable for learning
with noise rate r < 1/(d + 1) the class of all linear
subspaces of any d-dimensional linear space V; using
at most d/(1 —r(d + 1)) equivalence queries. Fur-
thermore, this application is efficient whenever: (1)
for all x € V; and all lincar subspaces 7 C V. the
membership of x in 7 can be tested in time polyno-
mial in d; (2) tor any finite set S < V,. a hnearly

- r of the trials 7, for 7 =

independent subset B spanning S can be computed in
time polynomial in d and |S§].

Since, for all d, Eﬁ represents the class of all linear
subspaces of Z;f“ and, moreover, for this linear space
conditions (1) and (2) above hold, Theorem 3 can be
extended as follows.

Corollary 5. For every prime p there is an algo-
rithm that learns in time polynomial in n the class of
conjunctions of modulo p functions over Zj, with at

most N + 1/(1 — r(N + 2)) equivalence queries and

noise rate r < 1/(N + 1), where N = n? ™",
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