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Improved Risk Tail Bounds for On-Line Algorithms

Nicolò Cesa-Bianchi and Claudio Gentile

Abstract—Tight bounds are derived on the risk of models in the ensemble
generated by incremental training of an arbitrary learning algorithm. The
result is based on proof techniques that are remarkably different from the
standard risk analysis based on uniform convergence arguments, and im-
proves on previous bounds published by the same authors.

Index Terms—Martingales, on-line learning, risk bounds, statistical
learning theory.

I. INTRODUCTION

In this correspondence, we analyze the risk of models selected from
the ensemble produced by training a learning algorithm incrementally
on a sequence of independent and identically distributed (i.i.d.) data. A
learner trained in an incremental fashion receives the examples one by
one in a sequence of trials. At each new trial the learner’s performance
is measured by evaluating the loss of its current model on the next
example of the sequence. The example is then used by the learner to
adjust its parameters. Afterwards, the resulting updated model is added
to the ensemble. The sum of the losses measured in this way is called
on-line (or cumulative) loss.
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Since any learning algorithm can be trained this way (for example,
by retraining at each new trial on the entire set of examples observed
so far), we call online any algorithm that is trained incrementally (irre-
spective of efficiency). For certain algorithms, such as the well-known
Perceptron algorithm, this type of training is a basic and efficient mode
of operation. Such algorithms are thus the most natural target of our
theory.

Let Mn denote the per-trial on-line loss incurred by the learner on a
training sequence of length n. We study the ensemble of models gen-
erated by the sequence of adjustments during the training process. We
describe a deterministic procedure that uses upper confidence bounds
for selecting a model from the ensemble. This procedure implies that
the risk of the chosen hypothesis is, with high probability, at most

Mn +O
(lnn)2

n
+ Mn

lnn

n
:

Hence the per-trial on-line loss is almost always close to the risk
of a certain model that—as we will see—is not necessarily the last
one in the ensemble. In particular, the risk converges to Mn at rate
O( (lnn)=n) and vanishes at rate (lnn)2=n whenever the on-line
loss nMn is O(1).

This result is proven through a refinement of the techniques used
in [4] to prove the substantially weaker bound Mn + O( (lnn)=n).
As in the proof of this older result, we analyze the empirical process
associated with a run of the on-line learner using exponential inequal-
ities for martingales. However, this time we control the large devia-
tions of the on-line process using Bernstein’s inequality rather than the
Azuma–Hoeffding inequality. This provides a much tighter bound on
the average risk of the ensemble. Finally, we relate the risk of a spe-
cific model within the ensemble to the average risk. As in [4], we select
this hypothesis using a deterministic sequential testing procedure, but
the use of Bernstein’s inequality makes the analysis of this procedure
significantly more involved.

The study of the statistical risk of models generated by on-line algo-
rithms, initiated by Littlestone [8], uses tools that are sharply different
from those used for uniform convergence analysis, a popular approach
based on the manipulation of suprema of empirical processes (see, e.g.,
[1], [2], [5], [7], [9]–[11]). Unlike uniform convergence, which is tai-
lored to empirical risk minimization, our bounds apply to any learning
algorithm, since we obtain an ensemble of hypotheses from any learner
via incremental training. Finally note that our bounds are naturally
data-dependent, as the per-trial on-line loss Mn depends on the empir-
ical behavior of the on-line algorithm on the realized training sequence.

Notation: An example is a pair (x; y), where x 2 X (which we call
instance) is a data element and y 2 Y is the label associated with it. In
our setup, X and Y are generic sets such that X �Y is measurable. In
typical applications instancesx are tuples of numerical and/or symbolic
attributes, and Y is a finite set of symbols (the class elements) or an in-
terval of the real line, depending on whether the task is classification or
regression. Following a standard terminology in learning theory we call
hypothesis the classifier or regressor generated by a learning algorithm
after training. We allow a learning algorithm to output hypotheses of
the form H : X ! D, where D is a decision space not necessarily
equal to Y . The predictive performance of hypothesis H on example
(x; y) is measured by the quantity `(H(x); y), where ` : D �Y !
is a nonnegative and bounded loss function.

II. A BOUND ON THE AVERAGE RISK

We start by defining on-line algorithms, that is, generic learners that
are trained incrementally. An on-line algorithm A works in a sequence
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of trials. In each trial t = 1; 2; . . . the algorithm takes in input a hy-
pothesis Ht�1 and an example Zt = (Xt; Yt), and returns a new hy-
pothesis Ht to be used in the next trial. (The initial hypothesis H0 is
an arbitrary function from X to D).

We follow the standard assumptions in statistical learning: the se-
quence of examples Zn = ((X1; Y1); . . . ; (Xn; Yn)) is drawn i.i.d.
according to an unknown distribution over X � Y . We also assume
that the loss function ` satisfies 0 � ` � 1. The success of a hypoth-
esis H is measured by the risk, denoted by R(H). This is the expected
loss of H on an example (X;Y ) drawn from the underlying distribu-
tion, R(h) = `(H(X); Y ). Define also R̂(H) to be the empirical
risk of H on a sample Zn;

R̂(H) =
1

n

n

t=1

`(H(Xt); Yt):

Given a sample Zn and an on-line algorithm A, we use
H0; H1; . . . ; Hn�1 to denote the ensemble of hypotheses generated
by A. Note that the ensemble is a function of the random training
sample Zn. Our bounds hinge on the per-trial on-line loss

Mn = Mn(Z
n) =

1

n

n

t=1

`(Ht�1(Xt); Yt)

a sample statistic that can be easily computed as the on-line algorithm
is run on Zn.

The following bound, a consequence of Bernstein’s inequality for
martingales (see, e.g., Freedman [6]), is of primary importance for
proving our results.

Lemma 1: Let L1; L2; . . . be a sequence of random variables, 0 �
Lt � 1. Define the bounded martingale difference sequence Vt =
[Lt jL1; . . . ; Lt�1] � Lt and the associated martingale Sn = V1 +

� � � + Vn with conditional variance

Kn =

n

t=1

Var[Lt jL1; . . . ; Lt�1]:

Then, for all s; k � 0

(Sn � s;Kn � k) � exp �
s2

2k + 2s=3
:

The next proposition, derived from Lemma 1, establishes a bound on
the average risk of the ensemble of hypotheses.

Proposition 2: Let H0; . . . ; Hn�1 be the ensemble of hypotheses
generated by an arbitrary on-line algorithm A. Then, for any 0 < � � 1;

1

n

n

t=1

R(Ht�1) �Mn +
36

n
ln

nMn + 3

�

+ 2
Mn

n
ln

nMn + 3

�
� �:

In independent work [13], Zhang derived a new martingale in-
equality which he used to prove a bound on the average risk of the
ensemble of the form

Mn +
3(1�Mn)

n
ln

nMn + 2

�

+2 (1�Mn)
Mn

n
ln

nMn + 2

�
:

Compared to Proposition 2, Zhang’s bound has a better leading con-
stant on the second term; moreover, the bound does not become vac-
uous (i.e., larger than 1) when Mn is close to 1(i.e., when the learner
is performing badly).

Proof: Let

�n =
1

n

n

t=1

R(Ht�1)

and Vt�1 = R(Ht�1)� `(Ht�1(Xt); Yt) for t � 1.
Let �t be the conditional variance

�t = Var(`(Ht�1(Xt);Yt) jZ1; . . . ; Zt�1):

Also, set for brevityKn = n
t=1 �t; K

0

n = b n
t=1 �tc, and introduce

the function

A(x) = 2 ln
(x+ 1)(x+ 3)

�
; x � 0:

We find upper and lower bounds on the probability

n

t=1

Vt�1 � A(Kn) + A(Kn)Kn : (1)

The upper bound is derived through a simple stratification argument
over Lemma 1. We can write

n

t=1

Vt�1 � A(Kn) + A(Kn)Kn

�

n

t=1

Vt�1 � A(K 0

n) + A(K 0

n)K 0

n

�

n

s=0

n

t=1

Vt�1 � A(s) + A(s)s;K 0

n = s

�

n

s=0

n

t=1

Vt�1 � A(s) + A(s)s;Kn � s+ 1

�

n

s=0

exp �
(A(s) + A(s)s)2

2
3
(A(s) + A(s)s) + 2(s+ 1)

where we used Lemma 1 in the last step. Since

(A(s) + A(s)s)2

2
3
(A(s) + A(s)s) + 2(s+ 1)

� A(s)=2

for all s � 0, we obtain

(1) �

n

s=0

e�A(s)=2

=

n

s=0

�

(s+ 1)(s+ 3)
< �: (2)

As far as the lower bound on (1) is concerned, we note that our assump-
tion 0 � ` � 1 implies �t � R(Ht�1) for all t which, in turn, gives
Kn � n�n. Thus

(1) = (n�n � nMn � A(Kn) + A(Kn)Kn)

� (n�n � nMn � A(n�n) + A(n�n)n�n)

= (2n�n � 2nMn + 3A(n�n)

+ 4nMnA(n�n) + 5A(n�n)2)

= x � B +
3

2
A(x) + BA(x) +

5

4
A2(x) ;

where we set for brevity x = n�n; B = nMn, and divided by two
inside the probability. We would like to solve the inequality

x � B +
3

2
A(x) + BA(x) +

5

4
A2(x) (3)
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w.r.t. x. More precisely, we would like to find a suitable upper bound
on the (unique) x� such that the above is satisfied as an equality.

A (tedious) derivative argument along with the upper boundA(x) �
4 ln(x+3

�
) show that

x0 = B + 2 B ln
B + 3

�
+ 36 ln

B + 3

�

makes the left-hand side of (3) larger than its right-hand side. Thus x0

is an upper bound on x�, and we conclude that

(1) � x � B + 2 B ln
B + 3

�
+ 36 ln

B + 3

�

which, recalling the definitions of x and B, and combining with (2),
proves the bound.

III. SELECTING A GOOD HYPOTHESIS FROM THE ENSEMBLE

If the decision spaceD of A is a convex set and the loss function ` is
convex in its first argument, then via Jensen’s inequality we can directly
apply the bound of Proposition 2 to the risk of the average hypothesis
�H = 1

n

n

t=1Ht�1. This yields

R( �H) �Mn +
36

n
ln

nMn + 3

�

+ 2
Mn

n
ln

nMn + 3

�
� �: (4)

Observe that this is a O(1=n) bound whenever the cumulative loss
nMn is O(1).

If the convexity assumptions do not hold (as in the case of classifica-
tion problems), then the bound in (4) applies to a random hypothesis in
the ensemble (this was investigated in [3] though with different goals).

In this section, we show how to deterministically pick from the en-
semble a hypothesis with a good risk bound. Although based on Propo-
sition 2, the bound we prove for this hypothesis is not directly compa-
rable to bound (4) for the average or random hypothesis (see the dis-
cussion before the proof of Theorem 4).

To see how this deterministic choice could be made, let us first in-
troduce the two functions

E�(r; t) =
8B

3(n� t)
+

2Br

n� t

c�(r; t) = E� r +
2Br

n� t
; t

with B = ln n(n+2)
�

.
Let R̂(Ht; t+ 1)+ E�(R̂(Ht; t+ 1); t) be the penalized empirical

risk of hypothesis Ht, where

R̂(Ht; t+ 1) =
1

n� t

n

i=t+1

`(Ht(Xi); Yi)

is the empirical risk of Ht on the remaining sample Zt+1; . . . ; Zn.
We now analyze the performance of the learning algorithm that returns
the hypothesis Ĥ minimizing the penalized risk estimate over all hy-
potheses in the ensemble, i.e.,1

Ĥ = arg min
0�t<n

(R̂(Ht; t+ 1) + E�(R̂(Ht; t+ 1); t)): (5)

1Note that, from an algorithmic point of view, this hypothesis is fairly easy to
compute. In particular, if the underlying on-line algorithm is a standard kernel-
based algorithm, ^H can be calculated via a single sweep through the example
sequence.

It is worth stressing that the actual index t of Ĥ depends on how the
training set size n compares to �. Indeed, if n is “too small,” then t
tends to be close to 1, whereas if n is “large enough” then t tends to be
close to n. Note that this behavior is different from what one expects
when the main quantity of interest is the expectation of the risk (see the
discussion in Section IV).

Lemma 3: LetH0; . . . ; Hn�1 be the ensemble of hypotheses gener-
ated by an arbitrary on-line algorithm A working with a loss ` satisfying
0 � ` � 1. Then, for any 0 < � � 1, the hypothesis Ĥ satisfies

R(Ĥ) > min
0�t<n

(R(Ht) + 2c�(R(Ht); t)) � �:

Proof: We introduce the following short-hand notation

�t = R̂(Ht; t+ 1);

T̂ = argmin
0�t<n

(�t + E�(�t; t))

T � = argmin
0�t<n

(R(Ht) + 2c�(R(Ht); t)):

Also, let H� = HT and �� = R̂(HT ; T � + 1) = �T . Note that Ĥ
defined in (5) coincides with H

T̂
. Finally, let

Q(r; t) =
2B(2B + 9r(n� t))� 2B

3(n� t)
:

With this notation we can write

(R(Ĥ) > R(H�) + 2c�(R(H
�); T �))

� (R(Ĥ) > R(H�) + 2c�(�
� �Q(��; T �); T �))

+ (R(H�) < �� �Q(��; T �))

� (R(Ĥ) > R(H�) + 2c�(�
� �Q(��; T �); T �))

+

n�1

t=0

(R(Ht) < �t �Q(�t; t)):

Applying the standard Bernstein’s inequality (see, e.g., ([5, Ch. 8])) to
the random variables �t with j�tj � 1 and expected value R(Ht), and
upper bounding the variance of �t with R(Ht), yields

R(Ht) < �t �
B + B(B + 18(n� t)R(Ht))

3(n� t)
� e�B :

With a little algebra, it is easy to show that

R(Ht) < �t �
B + B(B + 18(n� t)R(Ht))

3(n� t)

is equivalent to R(Ht) < �t �Q(�t; t). Hence, we get

(R(Ĥ) > R(H�) + 2c�(R(H
�); T �))

� (R(Ĥ) > R(H�) + 2c�(�
� �Q(��; T �); T �)) + ne�B

� (R(Ĥ) > R(H�) + 2E�(�
�; T �)) + ne�B (6)

where in the last step we used

Q(r; t) �
2Br

n� t
and c� r �

2Br

n� t
; t = E�(r; t):
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Now, we focus on the probability term in (6), and set for brevity E =
E�(��; T �). We have

(R(Ĥ) > R(H�) + 2E)
= (R(Ĥ) > R(H�) + 2E ; �T̂ + E�(�T̂ ; T̂ ) � �� + E)
(since �T̂ + E�(�T̂ ; T̂ ) � �� + E holds with certainty)

�
n�1

t=0

(�t + E�(�t; t) � �� + E ; R(Ht) > R(H�) + 2E): (7)

Now, if �t+E�(�t; t) � ��+E holds, then at least one of the following
three conditions:

�t � R(Ht)� E�(�t; t);
�� > R(H�) + E ;
2E > R(Ht)�R(H�)

must hold. Hence, for any fixed t, we can decompose into three prob-
ability terms. We can write

(�t + E�(�t; t) � �� + E ; R(Ht) > R(H�) + 2E)
� (�t � R(Ht)� E�(�t; t);
R(Ht) > R(H�) + 2E)
+ (�� > R(H�) + E ; R(Ht) > R(H�) + 2E)
+ (R(Ht)�R(H�) < 2E
R(Ht) > R(H�) + 2E)

(note that the last probability term turns out to be 0):

� (�t � R(Ht)� E�(�t; t)) + (�� > R(H�) + E) (8)

Plugging (8) into (7) we have

(R(Ĥ) > R(H�) + 2E)

�
n�1

t=0

(�t � R(Ht)� E�(�t; t)) + n (�� > R(H�) + E)

� ne�B + n

n�1

t=0

(�t � R(Ht) + E�(�t; t))

� ne�B + n2e�B

where in the last two inequalities we applied again Bernstein’s in-
equality to the random variables �t with meanR(Ht). Putting together
we obtain

(R(Ĥ) > R(H�) + 2c�(R(H�); T �)) � (2n+ n2)e�B

which, recalling that B = ln n(n+2)
�

, implies the thesis.
Fix n � 1 and � 2 (0; 1]. For each t = 0; . . . ; n � 1, introduce the

function

ft(x) = x+
11C

3

ln(n� t) + 1

n� t
+ 2

2Cx

n� t
; x � 0

where C = ln 2n(n+2)
�

. Note that each ft is monotonically in-
creasing. We are now ready to state and prove the main result of this
correspondence.

Theorem 4: Fix any loss function ` satisfying 0 � ` � 1. Let
H0; . . . ; Hn�1 be the ensemble of hypotheses generated by an arbi-
trary on-line algorithm A and let Ĥ be the hypothesis minimizing the

penalized empirical risk expression obtained by replacing � with �=2
in (5). Then, for any 0 < � � 1; Ĥ satisfies

R(Ĥ) � min
0�t<n

ft Mt;n +
36

n� t
ln

2n(n+ 3)

�

+2
Mt;n ln 2n(n+3)

�

n� t
� �

where Mt;n = 1
n�t

n
i=t+1 `(Hi�1(Xi); Yi) is the average loss of

the online algorithm on the suffix ft+ 1; . . . ; ng.
Note that, due to its dependence on the best penalized average loss

over suffixes t+ 1; . . . ; n, this bound is generally incomparable to the
corresponding bound (4) for the average or random hypothesis. In order
to force a comparison between the two bounds, we can weaken The-
orem 4 by upper bounding the minimum over t with t = 0. This gives

R(Ĥ) � f0 Mn +
36

n
ln

2n(n+ 3)

�

+2
Mn ln 2n(n+3)

�

n
� �: (9)

For n!1, (9) shows that R(Ĥ) is bounded with high probability by

Mn +O
ln2 n

n
+

Mn lnn

n
:

If the empirical cumulative loss nMn is small (say, Mn � c=n, where
c is constant with n), then the above bound has rate O((ln2 n)=n). In
this case, the average or random hypothesis of inequality (2) achieves
the sharper bound O(1=n).

Proof [Theorem 4]: Let

�t;n =
1

n� t

n�1

i=t

R(Hi):

Applying Lemma 3 with c�=2 we obtain

R(Ĥ) > min
0�t<n

(R(Ht) + c�=2(R(Ht); t)) � �

2
: (10)

We then observe that

min
0�t<n

(R(Ht) + c�=2(R(Ht); t))

= min
0�t<n

min
t�i<n

(R(Hi)+ c�=2(R(Hi); i))

� min
0�t<n

1

n� t

n�1

i=t

(R(Hi) + c�=2(R(Hi); i))

� min
0�t<n

�t;n +
1

n� t

n�1

i=t

8

3

C

n� i

+
1

n� t

n�1

i=t

2CR(Hi)

n� i
+

C

n� i

using the inequality
p
x+ y � px+ y

2
p
x

= min
0�t<n

�t;n +
1

n� t

n�1

i=t

11

3

C

n� i

+
1

n� t

n�1

i=t

2CR(Hi)

n� i
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� min
0�t<n

�t;n +
11C

3

ln(n� t) + 1

n� t
+ 2

2C�t;n
n� t

(using k
i=1 1=i � 1 + ln k and the concavity

of the square root)

= min
0�t<n

ft(�t;n):

Now, it is clear that Proposition 2 can be immediately generalized to
imply the following set of inequalities, one for each t = 0; . . . ; n� 1;

�t;n �Mt;n +
36A

n� t
+ 2

Mt;nA

n� t
�

�

2n
(11)

where A = ln(2n(n + 3))=(�).
Introduce the random variables K0; . . . ; Kn�1 to be defined later.

We can write

min
0�t<n

(R(Ht) + c�=2(R(Ht); t)) � min
0�t<n

Kt

� min
0�t<n

ft(�t;n) � min
0�t<n

Kt

�

n�1

t=0

(ft(�t;n) � Kt):

Now, for each t = 0; . . . ; n � 1, define

Kt = ft Mt;n +
36A

n� t
+ 2

Mt;nA

n� t
:

Then (11) and the monotonicity of f0; . . . ; fn�1 allow us to obtain

min
0�t<n

(R(Ht) + c�=2(R(Ht); t)) � min
0�t<n

Kt

�
n�1
t=0 ft(�t;n) � ft Mt;n + 36A

n�t
+ 2

M A

n�t

=

n�1

t=0

�t;n �Mt;n +
36A

n� t
+ 2

Mt;nA

n� t
� �=2:

Combining with (10) concludes the proof.

IV. DISCUSSION, CONCLUSIONS, AND OPEN PROBLEMS

In this correspondence, we have shown tail risk bounds for specific
hypotheses selected from the ensemble generated by training incre-
mentally an arbitrary learning algorithm. Proposition 2, our simplest
bound, is proven via an easy application of Bernstein’s inequality for
martingales, a quite basic result in probability theory. The analysis of
Theorem 4 is also centered on the same martingale inequality.

Our technique of deriving data-dependent risk tail bounds is based
on a penalized risk estimate to control the variance of the risk of the
selected ensemble hypothesis. As discussed in Section III, this hypoth-
esis could in principle be very different from the last hypothesis Hn in
the ensemble. Indeed, the variance of R(Hn) could be high, since we
make no assumptions on the behavior of the learning algorithm. On the
other hand, if one is just interested in the expectation of the risk w.r.t.
the training sample draw, then well-known results in stochastic approx-
imation provide bounds on the rate of convergence of [R(Hn)] to 0
as n ! 1 (see, e.g., [12] for recent work on this subject).

As an open problem, we would like to simplify the analysis in
Section III, possibly obtaining a more readable bound. Also, the bound

shown in Theorem 4 contains lnn terms. We do not know whether
these logarithmic terms can be improved to ln(Mnn), similarly to
Proposition 2. A further open problem is to prove lower bounds, even
in the special case when nMn is bounded by a constant.
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