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Abstract

We characterize, up to constant factors, the number
of mistakes necessary and sufficient for sequen-
tially predicting a given tree with binary labeled
nodes. We provide an efficient algorithm achiev-
ing this number of mistakes on any tree. Tree
prediction algorithms can solve the general graph
prediction problem by representing the graph via
one of its spanning trees. In order to cope with
adversarial assignments of labels over a general
graph, we advocate the use of random spanning
trees, which have the additional advantage of re-
taining relevant spectral information of the origi-
nal graph.

1 Introduction

Several practically relevant classification tasks can be cast as
the problem of predicting the labels associated with vertices
of an undirected graph. Among them are, for example, the
detection of “spam” sites in the Web graph [15], the classifi-
cation of genomic data in functional classes where edges rep-
resent gene/protein interactions [13], the prediction of user
interests in social networks [14]. In the online version of
this problem, vertices are presented in an arbitrary order,and
the learner must predict the label of each vertex before being
able to observe its true value. As real-world applications typ-
ically involve large graphs, online learners play an important
role because of their good scaling properties. An interesting
special case of the online problem is the so-called transduc-
tive setting, where the learner is given prior access to the
entire unlabeled graph. The transductive setting is interest-
ing in that the learner has the possibily of “reconfiguring”
the graph before learning starts, so as to make the problem
look easier. This pre-processing of the domain might be seen
as a kind of regularization method for the problem of graph
prediction.

In this paper, we consider the simplest case of binary la-
bels. In such a case, bounds on the number of prediction
mistakes are naturally expressed in terms of thecutsize, i.e.,
the number of edges in the graph whose endpoints are as-
signed disagreeing labels. This immediately suggests a sim-
ple regularization technique: if the mistakes of a prediction
algorithm are bounded in terms of the cutsize of the graph,

then it should be beneficial to run the algorithm on a thinned
version of the original graph where some of the edges have
been dropped. Since dropping edges that cause the graph to
disconnect is intuitively throwing away too much structural
information, we are naturally led to the idea of running the
learner on a spanning tree of the original graph.

This approach leaves us with the problem of choosing a
good spanning tree. Because of the adversarial nature of the
online setting, the presentation of vertices and the assign-
ment of labels are both arbitrary. This suggests to pick a tree
at random among all spanning trees of the graph so as to pre-
vent the adversary from concentrating the cutsize on the cho-
sen tree. Moreover, we can exploit Kirchoff’s equivalence
between the effective resistance of an edge and its probabil-
ity of being included in a random spanning tree. This equiv-
alence allows us to express the expected cutsize of the ran-
dom spanning tree in a simple form, namely, as the sum of
resistances over all edges in the cut ofG induced by the ad-
versarial label assignment. On the other hand, the resistance-
weigthed cutsize is a very natural measure of complexity for
labeled graphs, and this is precisely the fact that led us to
consider random spanning trees.

Based on the above argument for using random span-
ning trees in graph prediction tasks, we mainly focus on
the problem of designing a good algorithm for predicting
an arbitrary tree. Our main contribution is the derivation
of an algorithm that is both optimal (up to constant factors)
and efficient. Optimality is meant in the following sense:
Given any treeT , the worst-case (over labeling and node
presentation order) number of mistakes made by our algo-
rithm can only be improved by a factor which is constant
with respect to the relevant parameters. As for efficiency, we
show that the overall running time of our algorithm is of or-
der min{K, nf}K+n logDT , whereK is the cutsize of the
(labeled) treeT , DT is the diameter ofT , n is the number of
nodes inT , andnf < n/2 is the number of nodes inT with
degree bigger than two.

1.1 Related work

Online linear learners, such as the Perceptron algorithm, have
been applied to the general graph prediction problem by em-
bedding then vertices of the graph inRn through a map
transforming nodei to thei-th coordinate versorei ∈ R

n.
For example, the graph Perceptron algorithm [8, 6] predicts
the label ofei using the linear kernelK = L+

G+11
⊤, where



LG is the Laplacian ofG, L+
G is its pseudoinverse, and1 =

(1, . . . , 1)⊤. The resulting mistake bound is8ΦG(y)RG + 2
whereΦG(y) is the cutsize andRG = maxi,j ri,j is the
resistance diameter ofG (we write ri,j to denote the ef-
fective resistance betweeni andj). Note the interplay be-
tween the factors in the upper bound: ifG is dense, then
RG = O(1) but ΦG(y) can be of ordern2. If G is sparse,
thenΦG(y) = O(n) but thenRG may become of ordern.

The idea of using a spanning tree to reduce the cutsize of
G has been investigated in [7], where the graph Perceptron
is applied to a spanning treeT of G. The resulting mistake
bound is of the formΦT (y)DT , whereDT is the diame-
ter of the chosen tree. SinceΦT (y) ≤ ΦG(y) this bound
has a smaller cutsize than the previous one. On the other
hand,DT = Θ(DG) whereDG is the diameter ofG and,
in general,DG can be much larger thanRG. A different
technique [5] attempts to control the cutsize by linearizing T
via a depth-first visit. This gives a line graphS (the so-called
spineof G) such thatΦS(y) ≤ 2 ΦT (y). By running a Near-
est Neighbor (NN) predictor onS, one can prove [5] the mis-
take boundΦS(y) log2

(
(n−1)

/
ΦS(y)

)
+ΦS(y)

/
ln 2+1.

As observed in [9], similar techniques have been developed
to solve low-congestion routing problems. In [7] it is sug-
gested to pickT in order to minimize the diameterDT . How-
ever, since the adversary may concentrate allφ-edges (i.e.,
edges connecting disagreeing labels) on the chosen treeT ,
there is no guarantee thatΦT (y) will remain small. A fur-
ther trick proposed in [5] to take advantage of both previous
approaches (graph Perceptron and NN) involves building a
binary tree onG. This “support tree” helps in keeping the
diameter ofG as small as possible. The resulting predic-
tion algorithm is a combination of Perceptron and Nearest-
Neighbor previously proposed in [4]. The corresponding
mistake bound isminρ>0

(
N (G, ρ)+12ΦG(y)ρ

)
+1, where

N (G, ρ) is the smallest number of balls of resistance diam-
eterρ it takes to coverG. Note that the graph Perceptron
bound is recovered whenρ = RG.

There is a vast literature on the problem of drawing ran-
dom spanning trees from a graph (see, e.g., the recent mono-
graph [10]). For “most” graphs, a random spanning tree
can be sampled with a random walk in timeO(n lnn) [2],
or evenO(n) [1, 16], although all known techniques take
Θ(n3) in the worst case. As a matter of fact, this cubic worst-
case bound is a theoretical limitation only, since the bound
is hardly met in practice. The space complexity for gener-
ating a random spanning tree is always linear in the graph
size. Finally, although we exploit random spanning trees to
reduce the cutsize, similar approaches can also be used to
approximate the cutsize of a weighted graph (see, e.g., [12]).

1.2 Preliminaries

Let T be a tree withn nodes indexed by1, . . . , n. A labeling
of T is any assignmenty = (y1, . . . , yn) ∈ {−1, +1}n of
binary labels to its nodes. We use(T, y) to denote the result-
ing labeled tree. The online learning protocol for predict-
ing a labeled tree(T, y) is defined as follows: The learner
is initially given T , but not y. At time t = 1 an arbi-
trary nodei1 in T is presented, and the learner must predict
its labelyi1 ∈ {−1, +1}. Thenyi1 is revealed and a new
nodei2 6= i1 of T is presented. This process goes on for

t = 1, 2, . . . , n until all nodes ofT have been selected. The
learner’s goal is to minimize the number of prediction mis-
takes.

A φ-edge of a labeled tree(T, y) is any edge(i, j) such
thatyi 6= yj. LetY(T, k) be the set of all labelings ofT with
exactlyk φ-edges. We will say thatY(T, k) hascutsizek.

If A is a tree prediction algorithm and(T, y) is a labeled
tree, thenm(A, T, y) denotes the worst-case number of pre-
diction mistakes made byA over all presentationsi1, . . . , in
of nodes ofT . With a slight abuse of language we define

m(A, T,≤K) = max
k=1,...,K

max
y∈Y(T,k)

m(A, T, y) .

This is the number of mistakes made byA on the worst-case
choice of a labeling ofT with cutsize budgetK. The maxi-
mization overk is needed becausemaxy∈Y(T,k) m(A, T, y)
is in general not monotonic ink. Finally, we define themin-
imax mistake boundon a treeT with cutsize budgetK by

OPT(T, K) = min
A

m(A, T,≤K) ,

where the minimum is over all deterministic prediction algo-
rithms.

2 Lower bounds

We now describe an adversarial strategy that, given a tree
T with n nodes and cutsizeK (for 1 ≤ K < n) forces
any deterministic prediction algorithmA to make a certain
number of mistakes that depends both onK andT . This
lower bound is achieved for a worst-case choice (depending
onA) of both labeling and node presentation order.

The lower bound is based on the following fact. Given
a line graphℓ (i.e., a “list”) with n + 1 nodes1, . . . , n + 1
and|ℓ| = n edges, a simple dichotomic adversarial strategy
can always force⌊log2

(
n + 1

)
⌋ mistakes using a cutsize of

at most1. In order to achieve this, the adversary initially as-
signs an arbitrary label to one of the two terminal nodes ofℓ,
say node1. Now leti1 be the node ofℓ such that there are ex-
actly ⌈n/2⌉ edges between1 andi1. The adversary chooses
nodei1 first, and forces a mistake by pickingyi1 to be dif-
ferent from the algorithm’s prediction. Now letℓ1 ⊆ ℓ be
the (sub-)line having as terminal nodes1 andi1 if yi1 6= y1,
or nodesi1 andn + 1, otherwise. Leti2 be the node ofℓ1

such that there are⌈|ℓ1|/2⌉ edges betweeni1 andi2. The ad-
versary then chooses nodei2 and another mistake is forced
as in the previous step. The adversary proceeds recursively
in this way until the chosen sub-line contains a single edge.
Then, irrespective to the algorithm’s predictions, all there-
maining nodes are labeled in such a way that the cutsize does
not increase. It is then easy to check that⌊log2

(
n+1

)
⌋mis-

takes are forced. Moreover, it is important to observe that the
above adversarial strategy works even ify1 is already known
to the algorithm. On the other hand, this strategy cannot be
applied if the known label is on an internal node ofℓ. This
fact is used in the proof of Theorem 1 below.

The above adversarial strategy is extended to trees in the
following way. The adversary looks for a certain setL of K
edge-disjoint line graphs contained inT , and then applies the
dichotomic strategyindependentlyon each line. To this end,
it suffices the setL is ablanket, a notion which we now de-
fine. Given a setL of edge-disjoint lines contained in a tree



Figure 1: A treeT whose nodes have been divided into three
types: dark shaded, light shaded, and white. A connected
blanket is shown including dark shaded and light shaded
nodes only, along with their connecting edges. Another blan-
ket L, of size9, is formed by3 connected blankets (made
up of 2, 2 and6 lines, respectively), and is obtained from
the connected blanket by removing the two lines indicated
by the light shaded edges and nodes. The terminal nodes of
each line are indicated by a bulbous endpoint of the incom-
ing edge. The edges directly connected to white nodes are
not part of the underlying connected blanket. The numbers
denote a possible depth-first presentation order followed by
an adversary that starts from, say, the dark shaded node on
the top-left. This adversary assigns to the white nodes the
same label as their closest (dark or light) shaded nodes. Sim-
ilarly, the light shaded nodes belonging to the two removed
lines are labeled as the corresponding line terminal nodes.

T , we say thatℓ ∈ L is agrafted line if one of the two termi-
nal nodes ofℓ is also an internal node of another lineℓ′ ∈ L.
This shared node is called thegraft node ofℓ. We say that
L is aconnected blanketif: (i) The union of all lines inL
forms a (connected) tree, (ii) every node in this (connected)
tree can be internal node of at most one such line, and (iii)
Every grafted line inL shares with the remaining lines inL
no nodes but the graft, and Finally,L is a blanket if it is
either a connected blanket or it has been obtained by a con-
nected blanket after removing one or more of its lines.1 See
Figure 1 for an example. Thesizeof a blanketL is the num-
ber of its lines|L|. Note that a blanket need not include all
edges of the original treeT . Also, observe that for any size
K < n, a size-K blanket over a treeT always exists: take
L to be any set ofK distinct edges inT ; then no lines ofL
have internal nodes and the blanket property trivially holds.
On the other hand, a given treeT clearly admits many size-K
blankets.

LetL(T, K) be the set of all size-K blankets overT , and
define the functionLB (”lower bound”) as follows:

LB(T, K) = max
L∈L(T,K)

∑

ℓ∈L

mℓ

where we use the abbreviationmℓ =
⌊
log2(|ℓ|+ 1)

⌋
.

1Observe that a givenL might be generated by many connected
blankets.

Theorem 1 For any treeT with n nodes and any cutsize
K = 1, . . . , n− 1, we haveOPT(T, K) ≥ LB(T, K).

Proof: Given any size-K blanketL overT , we need to ex-
hibit an adversarial strategy that allows the adversary to ap-
ply the logarithmic lower bounding argument for line graphs
to each lineℓ ∈ L independently, by using at mostK φ-
edges. A key fact here is that each line ofL can be processed
by the adversary even if one of the two terminal nodes has
already been revealed to the learning algorithm.

SinceL is a blanket, we know there exists a connected
blanketL0 such thatL ⊆ L0. The adversary initially finds a
line ℓ1 ∈ L which is not grafted (ℓ1 must exist sinceT has
no cycles) and performs a depth-first visit over the lines in
L0 starting from a terminal node ofℓ1. The adversary pro-
cesses the lines inL0 in the order determined by the visit.
If the current lineℓ belongs toL then the adversary applies
the strategy for line-graphs spending one (at mostone when
|ℓ| = 1) φ-edge, and causing the learning algorithm to make
mℓ mistakes onℓ. Our argument gives no guarantees on the
number of mistakes forced on the lines inL0 \ L (e.g., the
light shaded lines in Figure 1). Thus, irrespective to the algo-
rithm’s predictions, the non-terminal nodes of a non-grafted
line in L0 \ L are given the same label as the terminal node
shared with the line inL that precedes in the depth-first or-
der. For instance, in Figure 1 the three light shaded internal
nodes in Line2 are labeled like the dark shaded terminal
node shared with Line1. This allows the adversary to avoid
usingφ-edges on the removed linesℓ ∈ L0 \ L, at the cost
of being forced to set the label of the terminal nodes of one
or more lines that followℓ in the depth-first order (for in-
stance, assigning labels to the non-terminal nodes of Line2
determines the labels of the left terminal node of Line3).
However, we know that this constraint is compatible with
the lower bounding argument for line graphs.

If ℓ ∈ L0 is a grafted line, the depth-first order insures
thatℓ will be processed only after the (unique) lineℓ is grafted
onto (in Figure 1, Line7 is guaranteed to be processed after
Line 6). Note that, again, this is key to enabling the appli-
cation of the lower bounding strategy for line graphs inde-
pendently on each line inL. Finally, the parts ofT not in
L0 (indicated by white nodes in Figure 1) are labeled at the
very end. The adversary does not employ any furtherφ-edge
by assigning to each such node the same label as the clos-
est labeled node (for instance, the three white nodes on the
bottom-right of Figure 1 are assigned the same label as the
upper terminal node of Line11).

3 The optimal tree algorithm

In this section we describe a tree prediction algorithm that
achieves, up to constant factors, the lower bound proven in
the previous section even without knowing the cutsize bud-
get K. Our algorithm,TREEOPT, predicts a node with the
label minimizing the cutsize consistent with all labels seen
so far. If this label is not unique, then the algorithm predicts
using a nearest neighbor method. As we show in Section 4.1,
TREEOPT can be viewed as an approximate and efficient im-
plementation of the Halving algorithm for trees.

We say that a label (or node) isrevealedat timet if the
adversary already selected that node (thus causing its label



Figure 2: A treeT with 9 revealed labels inducing3 lb-
treesT1, T2, andT3. Fork nodes are denoted by double
circles. T1 has two forks,T2 has none,T3 has one. The
outer white nodes do not belong to any lb-tree. This figure
also explains the behavior ofTREEOPT by illustrating ex-
amples of the three itemized cases (1, 2, and 3 in the box),
depending on the position of the nodeit to be predicted. For
instance, in Case 2,TREEOPT determinesi′ andi′′ as indi-
cated, computes̃yi′(t) = −1, andỹi′′(t) = 0 (after running
the fork label estimation procedure oni′′), and then predicts
ŷit

= −1 with rule 2.b.

to be observed by the algorithm). At any time step, the set
of revealed labels defines a collection of edge-disjoint sub-
trees ofT , which we call label-bordered trees (or lb-trees,
for short). Formally, given a labeled tree(T, y) with re-
vealed labelsyi1 , . . . , yit

, anlb-tree is any maximal subtree
of T whose leaves are all revealed and no internal node is.
Clearly, a non-revealed node can belong to at most one lb-
tree. Afork node is any node of an lb-treeT ′ having degree
greater than two inT ′. Figure 2 gives an example. Note that
the set of lb-trees, together with their fork nodes, depends
on the set of revealed labels, and is therefore changing with
time. For brevity, call a node that is either a fork or a re-
vealed node ahinge node. Also, call hinge line any line
whose terminals are hinge nodes, and such that no internal
node is a hinge node. Given a hinge nodei, we compute its
estimated labelin such a way that the cutsize ofT given the
past revealed labels is minimized. The procedure for com-
puting this estimate, calledFork Label Estimation Procedure
(FLEP), is the core of our algorithm. When there is no unique
minimizing label, the procedure assigns the fork a value of0
(“undecided”), rather than+1 or−1. Let ỹi(t) be the label
of i estimated byFLEP at time t. If i is revealed at timet
then ỹi(t) = yi. Otherwise,̃yi(t) is computed as follows:
Let T ′ be the (unique) lb-treei belongs to.FLEP performs
a depth-first visit ofT ′ rooted ati. The visit starts ati and,
when backtracking to a nodej after all the children ofj have
been visited,FLEP assigns atemporary labelto j given by
the majority vote among the temporary or revealed labels of
its children. Note that temporary labels set to0 do not in-

Algorithm TREEOPT
Parameters : Tree T , revealed node labels
yi1 , . . . , yit−1

, selected nodeit.

1. If it is a fork in an lb-treeT ′ then:

ŷit
←
{

ỹit
(t) if ỹit

(t) 6= 0 [1.a]
−1 otherwise [1.b]

2. Else if it is contained in a lb-treeT ′ but it is
not a fork then:
• Let i′ be the closest hinge node toit in

T ′;
• Let i′′ be the second closest hinge node

to it in T ′ such that the paths connecting
i′ andi′′ to i have no edges in common
(i′′ always exists);

ŷit
←





+1 if ỹi′(t) + ỹi′′(t) ≥ 1 [2.a]
−1 if ỹi′(t) + ỹi′′(t) ≤ −1 [2.b]
−1 if ỹi′(t) = ỹi′′(t) = 0 [2.c]

ỹi′(t) otherwise [2.d]
(i.e. ỹi′(t)ỹi′′ (t) = −1)

3. Else(it is not contained in any lb-tree)
• Let s be the closest node toit in an lb-

tree

[3.a] If ys is revealed at timet thenŷit
← ys

[3.b] Else recursively call TREEOPT with
parametersT , yi1 , . . . , yit−1

, ands.
Obtainŷs and set̂yit

← ŷs .

fluence this vote. If the vote is a tie, i.e., the sum over all
involved labels is0, then the temporary label ofj is set to
0, too. Once all nodes ofT ′ have been visited (and the visit
is back to nodei) FLEP returns the temporary labelỹi(t) as-
signed toi. Figure 3 gives an example.

In the box is the pseudocode of our algorithm. This al-
gorithm takes in input a treeT , a setyi1 , . . . , yit−1

of re-
vealed labels, and a nodeit to be predicted. The algorithm
then returns its prediction̂yit

for the label ofit. In partic-
ular, if it is a fork node inside some lb-tree (Case 1), then
TREEOPT just outputs the label̃yit

(t) returned byFLEP, un-
lessFLEP returns0. In this latter caseTREEOPT outputs the
default value−1. On the other hand, ifit is not a fork, but
it is still contained in some lb-tree (Case 2), then the algo-
rithm determines the opposite hinge nodes (i′ andi′′) closest
to it, computes (again throughFLEP) estimated values̃yi′(t)
andỹi′′(t), and uses these values to compute its prediction.
If it lies between nodes with estimated (or revealed) labels
+1 and−1 (Case 2.d) thenTREEOPT returns the label of the
closer node. Finally, ifit is not contained in any lb-tree (Case
3), the algorithm determines the closest nodes inside some
lb-tree, and then either predicts through the label ofs (if ys is
revealed) or acts as ifs were the label to be predicted at time
t (i.e.,TREEOPT recursively2 invokes itself withit = s).

Figure 2 contains examples of the algorithm functioning.

2Note that after the recursive call,TREEOPT will not recur any
more in that time step, since rule 3.b will subsequently relyon rules
1 or 2 only.



Figure 3: Fork label estimation procedure (FLEP) within the
displayed lb-tree. The question mark indicates the fork node
whose label has to be estimated. The arrows indicate the
backtracking steps of the depth-first visit, where the major-
ity vote (the arrow tags) among the temporary (or revealed)
child labels is calculated. For instance, the right-most fork
node receives two+1 and one−1 from its three incoming
neighbors, and thus sends+1 to its left. The second fork
node from the right receives one+1 and one−1, thereby
sending out0. The fork node tagged with “?” is estimated
+1 (note that0 is immaterial for the majority vote).

Note thatTREEOPT reduces to a standard 1-Nearest Neigh-
bor algorithm when the treeT is a line graph (namely, when
fork nodes are absent).

4 Mistake bound analysis

This section contains the analysis ofTREEOPT. We will
prove the algorithm is optimal up to (multiplicative) constant
factors.

The following simple property of the functionLB is of
primary importance. The proof is given in the appendix.

Lemma 2 For any treeT with n nodes and for any1 ≤
K ≤ K ′ < n, we haveLB(T, K ′) ≤ K′

K
LB(T, K) .

At a high level, the proof of optimality hinges on show-
ing m(TREEOPT, T,≤ K) = O

(
UB(T, K) + K

)
, where

UB is a function that bounds the number of mistakes made
by TREEOPT in terms of a size-O(K) blanketL(T, y) over
T . This blanket is obtained by dividingT into subparts,
and then by mapping each subpart to a set of lines. The
union of these lines forms the blanket. Then we show
that UB(T, K) ≤ K + 1 + LB(T,O(K)). Since by
Lemma 2 we haveLB(T,O(K)) = O

(
LB(T, K)

)
, and

K ≤ LB(T, K) holds by definition ofLB, we immedi-
ately getm(TREEOPT, T,≤ K) = O

(
LB(T, K)

)
. Com-

bined with Theorem 1, this implies the optimality condition
m(TREEOPT, T,≤K) = O

(
OPT(T, K)

)
.

The proof is a bit involved and requires us to step through
several auxiliary definitions and intermediate results. We
first introduce the notion of cluster, along with its (inner and
outer) structure.

A cluster C of a labeled tree(T, y) is a maximal subtree
of T containing noφ-edges. The blanketL overT used in
the proof is the union of setsLC of edge-disjoint lines from
each clusterC. The setsLC will be defined later on.

Let C be a (non-degenerate) cluster containing at least
two nodes. We will define a coveringP(C) of the nodes
of clusterC —i.e., each node ofC belongs to at least one
subset inP(C). Then, we will construct a mappingf that,

Figure 4: Cluster structure. All nodes within the cluster are
labeled+1. The displayed clusterC has7 outer border nodes
(henceΦC = 7) and4 inner border nodes. The frameFC is
made up of all dark or light shaded (and+1-labeled) nodes.
Dark shaded nodes are either frame-forks or inner border
nodes (i.e., the terminal nodes of a frame-line). The gray
shaded edges indicate paths connecting pairs of outer border
nodes, identifying the cluster frame. The tagged frame-fork
i hasdi = 3. Thick black edges identify the shaft of each
grafted tree. The shaftσ(ℓ) contoured by dotted lines is as-
sociated with the tagged frame-lineℓ. Examples of grafted
shrubs are also displayed.

for eachC, bijectively associates elements ofP(C) with el-
ements of subsets of lines inLC , in such a way that for any
non-degenerateC the number of mistakesTREEOPT makes
on each elementQ ∈ P(C) is O

(∑
ℓ∈f(Q) mℓ

)
. If C is a

degenerate cluster (i.e.,C contains only one node), thenf
will not be defined.

In order to definef over non-degenerate clusters, we
need to introduce a specific cluster structure terminology.
See Figure 4 for reference.

Definition 3 Let a clusterC of a labeled tree(T, y) be
given.

• The outer border nodes are all nodes ofT not in C
that are adjacent to (exactly) one node ofC. We denote
by ΦC the number of outer border nodes of clusterC,
i.e., the number ofφ-edges connecting nodes inC to the
outside.

• Theinner border nodes are all nodes ofC that are ad-
jacent to at least an outer border node ofC.

• Theframe FC is the subtree ofC whose nodes are on
a path connecting any two outer border nodes. We de-
note bydi the maximum number of edge-disjoint paths
connectingi with outer border nodes.



• A frame-fork is a nodei of FC such thatdi ≥ 3.

• A frame-line is a lineℓ ⊆ FC where each terminal node
is either a frame-fork or an inner border node, and such
that no internal node ofℓ is a frame-fork. Notice that
di = 2 for all internal nodesi of ℓ.

• A treegrafted on a frame is3 any connected component
of C that remains after deleting all nodes of the frame
FC and all edges incident to them. Notice thatdi =
1 for all nodesi of such trees. One can define, more
generally, a tree grafted on a subtreeT ′ in a similar
way.

• A graft nodei ofT is any node ofFC adjacent to a node
of a grafted treeT ′; we will say thatT ′ is grafted oni;

• A grafted shrub is a set of one or more trees grafted on
the same node;

• Theshaft of a grafted treeT ′, denoted byσ(T ′), is the
line connecting the graft nodei of T ′ to the farthest
node inT ′. We defineσ(ℓ) to be the shaft of maximal
length among all trees grafted on internal nodes of a
frame-lineℓ. Moreover, for any shrubS grafted on a
nodei, we defineσ(S) to be the set containing the4 di+
1 longest shafts of trees inS.

We now defineP(C) for each clusterC, and the bijective
mappingf from

⋃
C P(C) to the set of all lines ofT . More

precisely,f maps eachQ ∈ P(C) to a subset of lines inC.
A subsetQ of nodes inC belongs toP(C) if and only if

one of the following two cases is true:
1. Q is the set of nodes of a frame-lineℓ, together with all
the nodes of shrubs grafted on internal nodes ofℓ;
2. Q is the set of nodes of a shrub grafted on either a frame-
fork or an inner border node inC, together with the graft
node.
For setsQ of type1 we definef(Q) = {ℓ, σ(ℓ)}. For sets
Q of type 2 we definef(Q) = σ(S). Now, if we extend
the mappingf by viewing it as defined over

⋃
C (the union

including non-degenerate clusters only) one can easily verify
its bijectivity: In fact, for any clusterC and anyQ ∈ P(C),
the set of nodes contained in a lineℓ ∈ f(Q) is a subset
of Q only. Let C1 = C1(T, y) be the subset of degenerate
(singleton) clusters. Given a labeled tree(T, y) with cluster
setC = C(T, y), define

L(T, y) =
⋃

C∈C\C1

LC =
⋃

C∈C\C1

⋃

Q∈P(C)

f(Q) . (1)

Note thatL = L(T, y) is a union of lines that do not contain
φ-edges. If we add toL all φ-edges ofT we obtain a set
of edge-disjoint lines whose only grafted lines are the shafts.
Those, in turn, share with the other lines the graft nodes only.
Hence this augmented set of lines is a connected blanket,

3The reader might expect a grafted line, as defined in Section 2,
be a special case of a grafted tree. In fact, the two definitions are
slightly divergent, in the sense that the former includes the graft
node, while the latter does not. For the sake of presentation, we
find it more convenient here to keep the graft node out of the grafted
tree.

4Obviously, the number of shafts inσ(S) will actually be
min

˘

|S|, di + 1
¯

implying that the originalL is indeed a blanket overT . We
show below (proof of Theorem 12) that|L| = O(K), being
K the maximum cutsize of(T, y).

The following sequence of lemmas, some of which are
proven in the appendix, show the announced key property of
mappingf , as related to the behavior ofTREEOPT. Namely,
for any non-degenerateC, TREEOPT makes on each element
Q ∈ P(C) at mostO

(∑
ℓ∈f(Q) mℓ

)
mistakes. For this pur-

pose, we find it convenient to introduce the functionUB (“up-
per bound”):

UB(T, K) = max
y∈Y(T,K)

(
∣∣C1(T, y)

∣∣+
∑

ℓ∈L(T,y)

mℓ

)
.

UB(T, K) will be shown to be an upper bound (up to a con-
stant factor) onm(TREEOPT, T,≤K).

Figure 5: A lineℓ with terminal nodesj′ andj′′ and grafted
trees above. Dichotomic behavior: afterj′ is revealed, the al-
gorithm makes no more mistakes on the nodes in the dashed
rectangle (ties are broken as in prediction rule 1.b). After
j1 is revealed, the algorithm makes no more mistakes on the
nodes in the dotted rectangle, etc. Nodeg1 is the graft node
involved in Case 3.b ofTREEOPT when predicting the label
of j1.

Lemma 4 Let C be a cluster andℓ ⊆ ℓ′ be a sub-line
of some frame-lineℓ′ ∈ FC . Assume at timet one of
the two terminal nodes ofℓ are revealed. Then after time
t the total number of mistakes made byTREEOPT on ei-
ther internal nodes ofℓ or trees grafted onℓ is bounded by
⌊log2 |ℓ|⌋ ≤ mℓ (see Figure 5 for reference).

The next three lemmas hold for any frame-lineℓ belonging
to a clusterC of a labeled tree(T, y).

Lemma 5 The total number of mistakesTREEOPT makes on
internal nodes ofℓ is at most2mℓ.

Lemma 6 (Proof omitted.) The total number of trees grafted
onℓ on whichTREEOPT makes mistakes is at most2mℓ + 1.

Lemma 7 (Proof omitted.) There exists at most one tree
grafted onℓ whereTREEOPT makes more than one mistake.

The next two lemmas bound the number of mistakes made
on trees and shrubs grafted on the frame of a clusterC.

Lemma 8 (Proof omitted.) The number of mistakes made
by TREEOPT on a treeT0 grafted on the frameFC of C is at
mostmσ(T0) + 1.



Lemma 9 The number of grafted trees of a shrubS grafted
on i on whichTREEOPT can make mistakes is at mostdi +1.

The next key lemma bounds the number of mistakes made
on any element ofP(C).

Lemma 10 LetC be a non-degenerate cluster,P(C) be the
corresponding covering. Letf be the bijective mapping de-
fined above. Then the number of mistakes made byTREEOPT
on anyQ ∈ P(C) is bounded byO

(∑
ℓ∈f(Q) mℓ

)
.

Before proving the main result of this section, we need one
more lemma establishing a key property of the functionUB.

Lemma 11 For all K = 1, . . . , n − 1, the functionUB sat-
isfiesUB(T, K − 1) ≤ UB(T, K) + 1.

Theorem 12 For any treeT with n nodes and any cutsize
budgetK, m(TREEOPT, T,≤K) = O

(
LB(T, K)

)
.

Proof: Pick any labeled tree(T, y) and letk ≤ K be its
cutsize. LetL = L(T, y) be the blanket (1). Pick a non-
degenerate clusterC ∈ C(T, y). Let TC be the tree obtained
by augmenting the frameFC with theΦC outer border nodes
of C as leaves (referring to Figure 4, the resultingTC is the
tree including all non-white nodes). Then observe that the
number of inner border nodes isO(ΦC). Since in any tree
the number of nodes of degree larger than2 cannot be greater
than the number of leaves, the total number of frame-forks
in C is alsoO(ΦC). Finally, since a frame-line inFC is
terminated by either a frame-fork or an inner border node,
the total number of frame-lines is alsoO(ΦC). This can be
seen by noting that collapsing each frame-line to a single
edge turnsFC into a tree with a number of nodes linear in
ΦC . This tree then hasO(ΦC) edges, which implies that the
frame-lines inFC are alsoO(ΦC). Now, by definition of
f : (i) the number of lines inLC deriving from subsetsQ of
type1 is linear in the number of frame-lines inC; (ii) since
the number of shafts having as terminal node an inner border
node (i.e., a leaf ofFC ) is linear inΦC , and the total number
of remaining shafts (i.e., those grafted on frame-forks that
are internal nodes ofFC ) is linear in the number of frame-
lines, the number of lines inLC deriving from subsetsQ of
type2 isO(ΦC). Therefore,

|L| =
∑

C∈C\C1

|LC | =
∑

C∈C\C1

O(ΦC) = O(K) .

To finish the proof observe that, by Lemma 10 and by defi-
nition of f ,

m(TREEOPT, T, y)

≤
∣∣C1(T, y)

∣∣+O
(
∑

C∈C\C1

∑

Q∈P(C)

∑

ℓ∈f(Q)

mℓ

)

=
∣∣C1(T, y)

∣∣+O
(

∑

ℓ∈L(T,y)

mℓ

)

= O
(

UB(T, k)
)

wherek ≤ K is the cutsize ofy. Since the above holds for
all labelingsy of T with cutsize at mostK,

m(TREEOPT, T,≤K) = O
(

max
k=1,...,K

UB(T, k)
)

= O (UB(T, K) + K) ,

using Lemma 11 in the last step. Now,UB is defined in terms
of a specific blanketL, with |L| = O(K), and

∣∣C1(T, y)
∣∣ ≤

K + 1 wheny has cutsize bounded byK. These facts imply
UB(T, K) ≤ K+1+LB

(
T,O(K)

)
. Finally, using Lemma 2

and LB(T, K) ≥ K, we obtainm(TREEOPT, T,≤ K) =

O
(
K + LB

(
T,O(K)

))
= O

(
LB(T, K)

)
.

In order to compare the optimal bound achieved by our
algorithm to the bounds mentioned in Section 1.1, we note
that, for any given labeled tree(T, y), our algorithm makes
a number of prediction mistakes whose upper bound can be
re-written as

O
(
ΦT (y)mℓ

)
(2)

whereΦT (y) is the cutsize of(T, y) andmℓ is the average
of mℓ over all linesℓ in the blanketL of sizeΦT (y) maxi-
mizing

∑
ℓ∈L mℓ.

Note thatmℓ < log2 DT + O(1) for all ℓ. More-
over, for many classes of treesT , if the cutsize is not too
small then it is not even possible to find a blanket of size
ΦT (y) whose lines have average length linear inDT . In
these casesmℓ can be much smaller thanlog DT . As for
the time complexity, sincem(TREEOPT, T,≤K) ≥ K and
m = m(A, T,≤K) = Ω

(
m(TREEOPT, T,≤K)

)
for any

deterministic algorithmA, if the cutsize isΩ(log DT ) our
algorithm is faster than the one in [4], which predicts all la-
bels in timeΘ(n m). Note also thatTREEOPT does not re-
quire any explicit (and costly) pre-computation. Moreover,
unlike Perceptron-like algorithms which usen×n matrices,
the space required byTREEOPT is always linear inn.

4.1 Comparison to the Halving algorithm

We now compareTREEOPT to the so-called HALVING al-
gorithm (applied to trees). This is a standard version space
algorithm defined as follows. LetYt be the set of labelings
y ∈ {−1, +1}n consistent with all labels revelead up to time
t. Define nowYmin

t ⊆ Yt as those labelings with minimum
cutsize inYt. HALVING predicts the label ofit with the value
y ∈ {−1, +1} that maximizes

∣∣{u ∈ Ymin
t−1 : uit

= y
}∣∣.

For example, if assigning a certain label toit increases the
current cutsize (irrespective to the value of the remaining
non-revealed labels), then HALVING always predicts the op-
posite label, i.e., the cut-minimizing label.

Proving tight mistake bounds for HALVING is in general
not straightforward. As a simple example, the best bound for
HALVING on a star graph withn nodes and cutsizeK < n/2
is O(K). This in contrast with the more intuitive “version
space bound”O

(
K log(n/K)

)
one might think of at first

glance. In this section, we prove the optimality of HALV-
ING (up to constant factors), but because of the very difficult
combinatorics involved, we do so only indirectly, by exploit-
ing the optimality ofTREEOPT.

The following lemma (whose proof is sketched in the ap-
pendix) shows that when the fork label estimation procedure



(FLEP) of TREEOPT returns a nondefault value (as in pre-
diction rule 1.a), then this value is the same cut-minimizing
label predicted by HALVING .

Lemma 13 Let ỹr(t) be the value returned byFLEP run by
TREEOPT at timet to evaluate the label of noder. If ỹr(t) 6=
0 thenur = ỹr(t) for eachu ∈ Ymin

t .

The same equivalence betweenTREEOPT and HALVING
predictions holds in other cases, for instance whenit does
not belong to any lb-tree. In general, however, the predic-
tions of the two algorithms may differ. Nevertheless, it is
possible to prove that the number of nodes where the two
predictions differ is small, as stated by the following theo-
rem.

Theorem 14 For any labeled tree(T, y) with cutsizeK, and
any presentationi1, . . . , in of the nodes ofT , the number of
times whenTREEOPT and HALVING output a disagreeing
prediction is bounded byO(LB(T, K)).

Proof: [Sketch] The predictions ofTREEOPT and HALVING
differs only when: (i)TREEOPT estimates a fork as0 (pre-
diction rule 1.b); (ii)TREEOPT predicts a node between two
forks estimated as0 (prediction rule 2.c); (iii) Nodeit does
not belong to any lb-tree and the closest node in a lb-tree is
a fork estimated as0 (prediction rule 3.b together with 1.b);
(iv) it is on a hinge line whose terminal nodesi′ andi′′ are
such that the label ofi′′ (estimated or revealed) is different
from 0 and the label ofi′ is estimated as0 (subcases in pre-
diction rules 2.a and 2.b).

The nodes in which cases (i) to (iii) may occur are easily
seen to beO(K). In case (iv) the two predictions differs only
whenit is closer toi′. This fact makes it possible to find a
size-O(K) blanketL such that the number of disagreeing
predictions isO

(∑
ℓ∈L mℓ

)
.

Theorem 14 implies thatTREEOPT approximates HALV-
ING, the two algorithms making the same number of mis-
takes up to constant factors. A close examination of the
two algorithms reveals that whenTREEOPT predicts a de-
fault value, HALVING apparently needs to perform a cer-
tain amount of computation. In this respect, we can view
TREEOPT as a “lighter” implementation of HALVING . In
fact, in the next section we show thatTREEOPT can be im-
plemented in a quite efficient manner.

5 Efficient implementation

A naive implementation ofTREEOPT requires space linear in
the total numbern of nodes. It is also easy to check that pre-
dicting a single label requires timeO(n), since each lb-tree
hasO(n) nodes. In this section we describe a more sophis-
ticated implementation that improves significantly the amor-
tized time per time step, while still using space linear inn.

Theorem 15 The total timeTREEOPT requires to predict all
labels of a labeld tree(T, y) with n nodes is

O
(
min{nf , K}K + n log DT

)

whereK is the cutsize of(T, y), nf is the number of inter-
nal nodes ofT with degree greater than2, andDT is the
diameter ofT .

Note that wheneverK = O
(√

n
)
, the amortized time per

step is at most logarithmic in the diameter5 of T . In order to
achieve this speed up, we maintain the following data struc-
tures (see Figure 6).

Signals and signal values. We store extra links connecting
neighboring hinge nodes so as to avoid running the depth-
first visit involved in FLEP. For each hinge lineℓ with ter-
minal nodesi andj we store an extra directed link[i → j]
connectingi to j, and a second one[j → i] connectingj to
i. We call these linkssignals. All signals of the form[i→ j]
are stored together with nodei. Each signal[i→ j] is linked
to its twin [j → i] and to the node adjacent toi in ℓ. Hence,
when traversingℓ for predicting with rule 2, it is possibile to
find both signals associated withℓ in constant time just after
reaching one of the two terminal nodes. Each signal[i → j]
has a valuev([i → j]) ∈ {−1, 0, 1, �}. If j is a frame-fork,
v([i → j]) is equal to the temporary label thatFLEP would
assign toi when estimatingyj. In the special case whenyi

is already revealed andj is a fork node,v([i→ j]) is simply
equal toyi. Finally, if yj is revealed thenv([i→ j]) is equal
to�, and we say that the signal isempty. Recall that, in order
to return a label for the fork nodej, FLEP assigns temporary
labels to each internal node of the hinge line connectingi to
j. These labels arev([i→ j]).

Fork values. We associate with each forki a numerical
valuevi given by the sum of the temporary or revelead la-
bels of its children in the lb-tree rooted ati. Observe that
FLEP always returnsSGN(vi) as the value of a fork labelyi

(where we defineSGN(0) = 0). Moreover,vi is equal to∑
j∈N(i) v([j → i]) whereN(i) is the set of hinge nodes

j such thati is linked to j via a signal; note also that
v([i → j]) = SGN(vi − v([j → i])) for each signal[i → j]
wherei andj are both forks.

Other auxiliary structures. By means of an initial depth-
first visit of T , we associate with each edge(i, j) ∈ E a
direction given by the relationship child→ parent in the tree
T rooted at nodei1, i.e., the node whose label is revealed at
the end of the first time step. Starting from any nodei not
contained in any lb-tree, it is then possibile to find the nearest
nodej belonging to an lb-tree in time linear in the distance
betweeni andj by simply following these edge directions.
We associate with each pair of adjacent nodesi andj in any
given hinge lineℓ an extra directed link[i, j], along with
its twin link [j, i]. These links are useful when traversing
ℓ. Each node has a mark that allows the algorithm to know
whether the node belongs to an lb-tree, or if it is a fork node
or whether its label has been revealed or not.

We now describe the key concept ofsignal change prop-
agation. Suppose that a signal[i → j] changes its value in
such a way thatv([i → j]) 6= � both before and after the
signal modification. This modifies the valuevj which, in
turn, may affect the values of some signals departing fromj.
Therefore, any signal modification can propagate through the
signal links in the lb-tree. It is important to observe that an

5Though we do not prove it here, the above computational
bound can be further refined by replacinglog DT with a smaller
structural parameter (independent ofK). For some trees the value
of this parameter can be constant even whenlog DT = Θ(log n).



Figure 6: Two lb-trees with the main auxiliary data-
structures for the efficient implementation. The numbers in-
side the fork nodes (the two doubly-circled nodes) indicate
the fork valuesvi. Nodei1 is located at the bottom-left. The
gray arrows, directed towardsi1, are aimed at supporting a
quick implementation of prediction rule 3 ofTREEOPT when
finding the nearest node contained in an lb-tree. The bidirec-
tional black arrows denote signals exchanged between pairs
of terminal nodes of hinge lines.

increase (decrease) of signal valuev([i → j]) will not prop-
agate if, before the change,vj ≥ 2 ( vj ≤ −2) (all values of
outgoing non-empty signal will remain equal toSGN(vj)).

We continue by sketching how the algorithm uses and up-
dates the auxiliary structures when predicting nodeit. The
reader is referred to the three prediction rules in the pseu-
docode of TREEOPT.

1) it is a fork. The algorithm predicts withSGN(vi) (or−1
if vi = 0), sets the value of all signals incoming toi equal to
� and that of all signals outgoing fromi equal toyi, propa-
gating them if necessary.
2) it is contained in an lb-tree but it is not a fork. Let
i′ and i′′ be defined as in prediction rule 2. The algorithm
finds the nearest hinge nodei′ by traversing the hinge line in
both directions (using a breadth-first visit on that line). Then
it uses the signs ofvi′ and vi′′ for predicting with rule 2,
creates the signals[it → i′] and[it → i′′], and propagates
them if necessary. Finally, the algorithm replaces the two old
signals linkingi′ to i′′ with [i′ → it] and[i′′ → it], and sets
both values to�.
3) it is not contained in any lb-tree.The algorithms finds
the nearest nodes contained in an lb-tree using the extra-
links directed towardsi1 and creates the auxiliary informa-
tion for the new hinge line connectingit to s. Then the algo-
rithm predicts as if the adversary had asked for labelys, and
creates the signals[i → j] and[j → i]. If j is not a hinge
node, then a new signal is created. This signal is updated and
propagated analogously to the previous case.
The next lemma (whose proof is omitted) is useful for the
complexity analysis. First of all, we define aphaseto be
a maximal non-empty interval of time steps where no label
revelation increases the minimal cutsize consistent with the
labels seen so far. Hence a time step where the current mini-
mal cutsize increases does not belong to any phase.

Lemma 16 Lett belong to a phase and letvi(t) be the value
of a fork nodei at the beginning of timet. If yi is not revelead
at timet, thenvi(t+1) ≥ vi(t) if vi(t) > 0, andvi(t+1) ≤
vi(t) if vi(t) < 0.

We can now sketch the proof of the worst case time bound
for predicting the labels inT .

Proof: [Theorem 15, sketch] Each internal nodei of a
hinge lineℓ can be visited onlyO

(
log |ℓ|

)
= O(log DT )

times through prediction rule 2. As a matter of fact, for each
of the two traversing directions, the distance betweeni and
the node from which the breadth-first visit overℓ starts is at
least halved each timei gets visited. This fact accounts for
theO(n log DT ) term in the bound.

Now observe that a node with degree smaller than3 can
never become a fork. Moreover, the number of forks in-
volved in a signal propagation process in each tree grafted
on a cluster frame is constant. The number of trees grafted
on a frame-lineℓ on which a signal change can propagate
is again constant. For each shrubS grafted on a nodei,
the number of trees ofS involved in the signal propagation
is O(di). Lemma 16 applied to each forkj, together with
these observations, allows us to deduce that in a single phase
the signal propagation process takes timeO

(
min{nf , K}

)
.

This is also the time required by a signal propagation in each
step where the minimal cutsize gets increased. Finally, the
number of phases is equal toO(K).

The proof is concluded by considering that the total time
required for creating and emptying all signals, as well as for
creating the other auxiliary structures, is linear inn.

6 Application to labeled graph prediction

We now discuss the application of our tree prediction al-
gorithm to the general problem of predicting the labels of
an undirected graph, and compare our results to the ex-
isting literature. As mentioned in the introduction, when
given a graphG = (V, E) with n nodes and arbitrary bi-
nary labelsy, we suggest runningTREEOPT on a (uniformly
generated) random spanning tree ofG. By exploiting Kir-
choff’s equivalence between the effective resistanceri,j of
(i, j) ∈ E and the probability that(i, j) belongs to a ran-
dom spanning treeT , we immediately obtain that the ex-
pected cutsize ofT is the resistance-weighted cutsize ofG,
ΦR(y) = 1

4

∑
(i,j)∈E ri,j(yi − yj)

2. This is significantly
better thanG’s cutsizeΦG(y) in most cases. In fact, on an
unweighted graph withn nodes, the effective resistanceri,j

of an edge(i, j) always lies in[2/n, 1]. In particular,ri,j is
very small when(i, j) is located in a densely connected area
of the graph, whileri,j = 1 when (i, j) is a bridge edge.
For instance, in a dense graph whereri,j = O(1/n) for all
(i, j) ∈ E, the adversary may choosey so as to concentrate
Θ(n) φ-edges on any specific tree, and yetΦR(y) = O(1).

The above argument immediately leads to the following
general result. LetTREEOPT+ be the (randomized) graph
prediction algorithm that, on inputG, first generates a ran-
dom spanning treeT of G, and then runsTREEOPT on T .
Define(G, y) andm(A, G, y) similarly to what we did for
trees.



Corollary 17 For any undirected labeled graph(G, y), and
for any presentation orderi1, . . . , in of the nodes ofG, the
expected (over the random choice of the spanning treeT )
number of mistakesTREEOPT+ makes on(G, y) is bounded
asE

[
m(TREEOPT+, G, y)

]
= O

(
ΦR(y) log n

)
.

Proof: We have

E
[
m(TREEOPT+, G, y)

]
= E

[
m(TREEOPT, T, y)

]

= E
[
O
(
ΦT (y)mℓ

]
= O

(
ΦR(y) log n

)

where the second equality is (2), and the last one follows
after (crudely) upper boundingmℓ by log n.

Similar bounds could also be shown to hold with high
probability, rather than in expectation, by exploiting known
concentration properties of random spanning trees. See, e.g.,
[3] and references therein.

The best mistake bound we know of for the general graph
prediction problem has the formminρ

(
N (G, ρ)+ΦG(y)ρ),

whereN (G, ρ) is the covering number ofG in the resis-
tance metric [5]. It is easy to see that this bound gets large
when the diameterDG is large. Moreover, real-world graphs
G (such as parts of the web graph) have dense regions that
can cause a large cutsize. In some of these cases, (take the
lollipop graph as an extreme situation), it is just impossible
to find a small-sized covering using balls of small radius.
A uniformly generated random spanning treeT of G guar-
antees, instead, that the presence of dense parts ofG will
not dramatically increase the cutsize ofT . Hence the use of
TREEOPT on a random tree ensures an appealing (expected)
mistake bound where the cutsize factor cannot get too large,
except for degenerate and very irregular labelings.

7 Ongoing research

We close by mentioning a few research directions we are
currently investigating. First, we are exploring to what ex-
tent our tree prediction strategy could be applied to weighted
graphs. We would like to prove mistake bounds where the
adversary is measured by a weighted version of the effective
resistance overφ-edges. This seems to require us to some-
how generalizeTREEOPT to weighted trees.

Second, we are studying the case when the learning algo-
rithm has at its disposal side information about the binary la-
bels to be predicted. A standard way of doing so is to assume
each nodei is associated with an unknown linear-threshold
functionui ∈ R

d, and at the beginning of timet the algo-
rithm observesxt ∈ R

d such thatyit
= SGN(u⊤

i xt).
Third, we are planning to collect experimental evidence

of the performance of our algorithm. Our analysis suggests
thatTREEOPT is very efficient in both time and space, mak-
ing it suitable to large-scale practical applications. In par-
ticular, we expect a committee of spanning trees drawn at
random from a low diameter graph to be a very accurate and
efficient compound predictor.

Fourth, as pointed out by one of the reviewers, there seem
to be connections between the line of research pursued here
and the results presented in [11] about tree searching. It
might be possible, although apparently not straightforward,
that a different interpretation of our results could be obtained
by extending that work. Conversely, it might be possible that

the results presented here could contribute to the literature
on tree searching. We are planning to explore these connec-
tions.
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A Proofs

Throughout the appendixπ(i, j) denotes the (unique) path
connecting nodei to nodej, andd(i, j) denotes the number
of edges inπ(i, j). Moreover, without loss of generality,
when focusing on the nodes of a given clusterC, we assume
they are all given label+1.

Proof of Lemma 2: Let L′ be a blanket of sizeK ′ overT
achieving the maximum in the definition ofLB. Let L be the
subset ofL′ obtained by keeping only theK longest lines in
L′. SinceL′ is a blanket, so isL. By definition ofLB,

∑

ℓ∈L

mℓ ≤ max
L∈L(T,K)

∑

ℓ∈L

mℓ = LB(T, K). (3)

Besides, sinceL contains theK longest lines inL′, for any
ℓ′ ∈ L′ \ L we can write

mℓ′ ≤
1

K

∑

ℓ∈L

mℓ ≤
LB(T, K)

K
. (4)

Hence

LB(T, K ′) =
∑

ℓ′∈L′

mℓ′

=
∑

ℓ′∈L

mℓ′ +
∑

ℓ′∈L′\L

mℓ′

≤ LB(T, K) +
K ′ −K

K
LB(T, K)

=
K ′

K
LB(T, K) ,

the inequality following from (3) and (4).

Proof of Lemma 4: Let j′ be the terminal node ofℓ whose
label is revealed, andj′′ be the other terminal node. After
time t, as soon as the algorithm makes the first mistake on a
treeT ′ grafted on an internal nodeg of ℓ, the majority vote in
the Fork Label Estimation Procedure (FLEP) ensures that the
algorithm’s estimation onyg will be correct. Moreover the
prediction rules 2.a, 3.a, and 3.b ofTREEOPT ensure that no
other mistake will be made in the whole shrub grafted ong.
In both cases we have used the hypothesis thatℓ contains no
frame-forks which could change the outcome of the majority
vote. Since the four prediction rules 2.a–2.d ofTREEOPT
make no distinction between estimated fork labels and true
(revealed) labels, for the purpose of this analysis a mistake
made ong in ℓ is equivalent to a mistake made on a tree
grafted on that node. These observations, combined with
prediction rules 2.d and 2.a, imply the two following facts.
Given a noder of ℓ, denote byn(r) the closest hinge node
to r onπ(r, j′). Then:

1. Each noder of ℓ on which a mistake is made after time
t satisfiesd(r, n(r)) ≥ d(r, j′′).

2. Let T ′ be a tree grafted on an internal nodes of ℓ.
A mistake can be made onT ′ only if d(s, n(s)) ≥
d(s, j′′).

From the above, it is then easy to see that the number of
internal nodes ofℓ on which the algorithm can make mis-
takes is at least halved after every new mistake. Since correct

predictions on nodes ofℓ imply correct predictions on the
whole shrub grafted on those nodes (see Figure 5), this halv-
ing process implies that the total number of mistakes made
after timet on internal nodes ofℓ, or on trees grafted onℓ, is
at most⌊log2 |ℓ|⌋ ≤ mℓ.

Proof of Lemma 5: As soon as the first nodei gets re-
vealed, lineℓ is split into the two sub-linesℓ1 andℓ2 shar-
ing i as terminal node. By Lemma 4 the number of mis-
takes made on the internal nodes ofℓ is therefore bounded
by 1 + ⌊log2 |ℓ1|⌋ + ⌊log2 |ℓ2|⌋ ≤ 1 + ⌊log2 |ℓ1||ℓ2|⌋ ≤
1 + ⌊2 log2 |ℓ| − 2⌋ ≤ 2mℓ.

Proof of Lemma 9: If |S| ≤ di + 1 the claim is trivial.
Hence, we continue by assuming|S| > di + 1. Suppose that
at least one mistake has been made ondi + 1 trees grafted
on i. If yi is revelead at timet, then the prediction rules 3.a
and 2.a ensure that no more mistakes will be made onS. On
the contrary, ifyi is not revelead, the majority vote inFLEP
guarantees thatyi will always be correctly estimated in the
future (i.e.,ỹi(s) = yi for any s > t), and the prediction
rules 2.a, 3.a, and 3.b guarantee no more mistakes.

Proof of Lemma 10: We first consider the case whenQ is
of type 1. In this case, the total number of mistakes made
on Q can be simply bounded by summing: (i) the mistakes
on ℓ (Lemma 5); (ii) the mistakes on the trees grafted on
ℓ on which the algorithm can make more than one mistake
(Lemma 7 and Lemma 8); (iii) the number of the remain-
ing trees grafted onℓ where the algorithm can make at most
one mistake (Lemma 6 and Lemma 7). Putting together,
the total number of mistakes made onQ can be bounded by
O
(∑

ℓ∈f(Q) mℓ

)
.

Let us now consider a subsetQ of type 2, and letS be the
shrub referred to in the definition of suchQ. By Lemma 8,
Lemma 9, and the definition ofσ(S), the total number of
mistakes made onQ can be bounded as

∑

ℓ∈σ(S)

(mℓ + 1) + 1 =
∑

ℓ∈f(Q)

(mℓ + 1) + 1,

which is againO
(∑

ℓ∈f(Q) mℓ

)
.

Proof sketch of Lemma 11: Fix T . Any labelingy of T
with cutsizeK − 1 can always be obtained from a labeling
y
′ with cutsizeK by merging two clustersC1 andC2. After

this merge,L(T, y) contains at most a new line that was not
already inL(T, y′). This new lineℓ is theφ-edge deleted in
the merge. Since|ℓ| = 1, UB(T, K−1) ≤ UB(T, K)+mℓ =
UB(T, K) + 1.

Proof sketch of Lemma 13: Let Tr be the lb-tree rooted at
r at timet. Recall thatFLEP works by assigning temporary
labels while backtracking in the depth-first visit ofTr. We
prove the following claim: each temporary labely′

i(t) 6= 0
assigned to nodei of Tr is such that the cutsize is at least
as small as the cutsize wheni is assigned the opposite label
−y′

i(t). The proof is by induction on the maximum distance
betweeni and its descendants inTr. Wheny′

i(t) = 0 we
show that the cutsize-minimizing label fori is the same asi’s
parent. Finally, by applying the claim to the children ofr, we
obtain that the cutsize-minimizing label ofr is the majority
vote over the children’s temporary (or revealed) labels.


