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Abstract. In this paper, we prove various results about PAC learning in the presence of malicious
noise. Our main interest is the sample size behavior of learning algorithms. We prove the first
nontrivial sample complexity lower bound in this model by showing that order of e/D2 1 d/D (up to
logarithmic factors) examples are necessary for PAC learning any target class of {0, 1}-valued
functions of VC dimension d, where e is the desired accuracy and h 5 e/(1 1 e) 2 D the malicious
noise rate (it is well known that any nontrivial target class cannot be PAC learned with accuracy e and
malicious noise rate h $ e/(1 1 e), this irrespective to sample complexity). We also show that this
result cannot be significantly improved in general by presenting efficient learning algorithms for the
class of all subsets of d elements and the class of unions of at most d intervals on the real line. This
is especially interesting as we can also show that the popular minimum disagreement strategy needs
samples of size de/D2, hence is not optimal with respect to sample size. We then discuss the use of
randomized hypotheses. For these the bound e/(1 1 e) on the noise rate is no longer true and is
replaced by 2e/(1 1 2e). In fact, we present a generic algorithm using randomized hypotheses that can
tolerate noise rates slightly larger than e/(1 1 e) while using samples of size d/e as in the noise-free
case. Again one observes a quadratic powerlaw (in this case de/D2, D 5 2e/(1 1 2e) 2 h) as D goes
to zero. We show upper and lower bounds of this order.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning–concept learning

General Terms: Theory

Additional Key Words and Phrases: Learning with malicious noise, PAC learning

1. Introduction

Any realistic learning algorithm should be able to cope with errors in the training
data. A model of learning in the presence of malicious noise was introduced by
Valiant [1984] as an extension of his basic PAC framework for learning classes of
{0, 1}-valued functions. In this malicious PAC model, each training example
given to the learner is independently replaced, with fixed probability h, by an
adversarially chosen one (which may or may not be consistent with the {0, 1}-
valued target function). In their comprehensive investigation of malicious PAC
learning, Kearns and Li [1993] show that a malicious noise rate h $ e/(1 1 e) can
make statistically indistinguishable two target functions that differ on a subset of
the domain whose probability measure is at least e. This implies that, with this
noise rate, no learner can generate hypotheses that are e-good in the PAC sense,
irrespective to the sample size (number of training examples) and to the learner’s
computational power. In their work, Kearns and Li also analyze the performance
of the minimum disagreement strategy in presence of malicious noise. They show
that, for a sample of size1 d/e (where d is the VC dimension of the target class)
and for a noise rate bounded by any constant fraction of e/(1 1 e), the hypothesis
in the target class having the smallest sample error is e-good in the PAC sense.

We begin this paper by studying the behaviour of sample complexity in the
case of deterministic hypotheses and a high malicious noise rate, that is, a
malicious noise rate arbitrarily close to the information-theoretic upper bound
hdet :5 e/(1 1 e). We prove the first nontrivial lower bound in this model
(Theorem 3.4) by showing that at least order of e/D2 1 d/D examples are needed
to PAC learn, with accuracy e and tolerating a malicious noise rate h 5 e/(1 1
e) 2 D, every class of {0, 1}-valued functions of VC dimension d. Our proof
combines, in an original way, techniques from Ehrenfeucht et al. [1989], Kearns
and Li [1993] and Simon [1996a] and uses some new estimates of the tails of the

1 All sample size orders in this section are given up to logarithmic factors.
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binomial distribution that may be of independent interest. We then prove that
this lower bound cannot be improved in general. Namely, we show (Theorem
3.10 and Corollary 3.15) that there is an algorithm RMD (for Randomized
Minimum Disagreement) that, for each d, learns both the class #d of all subsets
of d elements and the class (d of unions of at most d intervals on the real line
using a noisy sample whose size is of the same order as the size of our lower
bound. Algorithm RMD makes essential use of the fact that the learning domain is
small. Hence, for the class (d we first discretize the universe in a suitable way.
Then Algorithm RMD uses a majority vote to decide the classification of those
domain points which have a clear majority of one label, and tosses a fair coin to
decide the classification of the remaining points.

We also show a lower bound of order de/D2 for the sample size of the popular
strategy of choosing any hypothesis that minimizes disagreements on the sample
(Theorem 3.9). This bound holds for any class of VC dimension d $ 3 and for
every noise rate h such that e/(1 1 e) 2 h 5 D 5 o(e). This implies that, for
high noise rate h and for every target class of VC dimension d large enough,
there are distributions over the target domain where the minimum disagreement
strategy is outperformed by algorithm RMD. To our knowledge, this is the first
example of a natural PAC learning problem for which choosing any minimum
disagreement hypothesis from a fixed hypothesis class is probably worse, in terms
of sample complexity, than a different learning strategy.

In the second part of the paper, we consider the use of randomized hypotheses
for learning with small sample sizes and high malicious noise rates. An easy
modification of Kearns and Li’s argument (Proposition 4.1) shows that no
learner can output e-good randomized hypotheses with a noise rate larger or
equal to hrand :5 2e/(1 1 2e). Given the gap between this bound and the
corresponding bound e/(1 1 e) for learners using deterministic hypotheses, we
address the problem whether allowing randomized hypotheses helps in this
setting. In fact, we present an algorithm (Theorem 4.2) that PAC learns any
target class of VC dimension d using randomized hypotheses and d/e training
examples while tolerating any noise rate bounded by a constant fraction of
(7/6)e/(1 1 (7/6)e). The algorithm works by finding up to three functions in the
target class that satisfy a certain independence condition defined on the sample.
The value of the final hypothesis on a domain point is then computed by taking a
majority vote over these functions (or by tossing a coin in case only two functions
are found). Our investigation then moves on to consider the case of a noise rate
close to the information-theoretic bound 2e/(1 1 2e) for randomized hypotheses.
We show a strategy (Theorem 4.4) for learning the powerset of d elements using
de/D2 training examples and tolerating a malicious noise rate of h 5 2e/(1 1
2e) 2 D, for every D . 0. We also show (Theorem 4.5) that this sample size is
optimal in the sense that every learner using randomized hypotheses needs at
least de/D2 training examples for learning any target class of VC dimension d.

2. Definitions and Notation

We recall the definitions of PAC learning and malicious PAC learning of a given
target class #, where # is a set of {0, 1}-valued functions C, here called concepts,
defined on some common domain X. We call instance every x [ X and labeled
instance or example every pair ( x, y) [ X 3 {0, 1}. In Valiant’s PAC learning
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model [Valiant 1984], the learning algorithm (or learner) gets as input a sample,
that is, a multiset (( x1, C( x1)), . . . , ( xm, C( xm))) of desired size m , `. Each
instance xt in the sample given to the learner must be independently drawn from
the same distribution D on X and labeled according to the same target function
C [ #. Both C and D are fixed in advance and unknown to the learner. In
the malicious PAC model, the input sample is corrupted by an adversary using
noise rate h . 0 according to the following protocol. First, a sample (( x1,
C( x1)), . . . , ( xm, C( xm))) of the desired size is generated exactly as in the
noise-free PAC model. Second, before showing the sample to the learner, each
example ( xt, C( xt)) is independently marked with fixed probability h. Finally,
the adversary replaces each marked example ( xt, C( xt)) in the sample by a pair
( x̂ t, ŷ t) arbitrarily chosen from X 3 {0, 1} and then feeds the corrupted sample
to the learner. We call the collection of marked examples the noisy part of the
sample and the collection of unmarked examples the clean part of the sample.
Note that learning in this model is harder than with the definition of malicious
PAC learning given by Kearns and Li [1993]. There, the examples were sequen-
tially ordered in the sample and the adversary’s choice for each marked example
had to be based only on the (possibly marked) examples occurring earlier in the
sample sequence.2 We call KL-adversary this weaker type of adversary. We also
consider a third type of malicious adversary, which we call “nonadaptive”.
Whereas the corruption strategy for our malicious adversary is a function from
the set of samples to the set of corrupted samples, the corruption strategy for a
nonadaptive adversary is a function from the set of examples to the set of
corrupted examples. In other words, a nonadaptive adversary must decide, before
seeing the sample, on a fixed rule for replacing each pair ( x, C( x)), for x [ X,
with a corrupted pair ( x9, y9). Note that learning with a KL-adversary is easier
than learning with our malicious adversary, but harder than learning with a
nonadaptive adversary.

To meet the PAC learning criterion, the learner, on the basis of a polynomi-
ally-sized sample (which is corrupted in case of malicious PAC learning), must
output an hypothesis H that with high probability is a close approximation of the
target C. Formally, an algorithm A is said to PAC learn a target class # using
hypothesis class * if, for all distributions D on X, for all targets C [ #, and for
all 1 $ e, d . 0, given as input a sample of size m, A outputs an hypothesis H [
* such that its error probability, D(H Þ C), is strictly smaller than e with
probability at least 1 2 d with respect to the sample random draw, where m 5
m(e, d) is some polynomial in 1/e and ln(1/d). We call e the accuracy parameter
and d the confidence parameter. We use H Þ C to denote { x: H( x) Þ C( x)}. A
hypothesis H is called e-good (with respect to a distribution D) if it satisfies the
condition D(H Þ C) , e; otherwise, it is called e-bad. Similarly, an algorithm A
is said to learn a target class # using hypothesis class * in the malicious PAC
model with noise rate h if A learns # in the PAC model when the input sample is
corrupted by any adversary using noise rate h. Motivated by the fact (shown in
Kearns and Li [1993] and mentioned in the introduction) that a noise rate h $
e/(1 1 e) forbids PAC learning with accuracy e, we allow the sample size m to
depend polynomially also on 1/D, where D 5 e/(1 1 e) 2 h.

2 All the results from Kearns and Li [1993] we mention here hold in our harder noise model as well.
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We will occasionally use randomized learning algorithms that have a sequence
of tosses of a fair coin as additional input source. In this case the definition of
PAC learning given above is modified so that D(C Þ H) , e must hold with
probability at least 1 2 d also with respect to the algorithm’s randomization.
Finally, we will also use randomized hypotheses or coin rules. A coin rule is any
function F: X 3 [0, 1] where F( x) is interpreted as the probability that the
Boolean hypothesis defined by the coin rule takes value 1 on x. Coin rules are
formally equivalent to p-concepts, whose learnability has been investigated by
Kearns and Schapire [1994]. However, here we focus on a completely different
problem, that is, the malicious PAC learning of Boolean functions using p-
concepts as hypotheses. If a learner uses coin rules as hypotheses, then the PAC
learning criterion D(C Þ H) , e, where H is the learner’s hypothesis, is
replaced by Ex;DuF( x) 2 C( x) u , e, where F is the coin rule output by a
learner and Ex;D denotes expectation with respect to the distribution D on X.
Note that uF( x) 2 C( x) u is the probability of misclassifying x using coin rule F.
Thus, Ex;DuF( x) 2 C( x) u, which we call the error probability of F, is the
probability of misclassifying a randomly drawn instance using coin rule F.
Furthermore, since Proposition 4.1 in Section 4 shows that every noise rate larger
or equal to 2e/(1 1 2e) prevents PAC learning with accuracy e using randomized
hypotheses, we allow the sample size of algorithms outputting randomized
hypotheses to depend polynomially on 1/D, where D 5 2e/(1 1 2e) 2 h.

In addition to the usual asymptotical notations, let Õ( f ) be the order obtained
from O( f ) by dropping polylogarithmic factors.

3. Malicious Noise and Deterministic Hypotheses

This section presents three basic results concerning the sample size needed for
PAC learning in the presence of malicious noise. Theorems 3.4 and 3.7 establish
the general lower bound V(e/D2 1 d/D) that holds for any learning algorithm.
In Subsection 3.3, we show that this bound cannot be significantly improved.
Finally, Theorem 3.9 presents the stronger lower bound V(de/D2) that holds for
the minimum disagreement strategy.

We make use of the following definitions and facts from probability theory. Let
SN,p be the random variable that counts the number of successes in N indepen-
dent trials, each trial with probability p of success. A real number s is called
median of a random variable S if Pr{S # s} $ 1/ 2 and Pr{S $ s} $ 1/ 2.

FACT 3.1. [JOGDEO AND SAMUELS 1968]. For all 0 # p # 1 and all N $ 1, the
median of SN, p is either Np or Np. Thus,

PrH SN , p # NpJ $
1

2
and PrH SN , p $ NpJ $

1

2
.

FACT 3.2. If 0 , p , 1 and q 5 1 2 p, then for all N $ 37/( pq),

PrH SN , p $ Np 1  ÎNpq 2 1J .
1

19
(1)
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PrH SN , p # Np 2  ÎNpq 2 1J .
1

19
. (2)

PROOF. The proof is in the Appendix. e

There are, in probability theory, various results that can be used to prove
propositions of the form of Fact 3.2. A general but powerful tool is the
Berry–Esseen theorem [Chow and Teicher 1988, Theorem 1, page 304] on the
rate of convergence of the central limit theorem. This gives a lower bound on the
left-hand side of (1) and (2) that is worse by approximately a factor of 2 than the
bound 1/19 proven in Fact 3.2. More specialized results on the tails of the
Binomial distribution were proven by Bahadur [1960], Bahadur and Ranga-Rao
[1960], and Littlewood [1969]. We derive (1) and (2) by direct manipulation of
the bound in Bahadur [1960], which is in a form suitable for our purposes.

FACT 3.3. For every 0 , b , a # 1, for every random variable S [ [0, N] with
ES 5 aN, it holds that Pr{S $ bN} . (a 2 b)/(1 2 b).

PROOF. It follows by setting z 5 Pr{S $ bN } and solving the following for
z:

aN 5 ES 5 E@S uS , bN#~1 2 z! 1 E@S uS $ bN# z , bN~1 2 z! 1 Nz. e

3.1. A GENERAL LOWER BOUND ON THE SAMPLE SIZE. Two {0, 1}-valued
functions C0 and C1 are called disjoint if there exists no x [ X such that
C0( x) 5 C1( x) 5 1. A target class # is called trivial if any two targets C0, C1 [
# are either identical or disjoint. Kearns and Li [1993] have shown that
nontrivial target classes cannot be PAC learned with accuracy e if the malicious
noise rate h is larger or equal than e/(1 1 e). The proof is based on the statistical
indistinguishability of two targets C0 and C1 that differ on some domain point x
which has probability e, but coincide on all other points with nonzero probability.
The malicious nonadaptive adversary will present x with the false label with
probability hdet :5 e/(1 1 e). Hence, x appears with the true label with
probability (1 2 hdet)e. As (1 2 hdet)e 5 hdet, there is no chance to distinguish
between C0 and C1.

Our first lower bound is based on a similar reasoning: For h , hdet, the targets
C0 and C1 can be distinguished, but as h approaches hdet, the discrimination task
becomes arbitrarily hard. This idea is made precise in the proof of the following
result.

THEOREM 3.4. For every nontrivial target class #, for every 0 , e , 1, 0 , d #
1/38, and 0 , D 5 o(e), the sample size needed for PAC learning # with accuracy e ,
confidence d, and tolerating malicious noise rate h 5 e/(1 1 e) 2 D, is greater than

9h~1 2 h!

37D2
5 VS h

D2D .

PROOF. For each nontrivial target class #, there exist two points x0, x1 [ X
and two targets C0, C1 such that C0( x0) 5 C1 ( x0) 5 1, C0( x1) 5 0, and
C1( x1) 5 1. Let the distribution D be such that D( x0) 5 1 2 e and D( x1) 5 e.
We will use a malicious adversary that corrupts examples with probability h. Let
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A be a (possibly randomized) learning algorithm for # that uses sample size m 5
m(e, d, D). For the purpose of contradiction, assume that A PAC learns #
against the (nonadaptive) adversary that flips a fair coin to select target C [
{C0, C1} and then returns a corrupted sample S9 of size m whose examples in
the noisy part are all equal to ( x1, 1 2 C( x1)).

Let pA(m) be Pr{H Þ C}, where H is the hypothesis generated by A on input
S9. Since H( x1) Þ C( x1) implies that H is not an e-good hypothesis, we have
that pA(m) # d # 1/38 must hold. For the above malicious adversary, the
probability that an example shows x1 with the wrong label is h. The probability to
see x1 with the true label is a bit higher, namely (1 2 h)e 5 h 1 D 1 eD. Let B
be the Bayes strategy that outputs C1 if the example ( x1, 1) occurs more often in
the sample than ( x1, 0), and C0, otherwise. It is easy to show that B minimizes
the probability to output the wrong hypothesis. Thus, pB(m) # pA(m) for all m.
We now show that m # 9h(1 2 h)/(37D2) implies pB(m) . 1/38. For this
purpose, define events BAD1(m) and BAD2(m) over runs of B that use sample
size m as follows. BAD1(m) is the event that at least (h 1 D)m 1 1 examples
are corrupted, BAD2(m) is the event that the true label of x1 is shown at most
(h 1 D)m times. Clearly, BAD1(m) implies that the false label of x1 is shown
at least (h 1 D)m 1 1 times. Thus, BAD1(m) and BAD2(m) together imply
that the hypothesis returned by B is wrong. Based on the following two claims,
we will show that whenever m is too small, Pr{BAD1(m) ` BAD2(m)} . 1/38.

CLAIM 3.5. For all m $ 1, Pr{BAD2(m)uBAD1(m)} $ 1/2.

PROOF (OF THE CLAIM). Given BAD1(m), there are less than (1 2 h 2
D)m uncorrupted examples. Each uncorrupted example shows the true label of
x1 with probability e. In the average, the true label is shown less than (1 2 h 2
D)em 5 (1 2 hdet)em 5 hdetm 5 (h 1 D)m times. The claim now follows
from Fact 3.1. e

CLAIM 3.6. If 37/(h(1 2 h)) # m # 9h(1 2 h)/(37D2), then Pr{BAD1(m)} .
1/19.

PROOF (OF THE CLAIM). Let Sm,h denote the number of corrupted examples.
Fact 3.2 implies that for all m $ 37/(h(1 2 h)),

PrH Sm ,h $ mh 1  Îmh~1 2 h! 2 1J .
1

19
.

The claim follows if

mh 1  Îmh~1 2 h! 2 1 . hm 1 Dm 1 1.

This condition is implied by

mh 1 Îmh~1 2 h! 2 1 $ hm 1 Dm 1 3,

which, in turn, is implied by

1

2
Îmh~1 2 h! 2 1 $ 3 and

1

2
Îmh~1 2 h! 2 1 $ Dm.
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The latter two conditions easily follow from the lower and the upper bound on m
specified in the statement of the claim. e

From these two claims, we obtain that, for 37/(h(1 2 h)) # m # 9h(1 2
h)/37D2, it holds that pB(m) . 1/38. Note that D # e/K (for a sufficiently large
constant K) implies that the specified range for m contains at least one integer,
that is, the implication is not vacuous. As the Bayes strategy B is optimal, it
cannot be worse than a strategy which ignores sample points, thus the error
probability pB(m) does not increase with m. We may therefore drop the
condition m $ 37/(h(1 2 h)). This completes the proof.

The proof of our next lower bound combines the technique from Ehrenfeucht
et al. [1989] for showing the lower bound on the sample size in the noise-free
PAC learning model with the argument of statistical indistinguishability. Here,
the indistinguishability is used to force with probability 1/2 a mistake on a point
x, for which D( x) 5 h/(1 2 h). To ensure that, with probability greater than d,
the learner outputs an hypothesis with error at least e, we use t other points that
are observed very rarely in the sample. This entails that the learning algorithm
must essentially perform a random guess on half of them.

THEOREM 3.7. For any target class # with VC dimension d $ 3, and for every
0 , e # 1/8, 0 , d # 1/12, and every 0 , D , e/(1 1 e), the sample size needed for
PAC learning # with accuracy e, confidence d, and tolerating malicious noise rate
h 5 e/(1 1 e) 2 D, is greater than

d 2 2

32D~1 1 e!
5 VS d

D
D .

Note that for D 5 e/(1 1 e), that is, h 5 0, this reduces to the known lower
bound on the sample size for noise-free PAC learning.

PROOF. Let t 5 d 2 2 and let X0 5 { x0, x1, . . . , xt, xt11} be a set of
points shattered by #. We may assume without loss of generality, that # is the
powerset of X0. We define distribution D as follows:

D~ x0! 5 1 2
h

1 2 h
2 8S e 2

h

1 2 h
D ,

D~ x1! 5 · · · 5 D~ xt! 5
8~e 2 ~h/~1 2 h!!!

t

D~ xt11! 5
h

1 2 h
.

(Note that e # 1/8 implies that D( x0) $ 0.) We will use a nonadaptive adversary
that, with probability h, corrupts each example by replacing it with xt11 labeled
incorrectly. Therefore, xt11 is shown incorrectly labeled with probability h and
correctly labeled with probability (1 2 h) D( xt11) 5 h. Thus, true and false
labels for xt11 are statistically indistinguishable. We will call x1, . . . , xt rare
points in the sequel. Note that when h approaches hdet the probability to select a
rare point approaches 0. Let A be a (possibly randomized) learning algorithm for
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# using sample size m 5 m(e, d, D). Consider the adversary that flips a fair
coin to select target C [ # and then returns a corrupted sample (of size m)
whose examples in the noisy part are all equal to ( xt11, 1 2 C( xt11)).

Let eA be the random variable denoting the error Pr{H Þ C} of A’s
hypothesis H. Then, by pigeonhole principle,

Pr$eA $ e% .
1

12
(3)

implies the existence of a concept C0 [ # such that the probability that A does
not output an e-good hypothesis for C0 is greater than 1/12 $ d. Let us assume
for the purpose of contradiction that m # t/(32D(1 1 e)). It then suffices to
show that (3) holds.

Towards this end, we will define events BAD1, BAD2, and BAD3, over runs of
A that use sample size m, whose conjunction has probability greater than 1/12
and implies (3). BAD1 is the event that at least t/ 2 rare points are not returned
as examples by the adversary. In what follows, we call unseen the rare points that
are not returned by the adversary. Given BAD1, let BAD2 be the event that the
hypothesis H classifies incorrectly at least t/8 points among the set of t/ 2 unseen
points with lowest indices. Finally, let BAD3 be the event that hypothesis H
classifies xt11 incorrectly. It is easy to see that BAD1 ` BAD2 ` BAD3 implies
(3), because the total probability of misclassification adds up to

t

8
z

8~e 2 ~h/~1 2 h!!

t
1

h

1 2 h
5 e.

We finally have to discuss the probabilities of the 3 events. Only noise-free
examples potentially show one of the rare points. The probability that this
happens is

8S e 2
h

1 2 h
D ~1 2 h! 5 8~e~1 2 h! 2 h! 5 8D~1 1 e! .

Since m # t/(32D(1 1 e)), the examples returned by the adversary contain at
most t/4 rare point in the average. It follows from Markov inequality that the
probability that these examples contain more than t/ 2 rare points is smaller than
1/2. Thus, Pr{BAD1} . 1/ 2. For each unseen point, there is a chance of 1/2 of
misclassification. Thus, Pr{BAD2 u BAD1} is the probability that a fair coin
flipped t/ 2 times shows heads at least t/8 times. Fact 3.3 applied with a 5 1/2,
and b 5 1/4, implies that this probability is greater than 1/3. Note that events
BAD1 and BAD2 do not break the symmetry between the two possible labels for
xt11 (although they change the probability that sample point xt11 is drawn at all).
As the Boolean labels of xt11 are statistically indistinguishable, we get Pr{BAD3
u BAD1, BAD2} 5 Pr{BAD3} 5 1/ 2. Thus,

Pr$BAD1 ` BAD2 ` BAD3% 5 Pr$BAD1% z Pr$BAD2uBAD1% z Pr$BAD3%

.
1

2
z

1

3
z

1

2
5

1

12
,
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which completes the proof. e

Combining Theorems 3.4 and 3.7, we have:

COROLLARY 3.8. For any nontrivial target class # with, and for every 0 , e #
1/8, 0 , h # 1/38, and for every 0 , D , e/(1 1 e), the sample size needed for PAC
learning # with accuracy e, confidence d, and tolerating malicious noise rate h 5
e/(1 1 e) 2 D, is greater than

VS d

D
1

h

D2D 5 VS d

D
1

e

D2D .

Even though the lower bound V(h/D2 1 d/D) holds for the nonadaptive
adversary, in Subsection 3.3 we show a matching upper bound (ignoring logarith-
mic factors) that holds for the (stronger) malicious adversary.

The lower bound proven in Theorem 3.4 has been recently improved to

VS h

D2
ln

1

d
D

by Gentile and Helmbold [1998], who introduced an elegant information-
theoretic approach avoiding the analysis of the Bayes risk associated with the
learning problem. It is not clear whether their approach can be applied to obtain
also the other lower bound term, V(d/D), that we prove in Theorem 3.7.

The next result is a lower bound on the sample size needed by the minimum
disagreement strategy (called MDS henceafter.)

3.2. A LOWER BOUND ON THE SAMPLE SIZE FOR MDS. Given any sample S9 of
corrupted training examples, MDS outputs a hypothesis H [ # with the fewest
disagreements on S9.

THEOREM 3.9. For any target class # with VC dimension d $ 3, every 0 , e #
1/38, 0 , d # 1/74, and every 0 , D 5 o(e), the sample size needed by the
Minimum Disagreement strategy for learning # with accuracy e, confidence d, and
tolerating malicious noise rate h 5 e/(1 1 e) 2 D, is greater than

4~1 2 h!~1 2 e!~d 2 1!/38e

37~1 1 e!2D2
5 VS de

D2D .

PROOF. The proof uses d shattered points, where d 2 1 of them (the rare
points) have a relatively small probability. The total probability of all rare points
is ce for some constant c. Let m be the mean and s the standard deviation for the
number of true labels of a rare point within the (corrupted) training sample. If
the rare points were shown m times, the malicious adversary would have no
chance to fool MDS. However, if the sample size m is too small, the standard
deviation s for the number of true labels of a rare point x gets very big. Hence,
with constant probability, the number of true labels of a rare point is smaller
than (roughly) m 2 s. If this happens, we call x a hidden point. It follows that
there is also a constant probability that a constant fraction of the rare points are
hidden. This gives the malicious adversary the chance to present more false than
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true labels for each hidden point. We now make these ideas precise. Our proof
needs the following technical assumption:

m $
37~d 2 1!/38

e~1 2 e!~1 2 h!
. (4)

This condition can be forced by invoking the general lower bound V(d/D) from
Theorem 3.7 for D # e/K and a sufficiently large constant K.

For the purpose of contradiction, we now assume that

m #
4~1 2 h!~1 2 e!~d 2 1!/38e

37~1 1 e!2D2
. (5)

Let BAD1 be the event that at least hm examples are corrupted by the
malicious adversary. According to Fact 3.1, BAD1 has probability at least 1/2. Let
t 5 d 2 1 and let X0 5 { x0, . . . , xt} be a set of points shattered by #.
Distribution D is defined by

D~ x0! 5 1 2 t t

38
21

e, D~ x1! 5 · · · 5 D~ xt! 5  t

38
21

e.

Points x1, . . . , xt are called rare. Consider a fixed rare point xi. Each example
shows xi with its true label with probability

p 5  t

38
21

e~1 2 h! 5  t

38
21

~h 1 D~1 1 e!! .

Let Ti denote the number of examples that present the true label of xi. Call xi

hidden if

Ti # pm 2  Împ~1 2 p! 2 1 .

Inequality (4) implies that m $ 37/( p(1 2 p)). Thus, according to Fact 3.2, xi is
hidden with probability greater than 1/19. Using the fact that

Pr$ xi is hidden% 5 Pr$ xi is hidden uBAD1%Pr$BAD1%

1 Pr$ xi is hidden u¬BAD1%~1 2 Pr$BAD1%!

and

Pr$ xi is hidden uBAD1% $ Pr$ xi is hidden u¬BAD1% ,

it follows that

Pr$ xi is hidden uBAD1% $ Pr$ xi is hidden% .
1

19
.

Given BAD1, let T be the (conditional) random variable which counts the
number of hidden points. The expectation of T is greater than t/19. According to
Fact 3.3 (with a 5 1/19 and b 5 1/38), the probability that at least t/38 rare
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points are hidden is greater than 1/37. Thus with probability greater than d 5
1/74, there are (at least) hm corrupted examples and (at least) t/38 hidden
points. This is assumed in the sequel.

The total probability of t/38 hidden points (measured by D) is exactly t/38
t/3821 e 5 e. It suffices therefore to show that there are enough corrupted
examples to present each of the t/38 hidden points with more false than true
labels. The total number of true labels for t/38 hidden points can be bounded
from above as follows:

 t

38 z S pm 2  Împ~1 2 p! 2 1D # hm 1 D~1 1 e!m 1 2 t

38
2  t

38 Îme~1 2 h!~1 2 e!

t/38
2 1.

The number of false labels that the adversary can use is greater than hm 2 1
and should exceed the number of true labels by at least t/38. The adversary can
therefore force an e-bad hypothesis of MDS if

hm 2 1 $ hm 1 D~1 1 e!m 1 3 t

38 2  t

38 Îme~1 2 h!~1 2 e!

t/38
2 1

or equivalently if

 t

38 Îme~1 2 h!~1 2 e!

t/38
2 1 $ D~1 1 e!m 1 3 t

38 1 1. (6)

We will develop a sufficient condition which is easier to handle. The right-hand
side of (6) contains the three terms z1 5 3t/38, z2 5 1, z3 5 D(1 1 e)m.
Splitting the left-hand side Z of (6) in three parts, we obtain the sufficient
condition Z/ 2 $ z1, Z/6 $ z2, Z/3 $ z3, which reads (after some algebraic
simplifications) in expanded form as follows:

Îme~1 2 h!~1 2 e!

t/38
2 1 $ 6

 t

38 Îme~1 2 h!~1 2 e!

t/38
2 1 $ 6

 t

38 Îme~1 2 h!~1 2 e!

t/38
2 1 $ 3D~1 1 e!m

An easy computation shows that these three conditions are implied by (4) and
(5). This completes the proof. e

It is an open question whether a similar lower bound can be proven for the
KL-adversary, or even the weaker nonadaptive adversary.
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3.3. LEARNING THE POWERSET AND K-INTERVALS WITH DETERMINISTIC HY-
POTHESES. Let #k be the class of all subsets over k points and let (k be the
class of unions of at most k intervals on the unit interval [0, 1]. The Vapnik–
Chervonenkis dimension of (k is 2k. In this subsection, we show that the lower
bound proven in Subsection 3.1 cannot be improved in general. That is, we show
that for each d $ 1, the class #d of all subsets over d points and the class (k,
k 5 d/ 2, can be PAC learned with accuracy e . 0 and malicious noise rate h ,
e/(1 1 e) using a sample of size Õ(h/D2 1 d/D), where D 5 e/(1 1 e) 2 h.

According to Subsection 3.2, strategy MDS is not optimal for PAC learning
powersets in the presence of malicious noise. Instead, we use a modification of
MDS, called RMD-POW, which uses a majority vote on the sample (like MDS) to
decide the labels of some of the domain points and tosses a fair coin to decide
the labels of the remaining ones. The heart of RMD-POW is the subroutine that
splits the domain into two appropriate subgroups.

It turns out that the result for k-intervals can be derived as a corollary to the
result for powersets if the latter result is proven in a slightly generalized form.
Instead of considering #d and an arbitrary distribution D on {1, . . . , d}, we
consider #N, N $ d, and a restricted subclass of distributions, where the
restriction will become vacuous in the special case that N 5 d. Thus, although
the result is distribution-specific in general, it implies a distribution-independent
result for #d.

The restriction which proves useful later can be formalized as follows. Given
parameters d, D and a distribution D on XN 5 {1, . . . , N }, we call point i [
XN light if D(i) , D/(3d), and heavy otherwise. We say that D is a legal
distribution on XN if it induces at most d light points. The main use of this
definition is that even a hypothesis that is incorrect on all light points is only
charged by less than D/3 (plus its total error on heavy points, of course). Note
furthermore that the existence of a legal distribution on XN implies that N #
d 1 3d/D, and every distribution is legal if N 5 d.

The rest of this subsection is structured as follows: We first prove a general
result for powerset #N, N $ d, and legal distributions with the obvious corollary
for powerset #d and arbitrary distributions. Afterwards, we present a general
framework of partitioning the domain X of a concept class into so-called bins in
such a way that labels can be assigned binwise without much damage. A bin B #
X is called homogeneous with respect to target concept C if C assigns the same
label to all points in B. Otherwise, B is called heterogeneous. If there are at most
d heterogeneous bins of total probability at most D/3, we may apply the
subroutine for #N (working well for legal domain distributions), where heteroge-
neous bins play the role of light points and homogeneous bins the role of heavy
(or another kind of unproblematic) points. From these general considerations,
we derive the learnability result for k-intervals by showing that (for this specific
concept class) an appropriate partition of the domain can be efficiently com-
puted from a given sample with high probability of success.

THEOREM 3.10. There exists a randomized algorithm, RMD-POW, which achieves
the following. For every N $ d $ 1 and every 1 $ e, d, D . 0, RMD-POW PAC learns
the class #N under legal distributions with accuracy e, confidence d, tolerating
malicious noise rate h 5 e/(1 1 e) 2 D, and using a sample of size Õ(e/D2 1 d/D).
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PROOF. Given parameters D, d and N # d 1 3d/D, a learning algorithm has
to deliver a good approximation to an unknown subset C of domain XN 5
{1, . . . , N } with high probability of success. Let D denote the unknown domain
distribution, and pi 5 D(i) for i 5 1, . . . , N. It is assumed that D induces at
most d light points, that is;

I light 5 H i [ XN : pi ,
D

3dJ
contains at most d elements. Clearly, the total error (of any hypothesis) on light
points is bounded by D(I light) , D/3. It is therefore sufficient to deliver, with
probability at least 1 2 d of success, a hypothesis whose total error on

Iheavy 5 H i [ XN : pi $
D

3dJ
is bounded by e 2 D/3. In the sequel, we describe the algorithm RMD-POW and
show that it achieves this goal. RMD-POW is parameterized by three parameters a,
L, n. We denote the logarithm to base b by logb and assume that a, L, n are
initialized as follows:

a 5 Î3 5/3 2 1 (7)

L 5  log11a

6d~1 1 a!2e

D  (8)

n 5 50 lnS 4L

d
D  (9)

An informal description of RMD-POW is given below. Its pseudo-code may be
found in Figure 1. Algorithm RMD-POW can deliver any subset of XN as
hypothesis, and can therefore decide the label of each point in XN independently.
This is done as follows. Based on the sample, the domain is divided into two
main groups. The label of each point i in the first group is decided by taking a
majority vote on the occurrences of (i, 0) and (i, 1) in the sample. The labels of
the points in the second group are instead chosen in a random way.

To bound the total error of the hypothesis chosen by the algorithm, we divide
each of the two above groups into subgroups, and then separately bound the
contributions of each subgroup to the total error. Within each such subgroup, we
approximately bound the total probability of the domain points for which the

FIG. 1. Pseudo-code for the randomized algorithm RMD-POW (see Theorem 3.10).
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algorithm chooses the wrong label by the total frequency of corrupted examples
of points in the subgroup. Since, for a large enough sample, the sample frequency
of corrupted examples is very close to the actual noise rate h, and since the noise
rate is bounded away from the desired accuracy e, we can show that the total
probability of the points labeled incorrectly, summed over all subgroups, is at
most the desired accuracy e.

Given a sample (i1, y1), . . . , (im, ym) drawn from the set {1, . . . , N } 3
{0, 1}, let n0,i and n1,i be the frequencies with which each point i [ {1, . . . ,
N } appears in the sample with label respectively 0 and 1. For each i, we define
, i 5 min{n0,i, n1,i} and ui 5 max{n0,i, n1,i}. We say that a domain point i is in
strong majority (with respect to the sample and to parameter a defined in (7)) if
ui . (1 1 a), i, and is in weak majority otherwise. We divide some of the points
into L bands, where L is the parameter defined in (8). A point i is in band k, for
k 5 1, . . . , L, if i is in weak majority and (1 1 a)2k e , , i # (1 1 a)12k e.
We further divide the bands into sparse bands, containing less than n elements,
and dense bands, containing at least n elements, where n is the parameter
defined in (9). Let Imaj, Isparse, and Idense be the sets of all domain points
respectively in strong majority, sparse bands and dense bands. For fixed choice of
input parameters, we denote RMD-POW’s hypothesis by H.

For simplicity, for each point i we will write t i and f i to denote, respectively,
n

C(i), i
and n12C(i), i. That is, t i and f i are the sample frequencies of, respectively,

clean and corrupted examples associated with each point i. We define

fmaj 5 O
i[Imaj

f i , f sparse 5 O
i[Isparse

f i , fdense 5 O
i[Idense

f i .

First, we upper bound in probability the sum fmaj 1 fsparse 1 fdense. Let ĥ be the
frequency of corrupted examples in the sample. By using (25) from Lemma A.1
with p 5 h and l 5 D/(3h), we find that

fmaj 1 f sparse 1 fdense # ĥ # S 1 1
D

3h
Dh 5 h 1

D

3
(10)

holds with probability at least 1 2 d/4 whenever the sample size is at least

S 27h

D2 D lnS 4

d
D 5 ÕS h

D2D .

Second, we lower bound in probability the sample frequency t i of uncorrupted
examples for each i [ Iheavy. Note that the probability that a point i appears
uncorrupted in the sample is at least (1 2 h) pi. Also, uIheavyu # N, as there are
at most N points. By using (23) from Lemma A.1 with p 5 D/(3d) and l 5
a/(1 1 a), we find that

t i $
1 2 h

1 1 a
pi 5 S 1 2

a

1 1 a
D ~1 2 h! pi for all i [ Iheavy (11)

holds with probability at least 1 2 d/4 whenever the sample size is at least

6~1 1 a!2d

~1 2 h!a2D
ln

4N

d
5 ÕS d

D
D .
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Thus, there is a sample size with order Õ(h/D2 1 d/D) of magnitude, such that
(10) and (11) simultaneously hold with probability at least 1 2 d/2. At this point
recall that N linearly depends on d.

Let Iwrong 5 {i [ Iheavy: C(i) Þ H(i)}. Remember that D(I light) # D/3 and
that it suffices to bound in probability D(Iwrong) 1 D/3 from above by e. Claim
3.14 shows that, if (10) and (11) hold, then all heavy points are in the set Imaj ø
Isparse ø Idense. Thus,

D~Iwrong! # D~Iwrong ù Imaj! 1 D~Iwrong ù I sparse! 1 D~Iwrong ù Idense! . (12)

Now, Claims 3.11–3.13 show how the three terms in the right-hand side of (12)
can be simultaneously bounded. In the rest of this subsection, we prove Claims
3.11–3.14. We start by bounding the error made by H on heavy points i [ Imaj.

CLAIM 3.11. STRONG MAJORITY. If (11) holds, then

D~Iwrong ù Imaj! #
fmaj

1 2 h
.

PROOF. Recall that, for each i [ Imaj, H(i) Þ C(i) if and only if t i 5 , i.
Hence, if (11) holds, we find that for every i [ Iwrong ù Imaj, (1 2 h) pi # (1 1
a)t i 5 (1 1 a), i # (1 1 a)/(1 1 a)ui 5 f i. As ( i[IwrongùImaj

f i # fmaj, the
proof is concluded. e

We now bound the error occurring in the sparse bands by proving the
following:

CLAIM 3.12. SPARSE BANDS. Let the sample size be at least

6~1 1 a!eL2n2

D2
ln

4d

d
5 ÕS e

D2D .

Then (10) and (11) together imply that D(Iwrong ù Isparse) # fsparse/(1 2 h) 1
D/(3 z (1 2 h)) holds with probability at least 1 2 d/4 with respect to the sample
random draw.

PROOF. Recall that there are L bands and each sparse band contains at most
n elements. We first prove that

t i $ ~1 2 h! pi 2
D

3Ln
for all i [ Iwrong ù I sparse (13)

holds in probability. To show this, we use (23) from Lemma A.1 to write the
following

Pr$Sm # ~ p 2 l!m% 5 PrHSm # S 1 2
l

pDmpJ
# expS2

l2m

2p D # expS2
l2m

2p9
D , (14)
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where the last inequality holds for all p9 $ p by monotonicity. Now assume (10)
and (11) both hold and choose i such that pi . (1 1 a)e/(1 2 h). Then i [
Iheavy and t i $ e. As ĥ , e by (10), i [y Iwrong. Hence, (10) and (11) imply that
pi # (1 1 a)e/(1 2 h) holds for all i [ Iwrong. We then apply (14) to each i [
Iwrong ù Isparse. Setting p 5 (1 2 h) pi, p9 5 (1 1 a)e $ p, and l 5 D/(3Ln)
we find that (13) holds with probability at least 1 2 d/4 whenever the sample size
is at least

18~1 1 a!eL2n2

D2
ln

4d

d
5 ÕS e

D2D .

Finally, from (13) we get that

D~Iwrong ù I sparse! # O
Iwrong ù Isparse

S t i

1 2 h
1

D

~1 2 h!3LnD
# O

Iwrong ù Isparse

f i

1 2 h
1

D

3~1 2 h!
5

f sparse

1 2 h
1

D

3~1 2 h!
.

This concludes the proof. e

We move on to bounding the error made on points in dense bands.

CLAIM 3.13. DENSE BANDS. If (11) holds, then

D~Iwrong ù Idense! #
fdense

1 2 h

holds with probability at least 1 2 d/4 with respect to the algorithm randomization.

PROOF. For each k 5 1, . . . , L, let Ik be the set of all heavy points in the
kth band. Furthermore, let tmax

k 5 max{t i: i [ Ik ù Iwrong} and f min
k 5 min{ f i:

i [ Ik ù Iwrong}. Since all points in Ik are in weak majority and by definition of
bands, we have that tmax

k # (1 1 a)2f min
k holds for each k 5 1, . . . , L.

Furthermore, using (11), pj # (1 1 a)t j/(1 2 h), for each j [ Ik. As for each
dense band uIku $ n $ 50ln(4L/d), using (24) from Lemma A.1 we can
guarantee that uIk ù Iwrongu # (3/5) uIku holds simultaneously for all bands k 5
1, . . . , L with probability at least 1 2 d/4. Combining everything we get

O
IkùIwrong

pi #
1 1 a

1 2 h
O

IkùIwrong

t i

#
1 1 a

1 2 h
z

3

5
uIkutmax

k

#
~1 1 a!3

1 2 h
z

3

5
uIkufmin

k

#
~1 1 a!3

1 2 h
z

3

5
O
Ik

f i .

700 N. CESA-BIANCHI ET AL



By choosing a 5 (5/3)1/3 2 1 so that (3/5)(1 1 a)3 5 1, we get

D~Idense ù Iwrong! 5 O
k

O
IkùIwrong

pi # O
k
O
Ik

f i

1 2 h
5

fdense

1 2 h

concluding the proof. e

CLAIM 3.14. If (10) and (11) hold, then Iheavy # Imaj ø Isparse ø Idense.

PROOF. We have to show that each heavy point i in weak majority belongs to
a band, or equivalently,

~1 1 a!2Le , , i # e for all i [ Iheavy\Imaj .

If (10) holds, then , i # f i # h 1 (D/3) , e for each point i. Also, if (11) holds,
then, for each i [ Iheavy\Imaj,

, i $
ui

1 1 a
$

t i

1 1 a
$

1 2 h

~1 1 a!2
pi $

~1 2 h!D

3d~1 1 a!2
.

Using the definition of L and the fact that h , 1/2, we can conclude the proof of
the claim as follows:

1 1 a2Le , ~1 1 a! log1 1 a~6d~1 1 a!2
e/D!e #

D

6d~1 1 a!2
,

~1 2 h!D

3d~1 1 a!2
. e

Putting (10), (11) and the preceding claims together, we find that, with
probability at least 1 2 d, a hypothesis H is delivered such that

D$i: H~i! Þ C~i!% , D~Iwrong! 1
D

3

#
fmaj 1 f sparse 1 fdense 1 D/3

1 2 h
1

D

3

#
h 1 D

1 2 h

#
h0

1 2 h0

5 e.

This concludes the proof. e

We want to use the algorithm for powerset #N and legal distributions as a
subroutine to learn other concept classes. For this purpose, we need the
following observations concerning the proof of Theorem 3.10:
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—The total error on heavy points is bounded above (in probability) by (fheavy 1
D/3)/(1 2 h), where fheavy denotes the sample frequency of corrupted
examples associated with heavy points.

—The required sample size does not change its order of magnitude if heavy
points i were only “heavy up to a constant”, that is D(i) $ D/(kd) for some
fixed but arbitrary constant k $ 3.

Imagine that the learning algorithm gets, as auxiliary information in addition to
the corrupted sample, a partition of the domain X into bins B1, . . . , BN such
that the following holds:

—D(Bi) # D/(3d) for each heterogeneous bin Bi. Here d denotes the VC
dimension of the target class and D the domain distribution.

—There are at most d heterogeneous bins.
—Each homogeneous bin Bi satisfies at least one of the following properties:

—Almost Heavy Bin. D(Bi) $ D/(144d).
—Unprofitable Bin. f i $ D(Bi), where f i denotes the sample frequency of

corrupted examples associated with sample points hitting Bi.
—Nice Bin. The corrupted sample shows the true label of Bi with a strong

majority over the wrong label.

It should be clear from the proof of Theroem 3.10 that, given a sufficiently
large corrupted sample and the auxiliary information, RMD-POW can be success-
fully applied with heterogeneous bins in the role of light points and almost heavy
homogeneous bins in the role of heavy points. For nice bins, RMD-POW will find
the correct label. On unprofitable bins, RMD-POW might fail, but this does not
hurt because the adversary’s “investment” was too large. These considerations
lead to the following:

COROLLARY 3.15. There exists a randomized algorithm, RMD-kINV, which
achieves the following. For every k $ 1 and every 1 $ e, d, D . 0, RMD-kINV PAC
learns the class (k with accuracy e, confidence d, tolerating malicious noise rate h 5
e/(1 1 e) 2 D, and using a sample of size Õ(e/D2 1 d/D) with d 5 2k.

PROOF. Note that concept class (k has VC dimension d 5 2k. According to
the preceding discussion, it suffices to show that an appropriate partition of [0, 1]
into bins can be computed with probability at least 1 2 d/2 of success, using a
(corrupted) sample of size 2m 5 Õ(e/D2 1 d/D).

The bin partition is computed from the given corrupted sample S in two stages.
Stage 1 uses the first m sample points (subsample S1) and Stage 2 the last m
sample points (subsample S2).

Stage 1. Each point i [ [0, 1] occuring in S1 with a relative frequency of at
least D/(24d) is put into a separate point-bin. Let B1, . . . , BN1

denote the
resulting sequence of point-bins. The points in subdomain X2 :5 [0, 1]\B1
ø . . . ø BN1

) are called empirically light.

Stage 2. In order to put the points from X2 into bins, a sorted list S92 (in
increasing order), containing all points from X2 occuring at least once in S2, is
processed from left to right. We keep track of a variable f which is initialized to
zero and sums up the subsample frequencies (with respect to S2) of the points
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from S92 that are already processed. As soon as f reaches threshold D/(24d), we
complete the next bin and reset f to zero. For instance, if f reaches this threshold
for the first time when z1 [ S92 is currently processed, we create bin [0, z1], reset
f to zero, and proceed with the successor of z1 in S92. When f reaches the
threshold for the second time when z92 [ S92 is currently processed, bin ( z1, z2] is
created, and so on. The last bin B9N2

has endpoint zN2
5 1 (belonging to B9N2

iff
1 is empirically light).3

Note that the bin partition does only depend on the instances within S and not
on their labels. (Clearly, the labels are used when we apply procedure RMD-POW

as a subroutine in order to determine the bin labels.)
If sample size 2m is appropriately chosen from Õ(e/D2 1 d/D), the following

holds with probability at least 1 2 d/2 of success:

Condition 1. ĥ # h 1 D/3 , 1/ 2, where ĥ 5 max{ĥ1, ĥ2} and ĥ i denotes
the fraction of corrupted examples within subsample Si.

Condition 2. D(i) , D/(6d) for all empirically light points i.

Condition 3. For every bin B created in Stage 2 we have D(B) , D/(3d).

For Condition 1, we can argue as in the proof of Theorem 3.10.
Loosely speaking, Condition 2 follows because the adversary cannot make

points appearing substantially lighter than they actually are. A more formal
argument is as follows. The class of singletons over domain [0, 1] has VC
dimension 1. Assume D(i) $ D/(6d). An easy application of Lemma A.2 shows
(in probability) that i occurs in the uncorrupted subsample for Stage 1 (whose
corruption yields S1) more than D/(12d) times. Since ĥ1 , 1/ 2, it occurs in the
corrupted subsample S1 more than D/(24d) times. This implies that each
empirically light point has probability less than D/(6d).

Condition 3 can be seen as follows: The class of intervals over subdomain X2
has VC dimension 2. Consider a bin B9j created in Stage 2. Let B 0j :5 B9j\{ zj}.

Note that the relative frequency of hitting B 0j with points from S2 is smaller
than D/(24d). Applying the same kind of reasoning as for empirically light points
in Stage 1, it follows (in probability) that D(B 0j) , D/(6d). If zj belongs to B9j
(which is always the case unless perhaps j 5 N2 and zj 5 1), then zj is
empirically light. Applying Condition 2, we get D(B9j) , D/(3d).

We conclude the proof by showing that these three conditions imply that the
bin partition has the required properties. Clearly, all point-bins are homoge-
neous. Since the at most k intervals of the target concept have at most d 5 2k
endpoints, at most d of the bins created in Stage 2 are heterogeneous. Thus,
there are at most d heterogeneous bins altogether, and each of them has
probability at most D/(3d). Each point-bin is hit by S1 with a relative frequency
of at least D/(24d). Similarly, each bin created in Stage 2 is hit by S2 with a
relative frequency of at least D/(24d). Since uS1u 5 uS2u 5 m, each homoge-
neous bin is hit by S with a relative frequency of at least D/(48d). Let B be a
homogeneous bin. Remember that we consider B as almost heavy if D(B) $
D/(144d). Assume B is not almost heavy. If the sample frequency of corrupted
examples hitting B is at least D/(144d), then B is unprofitable. Assume this is

3 If variable f is below its threshold when endpoint 1 is reached, the last bin must formally be treated
like a heterogeneous bin. For the sake of simplicity, we ignore this complication in the sequel.
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not the case. But then S presents the true label of B with a relative frequency of
at least D/(48d) 2 D/(144d) 5 D/(24d), twice as often as the wrong label. It
follows that B is a nice bin. This concludes the proof of the corollary. e

For class (k, we used a bin class of constant VC dimension with at most d
heterogeneous bins. We state without proof that a partition using a bin class of
VC dimension d1 and at most d2 heterogeneous bins leads to an application of
algorithm RMD-POW requiring an additional term of order Õ(d1d2/D) in the
sample size. As long as d1d2 5 O(d), the sample size has the same order of
magnitude as in Corollary 3.15.

4. Malicious Noise and Randomized Hypotheses

In this section, we investigate the power of randomized hypotheses for malicious
PAC learning. We start by observing that an easy modification of Kearns and Li
[1993, Theorem 1] yields the following result. (Recall that a target class is
nontrivial if it contains two functions C and C9 and there exist two distinct points
x, x9 [ X such that C( x) 5 C9( x) 5 1 and C( x9) Þ C9( x9)).

PROPOSITION 4.1. For all nontrivial target classes # and all e , 1/2, no
algorithm can learn # with accuracy e, even using randomized hypotheses, and
tolerating malicious noise rate h $ 2e/(1 1 2e).

Let hrand 5 hrand(e) 5 2e/(1 1 2e) (we omit the dependence on e when it is
clear from the context.) As the corresponding information-theoretic bound
hdet 5 e/(1 1 e) for learners using deterministic hypotheses is strictly smaller
than hrand, one might ask whether this gap is real, that is, whether randomized
hypotheses really help in this setting. In Subsection 4.1, we give a positive answer
to this question by showing a general strategy that, using randomized hypotheses,
learns any target class # tolerating any malicious noise rate h bounded by a
constant fraction of (7/6)e/(1 1 (7/6)e) and using sample size Õ(d/e), where d is
the VC dimension of #. Note that (7/6)e/(1 1 (7/6)e) . hdet, whereas no learner
using deterministic hypotheses can tolerate a malicious noise rate h $ hdet, even
allowing an infinite sample. Furthermore, the sample size used by our strategy is
actually independent of h and is of the same order as the one needed in the
noise-free case. Finally, in Subsection 4.2 we show an algorithm for learning the
powerset of d points, for every d $ 1, with malicious noise rates arbitrarily close
to hrand.

The problem of finding a general strategy for learning an arbitrary concept
class with randomized hypotheses and malicious noise rate arbitrarily close to
2e/(1 1 2e) remains open.

4.1. A GENERAL UPPER BOUND FOR LOW NOISE RATES. We show the
following result.

THEOREM 4.2. For every target class # with VC dimension d, every 0 , e, d #
1, and every fixed constant 0 # c , 7/6, a sample size of order d/e (ignoring
logarithmic factors) is necessary and sufficient for PAC learning # using randomized
hypotheses, with accuracy e, confidence d, and tolerating malicious noise rate h 5
ce/(1 1 ce).
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This, combined with Theorems 3.4 and 3.7 shows that, if the noise rate is about
hdet, then a sample size of order d/D 1 e/D2 is only needed if the final
hypothesis has to be deterministic.

The idea behind the proof of Theorem 4.2 is the following: A sample size
Õ(d/e) is too small to reliably discriminate the target (or other e-good concepts)
from e-bad concepts. (Actually, the adversary can make e-bad hypotheses
perform better on the sample than the target C.) It is, however, possible to work
in two phases as follows. Phase 1 removes some concepts from #. It is
guaranteed that all concept with an error rate “significantly larger” than e are
removed, and that the target C is not removed. Phase 2 reliably checks whether
two concepts are independent in the sense that they have a “small” joint error
probability (the probability to produce a wrong prediction on the same randomly
drawn example). Obviously, the majority vote of three pairwise independent
hypotheses has error probability at most 3 times the “small” joint error probabil-
ity of two independent concepts. If there is no independent set of size 3, there
must be a maximal independent set 8 of size 2 (or 1). We will show that each
maximal independent set contains a concept with error probability significantly
smaller than e. It turns out that, if either 8 5 {G} or 8 5 {G, H}, then either
G or the coin rule 1/ 2(G 1 H), respectively, is e-good. The resulting algorithm,
SIH (which stands for Search Independent Hypotheses), is described in Figure 2.

PROOF (OF THEOREM 4.2). The lower bound is obvious because it holds for
the noise-free case [Ehrenfeucht et al. 1989]. For the upper bound, we begin with
the following preliminary considerations. Let X be the domain of target class #,
D any distribution on X, and C [ # be the target. Given a hypothesis H [ #,
E(H) 5 { x: H( x) Þ C( x)} denotes its error set, and err(H) 5 D(E(H)) its
error probability. The joint error probability of two hypotheses G, H [ # is given
by err(G, H) 5 D(E(G) ù E(H)). Our proof will be based on the fact that
(joint) error probabilities can be accurately empirically estimated. Let S be the
sample. We denote the relative frequency of mistakes of H on the whole sample
S by err̂(H). The partition of S into a clean and a noisy part leads to the
decomposition err̂(H) 5 err̂c(H) 1 err̂n(H), where upper indices c and n refer to

FIG. 2. A description of the randomized algorithm SIH used in the proof of Theorem 4.2.
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the clean and the noisy part of the sample, respectively. Note that term err̂c(H) is an
empirical estimation of err̂(H), whereas err̂n(H) is under control of the adversary.
The terms err̂(G, H), err̂c(G, H), and err̂n(G, H) are defined analogously.

Let g, l . 0 denote two fixed constants to be determined by the analysis and
let ĥ denote the empirical noise rate. A standard application of the Chernoff–
Hoeffding bound (23) and Lemma A.2 shows that, for a suitable choice of m 5
Õ(d/e), the following conditions are simultaneously satisfied with probability
1 2 d:

Condition 1. ĥ # (1 1 g)h.

Condition 2. If H [ # satisfies err(H) $ le, then

err̂c~H! $ ~1 2 g!~1 2 h!err~H! .

Condition 3. If G, H [ # satisfy err(G, H) $ le, then

err̂c~G, H! $ ~1 2 g!~1 2 h!err~G , H! .

We just mention that for proving Conditions 2 and 3 we use the fact that the VC
dimensions of the classes of the error sets and the joint error sets are both O(d).

We now describe the learning algorithm SIH illustrated in Figure 2.
In Phase 1, all concepts H [ # satisfying err̂(H) . (1 1 g)h are removed. Let

_ 5 {H [ #: err̂(H) # (1 1 g)h} denote the set of remaining concepts. Note
that err̂(C) # ĥ. Applying Condition 1, it follows that target C belongs to _.
Applying Condition 2 with constant l # c(1 1 g)/(1 2 g), it follows that all
concepts H [ _ satisfy:

err~H! #
~1 1 g!h

~1 2 g!~1 2 h!
. (15)

We are now in position to formalize the notion of independence, which is central
for Phase 2 of SIH. Let us introduce another parameter a whose value will also be
determined by the analysis. We say that G, H [ _ are independent if
err̂~G, H! # (a 1 g)h. A subset 8 # _ is called independent if its hypotheses
are pairwise independent.

CLAIM. If err̂c(H) $ (1 2 a)h, then H and C are independent.

To prove the claim note that, since C is the target, err̂(H, C) # err̂n(H). The
definition of _ and the decomposition of err̂ into err̂c and err̂n imply that

err̂n~H! 5 err̂~H! 2 err̂c~H! # ~1 1 g!h 2 ~1 2 a!h 5 ~a 1 g!h,

proving the claim.
From Claim and Condition 2 applied with l # c(1 2 a)/(1 2 g) we obtain

the following facts:
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Fact 1. If

err~H! $
~1 2 a!h

~1 2 g!~1 2 h!
,

then H and target C are independent.

Fact 2. Each maximal independent set 8 # _ contains at least one hypothe-
sis whose error is smaller than (1 2 a)h/((1 2 g)(1 2 h)). In particular, if 8 5
{H}, then

err~H! #
~1 2 a!h

~1 2 g!~1 2 h!
.

If 8 5 {G, H}, then one among the two quantities err(G) and err(H) is
smaller than or equal to (1 2 a)h/((1 2 g)(1 2 h)).

We now move on to the description of Phase 2 (see Figure 2). Note that Phase
2 of SIH either terminates with a deterministic hypothesis, or terminates with the
coin rule 1/ 2(G 1 H). The following case analysis will show that the final
hypothesis output by SIH is e-good unless it is the default hypothesis.

Let us first consider the case that the final hypothesis is the majority vote
MAJF,G,H of three independent hypothesis F, G, and H (Step 1 in Phase 2).
Then an error occurs exactly on those instances x that are wrongly predicted by
at least two hypotheses of F, G, H, that is

err(MAJF , G , H) # err~F, G! 1 err~F, H! 1 err~G , H! .

By definition of independence, we know that

err̂c~X, Y! # err̂~X, Y! # ~a 1 g!h

for each pair (X, Y) of distinct hypothesis in {F, G, H}. Then, observing that
ce 5 h/(1 2 h) and applying Condition 3 to each such pair with l # c(a 1
g)/(1 2 g), we get that

err(MAJF , G , H) #
3~a 1 g!h

~1 2 g!~1 2 h!
. (16)

If the final hypothesis is the coin rule 1/ 2(G 1 H) (from Step 2 in Phase 2), we
may apply (15) and Fact 2 to bound the error probability as follows:

errS 1

2
~G 1 H!D 5

1

2
~err~G! 1 err~H!!

,
1

2S ~1 2 a!h

~1 2 g!~1 2 h!
1

~1 1 g!h

~1 2 g!~1 2 h!
D . (17)
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If the final hypothesis is H (from Step 2), then

err~H! ,
~1 2 a!h

~1 2 g!~1 2 h!

by Fact 2. This error bound is smaller than the bound (17). We now have to find
choices for the parameters a, g, l such that (16) and (17) are both upper
bounded by e and the previously stated conditions

l #
c~1 1 g!

~1 2 g!
, l #

c~1 2 a!

~1 2 g!
, l #

c~a 1 g!

~1 2 g!

on l hold. Equating bounds (16) and (17) and solving for a gives a 5 2/7 2 5/7g.
Substituting this into (16), setting the resulting formula to e and solving for g
yields g 5 ((7/6) 2 c)/((7/6) 1 c). (Observe that the choice of h 5 ce/(1 1
(ce) implies the equation h/(1 2 h) 5 ce.) This in turn leads to the choice a 5
3 (c 2 (1/ 2))/(c 1 (7/6)). According to these settings, one can finally choose
l 5 1/3. e

REMARK 4.3. The result of Theorem 4.2 gives rise to a challenging combinato-
rial problem: Given a target class, find 3 independent hypotheses, or alternatively, a
maximal independent set of less than 3 hypotheses. This replaces the “consistent
hypothesis” paradigm of noise-free PAC learning and the “minimizing disagreement”
paradigm of agnostic learning. There are examples of concept classes such that, for
certain samples, one can find three or more independent hypotheses.

4.2 AN ALMOST OPTIMAL COIN RULE FOR THE POWERSET. In this subsection,
we introduce and analyze a simple algorithm called Square Rule (SQ-RULE) for
learning with coin rules the powerset #d of d elements in presence of a malicious
noise rate arbitrarily close to hrand and using almost optimal sample size. (See
also Figure 3.) Algorithm SQ-RULE works as follows: Let H( p, q) 5 q2/( p2 1

FIG. 3. Pseudo-code for Algorithm SQ-RULE. In the initialization phase some parameters are
computed from the sample. These are then used in the working phase to make randomized
predictions.

708 N. CESA-BIANCHI ET AL



q2). For a given sample S, let p̂0( x) and p̂1( x), respectively, denote the relative
frequency of ( x, 0) and ( x, 1). On input S, SQ-RULE outputs the coin rule4

F( x) 5 H( p̂0( x), p̂1( x)) 5 p̂1( x)2/( p̂0( x)2 1 p̂1( x)2). We now show a
derivation of the coin rule F. Consider a single point x and let p̂0 5 p̂0( x) and
p̂1 5 p̂1( x). Now, if the true label of x is 0, we say that the “empirical return” of
the adversary is p̂0. Likewise, the adversary’s “investment” for the false label 1 is
p̂1. Also, as F incorrectly classifies x with probability H( p̂0, p̂1), the “empirical
return to investment ratio”, which we denote by r, is H( p̂0, p̂1) z p̂0/p̂1.
Similarly, if the true label of x is 1, then r is (1 2 H( p̂0, p̂1)) z p̂1/p̂0. The
function F that minimizes r over all choices of p̂0 and p̂1 is found by letting
H( p̂0, p̂1) z p̂0/p̂1 5 (1 2 H( p̂0, p̂1)) z p̂1)) z p̂1/p̂0 and solving for H to obtain
H( p̂0, p̂1) 5 p̂1

2/( p̂0
2 1 p̂1

2). (A plot of the functions H and r is shown in Figure
4. In the same figure we also plot the return to investment ratio, showing that the
best strategy for the adversary is to balance the labels whence this ratio becomes
1/2.) Note that, as our final goal is to bound the quantity Ex;DuF( x) 2 C( x) u, we
should actually choose F so to minimize the expected return to investment ratio,
that is, the ratio uH( p̂0, p̂1) 2 C( x) u z D( x)/p̂12C( x). However, as we will show
in a moment, an estimate of the unknown quantity D( x) will suffice for our
purposes.

THEOREM 4.4. For every d $ 1 and every 0 , e, d, D # 1, algorithm SQ-RULE

learns the class #d with accuracy e, confidence d, tolerating malicious noise rate h 5
2e/(1 1 2e) 2 D, and using a sample of size O(de/D2).

PROOF. We start the proof with the following preliminary considerations. Let
X 5 {1, . . . , d}, let D be any distribution on X, and let C be the target
function. Let t( x) 5 (1 2 h) D( x), that is, t( x) denotes the probability that x is
presented by the adversary with the true label C( x). Fix a sample S. The relative
frequency of ( x, C( x)) in S is denoted by t̂( x). We assume without loss of
generality, that the adversary does never present an instance with its true label in

4 The function H was also used by Kearns et al. [1994] in connection with agnostic learning.

FIG. 4. Curve of the coin rule H( p, q) 5 q2/( p2 1 q2) (thin) and of the return to investment ratio
H( p, q) z p/q (thick); the curves are scaled to p 1 q 5 1.
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noisy trials. (The performance of the coin rule F gets better in this case.) We
denote the relative frequency of ( x, 1 2 C( x)) in S by f̂( x). The relative
frequency of noisy trials in S is denoted by ĥ. Clearly, ĥ 5 (x[X f̂( x). Applying
Lemmas A.1 and A.2, it is not hard to show that there exists a sample size m 5
Õ(de/D2) such that with probability 1 2 d the sample S satisfies the following
conditions:

ĥ # h 1
D

2
, (18)

@x [ X : t~ x! $
D

24d
f t̂~ x! $

t~ x!

2
, (19)

@M # X : O
x[M

t~ x! # 16e f O
x[M

t̂~ x! $ O
x[M

t~ x! 2
D

8
. (20)

To prove (18), we apply (25) with p9 5 h and l 5 D/(2h). To prove (19), we
apply (23) with p 5 D/(24d) and l 5 1/2. Finally, to prove (20), we use (23) to
find that

PrHSm # S 1 2
l

pDmpJ # expS2
l2m

2p D # expS2
l2m

2p9
D ,

where the last inequality holds for all p9 $ p by monotonicity. Setting l 5 D/8
and p9 5 16e concludes the proof of (20). These three conditions are assumed to
hold in the sequel. An instance x is called light if t( x) , D/(24d), and heavy
otherwise. Note that h , hrand # 2/3 (recall that hrand 5 2e/(1 1 2e).) Thus,
D( x) , D/(8d) for all light points. The total contribution of light points to the
error probability of the coin rule F is therefore less than D/8. The following
analysis focuses on heavy points; note that for these points the implication in (19)
is valid. We will show that the total error probability on heavy points is bounded
by e 2 D/8.

It will be instructive to consider the error probability on x of our coin rule F as
the return of the adversary at x (denoted by RETURN( x) henceforth) and the
quantity f̂( x), defined above, as its investment at x. Our goal is to show that the
total return of the adversary is smaller than e 2 D/8, given that its total
investment is ĥ. The function R( p, q) 5 pq/( p2 1 q2) plays a central role in the
analysis of the relation between return and investment. (A plot of this function is
shown in Figure 4.) Function R attains its maximal value 1/2 for p 5 q. For q #
p/4 or p # q/4, the maximal value is 4/17, see also Figure 5. Before bounding the
total return, we will analyze the term RETURN( x).

If C( x) 5 0, then

f̂~ x! 5 p̂1~ x! , t̂~ x! 5 p̂0~ x! , RETURN~ x! 5 F~ x! z D~ x! 5
p̂1~ x!2 z D~ x!

p̂0~ x!2 1 p̂1~ x!2
.
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If C( x) 5 1, then

f̂~ x! 5 p̂0~ x! , t̂~ x! 5 p̂1~ x! , RETURN~ x! 5 ~1 2 F~ x!! z D~ x! 5
p̂0~ x!2 z D~ x!

p̂0~ x!2 1 p̂1~ x!2
.

Note that in both cases f̂( x) z t̂( x) 5 p̂0( x) z p̂1( x) and RETURN( x) 5 f̂( x)2 z
D( x)/( p̂0( x)2 1 p̂1( x)2). Setting â( x) 5 t( x) 2 t̂( x), we obtain D( x) 5
t( x)/(1 2 h) 5 ( t̂( x) 1 â( x))/(1 2 h). For the sake of simplicity, we will use
the abbreviations

p̂0 5 p̂0~ x! , p̂1 5 p̂1~ x! , f̂ 5 f̂~ x! , t̂ 5 t̂~ x! , â 5 â~ x! .

With these abbreviations, t̂ z f̂ 5 p̂0 z p̂1 is valid and the term RETURN( x) can be
written as follows:

RETURN~ x! 5
f̂2 z ~ t̂ 1 â!

~ p̂0
2 1 p̂1

2! z ~1 2 h!
5

1

1 2 h
S t̂ z f̂

p̂0
2 1 p̂1

2 f̂ 1
â z f̂2

p̂0
2 1 p̂1

2D (21)

5
1

1 2 h
SR~ p̂0 , p̂1! z f̂ 1

â z f̂2

p̂0
2 1 p̂1

2D
We now bound separately each one of the last two terms in (21). If f̂ $ t̂/4, then

R~ p̂0 ,p̂1! z f̂

~1 2 h!
#

f̂

2~1 2 h!
.

Furthermore, as either f̂ 5 p̂0 or f̂ 5 p̂1,

â z f̂2

~ p̂0
2 1 p̂1

2!~1 2 h!
#

â

1 2 h
.

FIG. 5. Plot of the return curve R( p, q) 5 ( pq)/( p2 1 q2) and of the constant function c( p, q) 5
4/17, for p, q [ [0, 1], p 1 q 5 1.
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If f̂ , t̂/4, we bound the last term in (21) using (19) and get

â z f̂2

~ p̂0
2 1 p̂1

2!
5

~t 2 t̂! z f̂2

~ p̂0
2 1 p̂1

2!
#

t̂ z f̂2

~ p̂0
2 1 p̂1

2!
5

~ p̂0 z p̂1! z f̂

~ p̂0
2 1 p̂1

2!
5 R~ p̂0 ,p̂1! z f̂ .

Hence, using (21) and R( p̂0, p̂1) # 4/17 , 1/4 for f̂ , t̂/4, we finally get

RETURN~ x! #
2 R~ p̂0 ,p̂1! z f̂

1 2 h
,

f̂

2~1 2 h!
.

Piecing the above together, we obtain

RETURN~ x! #
f̂

2~1 2 h!
1 5 â

~1 2 h!
if f̂ $ t̂ /4,

0 otherwise.
(22)

We are now in the position to bound the total return on all heavy instances x.
For the first term in the left-hand-side of (22) we obtain the bound

1

2~1 2 h!
O f̂~ x! #

ĥ

2~1 2 h!

where the sum is over all heavy x. The treatment of the second term in the
left-hand-side of (22) is more subtle. Let M denote the set of heavy instances x
where f̂( x) $ t̂( x)/4. D(M) is therefore bounded as follows:

O
x[M

t~ x! # 2 O
x[M

t̂~ x! # 8 O
x[M

f̂~ x! # 8ĥ , 16e.

From (20), we conclude that:

1

1 2 h
O

x[M

â~ x! #
1

1 2 h
O

x[M

~t~ x! 2 t̂~ x!! #
D

8~1 2 h!
.

A straightforward computation shows that

ĥ

2~1 2 h!
1

D

8~1 2 h!
# e 2

D

8
.

As the probability of all light points is at most D/8, the expected error of
SQ-RULE is at most e. This completes the proof of Theorem 4.4. e

The upper bound of Theorem 4.4 has a matching lower bound (up to
logarithmic factors). The proof, which is a somewhat involved modification of the
proof of Theorem 3.9, is only sketched.

THEOREM 4.5. For every target class # with VC dimension d $ 3, for every 0 ,
e # 1/38, 0 , d # 1/74, and for every 0 , D 5 o(e), the sample size needed by any
strategy (even using randomized hypotheses) for learning # with accuracy e,
confidence d, and tolerating malicious noise rate h 5 2e/(1 1 2e) 2 D, is V(de/D2).
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PROOF. One uses d shattered points with a suitable distribution D and shows
that, with constant probability, there exists a constant fraction of these points
which occur with a frequency much lower than expected. The measure according
to D of these points is 2e, but the adversary can balance the occurrences of both
labels on these points while using noise rate less than hrand. Hence, even a
randomized hypothesis cannot achieve an error smaller than e. e

REMARK 4.6. Algorithm SQ-RULE can be modified to learn the class (k of
unions of at most k intervals. Similarly to Corollary 3.15, one first computes a
suitable partition of the domain into bins and applies the algorithm for the powerset
afterwards as a subroutine.

5. Summary

Table I shows the known results on learning in the malicious and classification
noise models. The latter is a noise model where independently for every example
the label is inverted with probability h , 1/2.5

There are still a few problems open. One is the question whether the strong
adversary in the lower bound proofs of Theorems 3.9 and 4.5 can be replaced by
the weaker KL-adversary. Also it would be interesting to see whether the
constant 7/6 in Theorem 4.2 can improved to arbitrary constants 0 # c , 2. It
seem that both questions are not easy to answer.

5 See, for example, Laird [1988] for a survey on this noise model and for the upper bound on the
sample size in the case of finite concept classes. See Simon [1996a] for the lower bound on the sample
size, and Simon [1996b] for a generalization of Laird’s upper bound to arbitrary concept classes.

TABLE I. SURVEY ON SAMPLE SIZE RESULTS OF LEARNING IN THE PRESENCE OF NOISE, IGNORING

LOGARITHMIC TERMS

NOTE: Empty entries are unknown or are combinations that make no sense. The lower part
contains the results for the minimum disagreement strategy. For the sake of comparison, we also add
the corresponding results for classification noise.
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Appendix A. Some Statistical and Combinatorial Relations

Let Sm,p and S9m,p9 be the sums of successes in a sequence of m Bernouilli trials
each succeeding with probability respectively at least p and at most p9.

LEMMA A.1. For all 0 , l , 1,

Pr$Sm , p # ~1 2 l!mp% # expS2l2
mp

2 D (23)

Pr$Sm , p # m~ p 2 l!% # exp~22l2m! , (24)

Pr$S9m , p9 $ ~1 1 l!mp9% # expS2l2
mp9

3 D . (25)

Let # be a target class of VC dimension d over some domain X. Let D be a
distribution over X. Let S be an unlabeled sample of size m drawn from X under
D. For C [ # let DS (C) 5 u{ x [ S: x [ C} u/m, the empirical probability of
C.

LEMMA A.2. [VAPNIK 1982; BLUMER ET AL. 1989]. For every 0 , e, g # 1 and
every 0 , d , 1, the probability that there exists a C [ # such that D(C) . e and
DS(C) # (1 2 g) D(C) is at most 8(2m)dexp(2g2em/4), which in turn is at most d
if

m $ maxH 8

g2e
lnS 8

d
D ,

16d

g2e
lnS 16

g2e
D J .

LEMMA A.3. [SAUER 1972; SHELAH 1972]. Let # be a target class over X of
VC dimension d. For all (x1, . . . , xm) [ Xm

u$~C~ x1! , . . . , C~ xm!!: C [ #% u # O
i50

d Sm
i D .

PROOF OF FACT 3.2. We prove inequality (1), the proof of (2) is similar. We
proceed by establishing a series of inequalities. We shall also use Stirling’s
formula

Î2pNSN

e D
N

, N! , Î2pNSN

e D
N

expS 1

12ND . (26)

Using (26) one can lower bound the binomial coefficient (Np
N ) as follows

(assuming that N is a multiple of 1/p, which will be justified later in the proof)

714 N. CESA-BIANCHI ET AL



S N
NpD 5

N!

~Np!!~Nq!!

.

Î2pNSN

e D
N

Î2pNpSNp

e D Np

expS 1

12NpD Î2pNqSNq

e D Nq

expS 1

12NqD
5

1

Î2p

1

ÎNpq

1

pNpqNq
expS2

1

12NpqD .

This leads to

ÎNpq .
1

Î2ppNp qNqS N
NpD

21

exp S2
1

12NpqD . (27)

Bahadur [1960] proved the following lower bound on the tail of the binomial
distribution, where 0 # k # N,

Pr$SN , p $ k% $ SN
k D pkq (N2k) z

q~k 1 1!

k 1 1 2 p~N 1 1!
z S 1 1

Npq

~k 2 Np!2D 21

.

(28)

In order to be able to apply (27), we first remove the “floors” in (1). To this end,
we replace p by p9 5 p 2 g (and q by q9 5 q 1 g) such that Np 5 Np9.
Then Np9 is integer and p9 . p 2 (1/N). We shall also need the following
observation.

pq 5 ~ p9 1 g!~q9 2 g! 5 p9q9 1 g~q9 2 p9! 2 g2 5 p9q9 1 g~q9 2 p9 2 g!

5 p9q9 1 g~q9 2 p9! , p9q9 1 g , p9q9 1
1

N
. (29)

Then (29) and N $ 37/( pq) imply that

Np9q9 . Npq 2 1 $ 36. (30)

Hence, (1) can be lower bounded as follows

Pr$SN , p $ Np 1  ÎNpq 2 1%

$ Pr$SN , p9 $ Np9 1  ÎNpq 2 1%

$ PrHSN , p9 $ Np9 1  ÎNS p9q9 1
1

N
D 2 1J

$ Pr$SN , p9 $ Np9 1  ÎNp9q9% . (31)
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In order to bound (31) we apply inequality (28) with k 5 Np9 1 =Np9q9 and
p and q being replaced by p9 and q9, respectively. The three factors in the
right-hand side of (28), denoted by F1, F2 and F3, are separately bounded as
follows:

F1 5 S N

Np9 1  ÎNp9q9D p9Np91 ÎNp9q9q9N2Np92 ÎNp9q9 (32)

5 S N

Np9 1  ÎNp9q9D p9Np9q9Nq9S p9

q9
D  ÎNp9q9

(33)

F2 5
q9~Np9 1  ÎNp9q9 1 1!

Np9 1  ÎNp9q9 1 1 2 Np9 2 p9

5
Np9q9 1 q9~ ÎNp9q9 1 1!

 ÎNp9q9 1 q9
. ÎNp9q9 (34)

.
1

Î2pp9Np9q9Nq9S N
Np9D

21

expS2
1

12Np9q9
D . (35)

(The inequality (35) follows from (27).)

F3 5 S 1 1
Np9q9

~Np9 1  ÎNp9q9 2 Np9!2D 21

5 S 1 1
Np9q9

 ÎNp9q92D 21

5
 ÎNp9q92

 ÎNp9q92 1 Np9q9

.
~ ÎNp9q9 2 1!2

~ ÎNp9q9 1 1!2 1 Np9q9

5
Np9q9 2 2 ÎNp9q9 1 1

2Np9q9 2 2 ÎNp9q9 1 1

.
Np9q9 2 2 ÎNp9q9

2Np9q9 2 2 ÎNp9q9

5
1

2S 1 2
ÎNp9q9

Np9q9 2 ÎNp9q9
D

5
1

2S 1 2
1

ÎNp9q9 2 1
D . (36)
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The following calculation shows how the product of (33) and (35) can be lower
bounded. For notational convenience, let T 5 (exp(1/(12Np9q9)) =2p)21 and
let K 5 =Np9q9.

F1 z F2 .

S N
Np9 1 KD ~ p9/q9!K

Î2pS N
Np9D exp~1/~12Np9q9!!

5 T1 p9

q92
K

z
N!~Np9!!~N 2 Np9!!

N!~Np9 1 K!!~N 2 Np9 2 K!!

5 T1 p9

q92
K

~Nq9 2 K 1 1! · · ·~Nq9!

~Np9 1 1! · · ·~Np 1 K!

5 T1 p9

q92
K

1P
i51

K Nq9 2 K 1 i

Np9 1 i 2 (37)

. TS p9

q9
D KS Nq9

Np9 1 KD K

(38)

5 TS Np9

Np9 1 K
D K

5 TSNp9 1 K

Np9
D 2K

5 TS 1 1
K

Np9
D 2K

$ TS 1 1
ÎNp9q9

Np9
D 2 ÎNp9q9

5 TS 1 1
q9

ÎNp9q9
D 2 ÎNp9q9

(39)

$ T exp~2q9! (40)

5
1

Î2p exp~1/~12Np9q9!!
exp~2q9! (41)
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$
1

Î2p exp~1/~12 z 36!!
exp~21! $ 0.14642. . . (42)

In (41) and (42), we used that Np9q9 . 36, by (30). For the step from (37) to
(38), we assume that Nq9 2 k $ Np9. If Nq9 2 k , Np9, the steps from (38) in
the above calculation are replaced by the following:

T1 p9

q92
K

1P
i51

K Nq9 2 K 1 i

Np9 1 i 2 (43)

. TS p9

q9
D K SNq9 2 K

Np9
D K

(44)

5 TSNq9 2 K

Nq9
D K

5 TSNq9 2  ÎNp9q9

Nq9
D  ÎNp9q9

$ TSNq9 2 ÎNp9q9

Nq9
D ÎNp9q9

5 TS 1 2
p9

ÎNp9q9
D ÎNp9q9

(45)

$
1

Î2p exp~1/~12Np9q9!!

10

11
exp~2p9! (46)

$
1

Î2p exp~1/~12 z 36!!

10

11
exp~21! $ 0.133112. . .

(47)

The step from (45) to (46) follows from an elementary analysis of the function
(1 2 a/b)b 2 10/11exp(2a). Using (47) (which is less than the bound in (42))
and (36), we can lower bound the product F1F2F3 as follows:

F1 z F2 z F3 . 0.133112 z
1

2
z S 1 2

1

 ÎNp9q9 2 1D
$ 0.066556 z S 1 2

1

 Î36 2 1D (48)

. 0.05324· · · .
1

19
. (49)
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For the step from (48) to (49), we again used inequality (30). e

ACKNOWLEDGMENTS. The authors thank an anonymous reviewer for pointing
out the reference [Littlewood 1969].

REFERENCES

BAHADUR, R. 1960. Some approximations to the binomial distribution function. Ann. Math. Stat.
31, 43–54.

BAHADUR, R., AND RANGA-RAO, R. 1960. On deviations of the sample mean. Ann. Math. Stat. 31,
1015–1027.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. 1989. Learnability and the
Vapnik-Chervonenkis dimension. J. ACM 36, 4, (Oct.), 929 –965.

CHOW, Y. S., AND TEICHER, H. 1988. Probability Theory. Springer-Verlag, New York.
EHRENFEUCHT, A., HAUSSLER, D., KEARNS, M., AND VALIANT, L. 1989. A general lower bound on

the number of examples needed for learning. Inf. Comput. 82, 3, 247–261.
GENTILE, C., AND HELMBOLD, D. 1998. Improved lower bounds for learning from noisy examples:

An information-theoretic approach. In Proceedings of the 11th Workshop on Computational Learning
Theory (CoLT ’98) (Madison, Wisc., July 24 –26). ACM, New York, pp. 104 –115.

JOGDEO, K., AND SAMUELS, S. M. 1968. Monotone convergence of binomial probabilities and a
generalization of ramanujan’s equation. Ann. Math. Sta. 39, 4, 1191–1195.

KEARNS, M., AND LI, M. 1993. Learning in the presence of malicious errors. SIAM J. Comput. 22,
807– 837.

KEARNS, M. J., AND SCHAPIRE, R. E. 1994. Efficient distribution-free learning of probabilistic
concepts. J. Comput. Syst. Sci. 48, 3, 464 – 497.

KEARNS, M. J., SCHAPIRE, R. E., AND SELLIE, L. M. 1994. Toward efficient agnostic learning.
Mach. Learn. 17, 2/3, 115–142.

LAIRD, P. D. 1988. Learning from good and bad data. In Kluwer International Series in Engineering
and Computer Science. Kluwer Academic Publishers, Boston, Mass.

LITTLEWOOD, J. 1969. On the probability in the tail of a binomial distribution. Adv. Appl. Prob. 1,
43–72.

SAUER, N. 1972. On the density of families of sets. J. Combin. Th. A 13, 145–147.
SHELAH, S. 1972. A combinatorial problem; Stability and order for models and theories in

infinitary languages. Pacific J. Math. 41, 247–261.
SIMON, H. U. 1996a. General bounds on the number of examples needed for learning probabilistic

concepts. J. Comput. Syst. Sci. 52, 2, 239 –255.
SIMON, H. U. 1996b. A general upper bound on the number of examples sufficient to learn in the

presence of classification noise. Unpublished Manuscript.
VALIANT, L. G. 1984. A theory of the learnable. Commun. ACM 27, 11 (Nov.), 1134 –1142.
VAPNIK, V. 1982. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New York.

RECEIVED SEPTEMBER 1997; REVISED OCTOBER 1998; ACCEPTED APRIL 1999

Journal of the ACM, Vol. 46, No. 5, September 1999.

719Sample-Efficient Strategies for Learning in the Presence of Noise


