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In this paper we present a new analysis of two algorithms, Gradient
Descent and Exponentiated Gradient, for solving regression problems in the
on-line framework. Both these algorithms compute a prediction that depends
linearly on the current instance, and then update the coefficients of this linear
combination according to the gradient of the loss function. However, the two
algorithms have distinctive ways of using the gradient information for updat-
ing the coefficients. For each algorithm, we show general regression bounds
for any convex loss function. Furthermore, we show special bounds for the
absolute and the square loss functions, thus extending previous results by
Kivinen and Warmuth. In the nonlinear regression case, we show general
bounds for pairs of transfer and loss functions satisfying a certain condition.
We apply this result to the Hellinger loss and the entropic loss in case of
logistic regression (similar results, but only for the entropic loss, were also
obtained by Helmbold et al. using a different analysis.) Finally, we describe
the connection between our approach and a general family of gradient-based
algorithms proposed by Warmuth et al. in recent works. � 1999 Academic Press

1. INTRODUCTION

We study regression problems as an iterated game between a master predictor
and the environment. At each round or trial of this game, the master predictor
receives from the environment an instance, i.e. the values of N real input variables,
and is challenged to guess an unknown quantity (called outcome) also generated by
the environment. The master computes its prediction for the outcome by combining
the current values of the input variables with the information collected in the past
trials. Afterwards, the outcome is revealed and the master incurs a loss computed
according to a fixed loss function, measuring the discrepancy between the master's
prediction and the observed outcome. As no assumptions are made on how the
environment generates the sequence of trials, the master could accumulate an
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arbitrarily high loss. To make the model plausible, we adopt a ``competitive''
approach: The master's goal is to bound, on any sequence of trials, the difference
between its cumulative loss (i.e. the sum of the losses incurred in each trial) and the
corresponding cumulative loss of a ``reference predictor,'' whose predictions are
kept hidden from the master.

Using this sequential prediction model, we will show (extending results from
[3, 10, 12]) that a well-known algorithm for linear regression, Gradient descent,
and a recently proposed variant, Exponentiated Gradient, have a reasonably good
performance for a wide range of loss functions even when the regression problem
is highly nonlinear and the data are generated with no statistical assumption. As a
further motivation for the study of this prediction model, we point out the fact that
any good sequential prediction algorithm can be efficiently transformed [2, 12, 15]
into an algorithm that performs well in the more traditional statistical (or ``batch'')
frameworks, like those studied in [5, 9].

We use the sequential prediction model to analyze two types of on-line regression
problems. In the linear regression problem the master algorithm predicts, in each
trial t, with a linear combination ŵt } xt=�N

i=1 ŵt, iwt, i of the input variables xt ,
where the coefficients (or weights) ŵt of this combination must be chosen independ-
ently of xt . In other words, at the beginning of each trial t we allow the master to
modify its choice of weights, but we force it to come up with some choice ŵt of
weights before the current values xt of the input variables are revealed. In the non-
linear regression problem, the only difference is that the master predicts with the
quantity ,(ŵt } xt), where , is a fixed and monotone increasing ``transfer'' function.
To match the features of the master predictor, a different reference predictor is
associated with each type of regression problem. In linear regression, the reference
predictor outputs a linear combination w� } xt of the input variables, where w� are
arbitrary but fixed coefficients. Similarly, in nonlinear regression the reference
predictor outputs ,(w� } xt), where , is the same transfer function used by the
master. Our regression bounds will be parametrized by the weights w� of the
reference predictor. However, none of the master predictors for which we prove
these bounds needs the vector w� as input parameter.

The two master algorithms we investigate update their weights ŵt based on the
current gradient of the loss function. One is the classical Gradient descent (GD)
algorithm (see [3] for an analysis of this algorithm in the on-line regression
framework.) The other is the more recent Exponential Gradient (EG) algorithm
[12]. Although both use the gradient of the loss function to update their weights,
GD and EG treat this information in two substantially different ways: the former
adds to each old weight a term proportional to the current gradient of the loss
function, the latter multiplies each old weight by a factor that depends exponen-
tially on the current gradient of the loss function. Master algorithms using similar
exponential weights were first used, in related contexts, by Littlestone and Warmuth
[17], Feder, Merhav, and Gutman [6], and Vovk [20].

GD and EG have been both analyzed in the on-line regression case with respect
to the square loss [3, 12] and in the nonlinear regression case with respect to any
pairs of loss and transfer functions satisfying a certain ``matching'' condition [10].
An example of matching functions are the entropic loss and the logistic transfer
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function. In this paper we propose a different analysis of these two gradient-based
algorithms. For the linear regression case, in Section 3.2 we show bounds for the
square loss (incomparable, though closely related, to those shown by Kivinen and
Warmuth in [12]), bounds for the absolute loss (Section 3.1), and general bounds
for arbitrary convex loss functions (Section 3). For nonlinear regression, in Sec-
tion 4 we show general bounds relying on a condition between loss and transfer
functions different from the one used by Helmbold, Kivinen, and Warmuth in [10].
We apply this condition to prove bounds for the entropic and Hellinger loss. This
latter result was apparently not obtainable with the techniques of [10]. Finally, in
Section 5 we briefly describe the connection to some recent work by Warmuth and
Jagota [22] and Kivinen and Warmuth [13], where a family of gradient-based
algorithms, which includes as special cases the algorithms studied here, is proposed
and analyzed.

2. THE PREDICTION GAME

The prediction game we study is parametrized by the number N of input
variables and by the loss function L. We call a loss function any nonnegative, con-
tinuous function L of two real variables y and ŷ such that L( y, ŷ)=0 whenever
y= ŷ. At the beginning of each trial t=1, 2, ..., the master predictor decides on
some vector ŵt and receives from the environment the values xt=(xt, 1 , ..., xt, N) of
the input variables. The master then responds with its prediction ŷt=ŵt } xt .
Finally, the environment decides on an outcome yt , causing the master to suffer
loss L( yt , ŷt). We assume that input variables, outcomes, and predictions are all
real numbers. Let y� t be the prediction of the reference predictor at each trial t. The
goal of the master in this prediction game is to minimize the difference �t L( yt , ŷt)
&�t L( yt , y� t) for an arbitrary sequence of trials (i.e. instance and outcome pairs)
chosen by the environment. We prove bounds on this difference that have the
general form

:
T

t=1

L( yt , ŵt } xt)& :
T

t=1

L( yt , w� } xt)�O(- T) (1)

and hold whenever the predictor knows in advance the length T of the trial
sequence. Note that bound (1) only applies to those vectors w� whose norm is
smaller than a constant fixed in advance by the predictor. As this constant also
appears in the O(- T) term, the bound becomes loose if the best w� for the actual
trial sequence has norm much smaller than the constant chosen by the predictor.

For the cases where the predictor does not know either the length T of the trial
sequence or a good bound on the norm of the best vector w� , we prove a second set
of bounds having form

:
T

t=1

L( yt , ŵt } xt)& :
T

t=1

L( yt , w� } xt)�a' :
T

t=1

L( yt , w� } xt)+b'
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where a' and b' are positive constants depending on a parameter ' chosen by the
predictor. Although these bounds hold uniformly over T and without any
knowledge about the best w� , they are significantly weaker than (1) whenever
�T

t=1 L( yt , w� } xt) grows faster than - T for all choices of w� .
Note that we require that the master's prediction be a linear function of the xt 's.

The situation where the master is allowed to compute ŷt arbitrarily, that is
ŷt= f� t(xt) for some arbitrary real function f� t (but the reference predictor is still
forced to be linear), has been investigated by Vovk [21] and, in a more general
framework, by Yamanishi [23]. Vovk's regression bounds have the stronger form

:
T

t=1

L( yt , f� t(xt))& :
T

t=1

L( yt , w� } xt)�&w� &2
2+O(ln T )

and hold for any w� and for any trial sequence such that | yt | is bounded by a
constant.

We now describe the Gradient Descent (GD) algorithms and the Exponentiated
Gradient (EG) algorithm which will be used as master predictors in the prediction
game. Fix the number N of input variables. In each trial t, we will use ŵt to denote
GD's weight vector and p̂t to denote EG's weight vector. GD's prediction for trial
t is computed as ŵt } xt in the linear regression case and as ,(ŵt } xt) in the non-
linear regression case, where , is the fixed transfer function. Similarly, EG's predic-
tions for trial t are p̂t } xt and ,(p̂t } xt) in the linear and nonlinear regression case,
respectively. We will use ŷt as a shorthand for the prediction of both master algo-
rithms.

GD uses initial weights ŵ1, i=0 for i=1, ..., N. After each outcome yt is revealed,
the weight vector ŵt is updated according to the rule

ŵt+1=ŵt&'L$( yt , ŷt) xt , (2)

where '>0 is the so-called learning rate and L$( yt , ŷt) is the derivative
�L( yt , x)��x evaluated at x= ŷt .

EG makes initial weight assignments p̂1, i=1�N for i=1, ..., N and the new
weights p̂t+1 are computed according to the rule

p̂t+1, i=
exp(&'L$( yt , ŷt) xt, i) p̂t, i

Zt
(3)

for all i=1, ..., N, where Zt=�N
j=1 exp(&'L$( yt , ŷt) xt, j) p̂t, j and '>0 is the

learning rate. Note that EG's weight vector p̂t satisfies, for all t, �N
i=1 p̂t, i=1 and

0�p̂t, i�1 for i=1, ..., N (equivalently, we say that p̂t belongs to the probability
simplex). Accordingly to analyze EG we will use a reference predictor whose fixed
weight vector is also forced to belong to the probability simplex. Furthermore,
when analyzing EG we will always implicitly assume that input variables and out-
comes can only take positive values. The extension of EG to the case where
negative values and arbitrary linear (rather than just convex) combinations are
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allowed can be done via a reduction to the convex case, as shown in [12, 16].
Finally note that, whenever ŷ=ŵ } x,

�L( y, ŷ)
�ŷ

x=\�L( y, ŵ } x)
�ŵ1

, ...,
�L( y, ŵ } x)

�ŵN + .

So both GD and EG really use the gradient of L to update their weights.
We now extend Kivinen and Warmuth's analysis of gradient-based algorithms in

[12] from square loss to more general loss functions. Let &v&2=�N
i=1 |vi | and

&v&�=maxi |vi | be, respectively, the 2-norm and the infinity norm for an arbitrary
vector v. Furthermore, let D(p� & p̂)=�i p� i ln( p� i � p̂i) be the Kullback�Leibler dis-
tance between any two real vectors p� and p̂ belonging to the probability simplex.

3. LINEAR REGRESSION

For any sequence of T trials and for any master predictor A, we write LT (A) to
denote A's cumulative loss �T

t=1 L( yt , ŷt), where ŷt is A's prediction at trial t.
Similarly, LT (w� )=�T

t=1 L( yt , w� } xt) denotes the cumulative loss of the reference
predictor using weights w� to compute predictions w� } xt . In case the weights of the
reference predictor must belong to the probability simplex (e.g. when the master
algorithm is EG), we use p� to denote these weights and LT (p� ) to denote
�T

t=1 L( yt , p� } xt). We will use y� t for both w� } xt and p� } xt .
For each one of the two master algorithms GD and EG and for each trial t, we

now bound the difference L( yt , ŷt)&L( yt , y� t). Let the loss function L be such that,
for any fixed yt>0, L( yt , } ) is twice differentiable with second derivative L"( yt , } )
everywhere nonnegative. Throughout the paper, we will use the notation
L$( y, x)=�L( y, x)��x and L"( y, x)=�2L( y, x)��x2.

Fix a real yt . By applying Taylor's theorem to the function L( yt , } ) we get, for
all reals ŷt , y� t and for some c between ŷt and y� t ,

L( yt , ŷt)&L( yt , y� t)=( ŷt& y� t) L$( yt , ŷt)&
L"( yt , c)

2
( y� t& ŷt)

2 (4)

�( ŷt& y� t) L$( yt , ŷt). (5)

This simple expansion motivates the update rule of both master algorithms when
using convex loss functions. For GD, one observes the following.

Fact 1. Let x, w� , and ŵ be real vectors. Then, for any real number z,

z(ŵ } x&w� } x)=
&w� &ŵ&2

2

2
&

&w� &ŵ$&2
2

2
+z2 &x&2

2

2
,

where ŵ$=ŵ&zx.
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Now, using (5) and Fact 1 with z='L$( yt , ŷt) and '>0,

L( yt , ŷt)&L( yt , y� t)�
&w� &ŵt &

2
2&&w� &ŵt+1&2

2

2'

+
'L$( yt , ŷt)

2 &xt&
2
2

2
, (6)

where ŷt=ŵt } xt and y� t=w� } xt for w� and ŵt arbitrary and ŵt+1 computed from ŵt

according to GD's update rule (2).
For EG, the next lemma establishes an inequality whose form is similar to the

one proven in Fact 1. In fact, both inequalities will turn out to be applications of
Taylor's theorem, as discussed in Section 5.

Lemma 2. Let x be a real vector with nonnegative components. Let p� and p̂ be
any two vectors from the probability simplex. Then, for any real number z,

z(p̂ } x&p� } x)�D(p� & p̂)&D(p� & p̂$)+
z2

8
&x&2

� ,

where p̂i=e&zxip̂ i��N
j=1 e&zxjp̂j for each i=1, ..., N.

Proof. In Appendix A. K

Thus, using (5) and Lemma 2 with z='L$( yt , ŷt) and '>0,

L( yt , ŷt)&L( yt , y� t)�
D(p� & p̂t)&D(p� & p̂t+1)

'

+
'L$( yt , ŷt)

2 &xt &
2
�

8
, (7)

where ŷt=p̂t } xt and y� t=p� } xt for any p� and p̂t from the probability simplex and
p̂t+1 computed from p̂t , according to EG's update rule (3).

For any sequence of trials (x1 , y1), ..., (xT , yT), we write 2t(w� ) to denote
&w� &ŵt &

2
2 �2&&w� &ŵt+1&2

2 �2 and 2t(p� ) to denote D(p� & p̂t)&D(p� & p̂t+1). We will
use several times the facts

:
t

2t(w� )�&w� &ŵ1&2
2 �2�&w� &2

2 �2,

(8)
:
t

2t(p� )�D(p� & p̂1)�ln N

implied by the telescoping structure of the sums, by the positivity of & }&2
2 and

D( } & } ), and by the facts ŵ1, i=0 and p̂1, i=1�N for 1�i�N.
The next results shows general bounds on GD and EG with respect to an

arbitrary convex loss function. Improved bounds for more specific loss functions
will be proven later.
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Theorem 3. Let (x1 , y1), ..., (xT , yT) be an arbitrary trial sequence. Let the loss
function L be such that, for any y>0, L( y, } ) is convex and twice differentiable. Let
R2�maxt &xt &2 , R��maxt &xt &� , and Z�maxt |L$( yt , ŷt)|. Then, for any vector
w� ,

LT (GD)&LT (w� )�R2ZU - T

whenever GD is run with '=U�(R2Z - T) such that U�&w� &2 . Moreover, for any
vector p� from the probability simplex,

LT (EG)&LT (p� )�R�Z - T ln(N)�2

whenever EG is run with '=- (8 ln N)�(R�Z - T).

Proof. To get the first bound, apply (6) to every trial 1�t�T, replacing each
L$( yt , ŷt)

2 with its bound Z2 and replacing each &xt&
2
2 with its bound R2

2 . Then,
sum over trials using the first inequality of (8). Finally, replace &w� &2

2 with U 2 and
replace ' with U�(R2Z - T). The proof of the second bound is very similar; apply
(7) to each trial, replacing each L$( yt , ŷt)

2 with its bound Z2 and replacing each
&xt&

2
� with its bound R2

� . Then, sum over trials using the second inequality of (8)

and replace ' with - (8 ln N)�(R�Z - T). K

Note that Theorem 3 can be applied to those trial sequences for which bounds
on the quantities maxt |L$( yt , ŷt)| and maxt &xt &2 (or maxt &xt&�) are available in
advance for the tuning of '. Instead, the choice of U does not affect the set of trial
sequences to which the first bound of the theorem can be applied. To appreciate the
influence of U, rewrite the bound as

LT (GD)� inf
&w� &2�U

LT (w� )+R2ZU - T. (9)

Now note that the first term in the right-hand side of (9) is clearly nonincreasing
in U, whereas the second term increases linearly in U. A similar trade-off, with
&w� &� playing the role of &w� &2 , arises also when EG is replaced by its variant for
dealing with arbitrary (rather than just convex) linear combinations (see [12] for
examples of this trade-off.)

3.1. Absolute Loss Bounds

The absolute loss L( y, x)=|x& y| has first derivative �L( y, x)��x not con-
tinuous in x= y. Hence, (4) is not applicable in this case. However, we can prove
bounds similar to those proven for convex functions using the function

&1 if x< y,

F( y, x)={ 0 if x= y, (10)

1 if x> y,

in place of the derivative L$.
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Theorem 4. Let (x1 , y1), ..., (xT , yT) be an arbitrary trial sequence. Let L be the
absolute loss L( y, x)=| y&x| and let GD and EG be run with F defined in (10)
playing the role of L$. Let R2�maxt &xt&2 and R��maxt &xt &� . Then, for any
vector w� ,

LT (GD)&LT (w� )�R2U - T

whenever GD is run with '=U�(R2 - T) such that U�&w� &2 . Moreover, for any
vector p� from the probability simplex,

LT (EG)&LT (p� )�R� - T ln(N)�2

whenever EG is run with '=- (8 ln N)�(R� - T).

Proof. Note that L( y, ŷ)&L( y, y� )�( ŷ& y� ) F( y, ŷ) holds for all y, ŷ, and y� , as
one can easily check. Moreover, F( yt , ŷt)

2=1 for all t. Then follow the proof of
Theorem 3 with Z=1 and F playing the role of L$. K

Note that, for the absolute loss function discussed in Theorem 4, the update rules
(2) and (3) for algorithms GD and EG reduce to ŵt+1=ŵt\'xt for GD and to

p̂t+1, i=
exp(\'xt, i) p̂t, i

Zt

for EG, where the sign is decided according to whether ŷt< yt or ŷt> yt . This spe-
cial form of EG's update rule is similar to the one used by the Winnow II algorithm
described in [14].

Theorem 4 was independently proven by Long [18] (who also shows a matching
lower bound) and Bylander [1]. Littlestone and Warmuth [17] prove similar
(actually stronger) bounds, but a simpler regression model.

As a final remark, note that Theorem 4 trivially implies a bound for the case
where the outcomes yt all satisfy 0�yt�1 and the reference predictor uses an
arbitrary but constant prediction y� chosen from [0, 1]. To see this, apply the
theorem with N=2, where the two input variables are such that xt, 1=0 and
xt, 2=1 for all t. This extends to the absolute loss (and to real-valued outcomes)
recent results by Freund [7] (see also [23] for more general related results.)

3.2. Square Loss Bounds

The square loss L( y, x)=(x& y)2 enjoys some nice properties as far as our
analysis of gradient-based algorithms is concerned. Because of that, we can prove
regression bounds better than those proven in Theorem 3 for general convex func-
tions. These bounds are expressed in terms of additional quantities L� T (w� ) and
L� T (p� ) and become better as these quantities become larger.
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Theorem 5. Let (x1 , y1), ..., (xT , yT) be an arbitrary trial sequence. Let L be the
square loss L( y, x)=(x& y)2. Let R2�maxt &xt&2 and R��maxt &xt&� . Then, for
any vector w� ,

LT (GD)�
1

1&c \LT (w� )&L� T (w� )+
(R2 &w� &2)2

c +
whenever GD is run with '=c�(2R2

2), where 0<c<1 and L� T (w� )=
�T

t=1 L(w� } xt , ŵt } xt). Moreover, for any vector p� from the probability simplex,

LT (EG)�
1

1&c�2 \LT (p� )&L� T (p� )+
R2

� ln N
c +

whenever EG is run with '=c�R2
� , where 0<c<2 and L� T(p� )=�T

t=1 L(p� } xt ,
p̂t } xt).

Proof. We have L$( y, x)=�L( y, x)��x=2(x& y) and L"( y, x)=�2L( y, x)��x2

=2. We prove only the bound for EG; the proof for GD is very similar. Let
ŷt=p̂t } xt and y� t=p� } xt . Using (4) and Lemma 2 with z='L$( yt , ŷt) and '=
c�R2

� ,

L( yt , ŷt)&L( yt , y� t)=L$( yt , ŷt)( ŷt& y� t)&( ŷt& y� t)
2

�
2t(p� )

'
+

'L$( yt , ŷt)
2 R2

�

8
&L( y� t , ŷt)

=
R2

�2t(p� )
c

+
c
2

L( yt , ŷt)&L( y� t , ŷt).

Now sum over trials to get LT (EG)&LT (p� )�(R2
� ln N)�c+(c�2) LT (EG)&

L� T (p� ). Under the assumption c<2, we can solve for LT (EG). Using D(p� & p̂1)�
ln N we obtain

LT (EG)�
1

1&c�2 \LT (p� )&L� T (p� )+
R2

� ln N
c + ,

concluding the proof. K

Tuning of the parameter c in Theorem 5 is possible if knowledge of a bound on
LT (w� )&L� T (w� ) for GD, or a bound on LT (p� )&L� T(p� ) for EG, is available before
the game starts. Lack of this knowledge may be compensated by an iterative
scheme obtaining increasingly accurate estimates as the number of observed trials
grows (see [3] for details.) Similar remarks hold also for some of the subsequent
results.

Corollary 6. For any U>0 and any w� such that &w� &2�U, suppose algorithm
GD is run with '=U�(2R2 - G), where R2�maxt &xt&2 and G>max[LT (w� )&
L� T (w� ), (R2U)2]. Then,

LT (GD)&LT (w� )�2R2U - G+2(R2U)2&L� T (w� )+o(1), (11)
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where o(1) � 0 as LT (w� )&L� T (w� ) � �. Furthermore, for any p� from the probability
simplex suppose algorithm EG is run with '=- 2(ln N)�G$�R� , where R��
maxt &xt &� and G$>max[LT (p� )&L� T (p� ), (R2

� ln N)�2]. Then

LT (EG)&LT (p� )

�R� - 2G$ ln N+R2
� ln N&L� T (p� )+o(1), (12)

where o(1) � 0 as LT (p� )&L� T(p� ) � �.

Proof. Again, we just prove the corollary for EG. The setting of ' and G$ allows
us to apply Theorem 5 with c=R� - 2(ln N)�G$<2. Thus we have

LT (EG)�
1

1&c�2 \LT (p� )&L� T (p� )+
R2

� ln N
c +

=\ :
�

k=0

(c�2)k+\LT (p� )&L� T (p� )+
R2

� ln N
c +

=LT (p� )&L� T (p� )+
R2

� ln N
c

+
c(LT (p� )&L� T (p� ))

2
+

R2
� ln N

2

+\ :
�

k=2

(c�2)k+\LT (p� )&L� T(p� )+
R2

� ln N
c + .

By plugging R� - 2(ln N)�G$ for c we find that

LT (EG)�LT (p� )&L� T(p� )+R� - 2G$ ln N+
R2

� ln N
2

+\ :
�

k=2

(c�2)k+\LT (p� )&L� T (p� )+
R2

� ln N
c +

=LT (p� )&L� T (p� )+R� - 2G$ ln N

+R2
� ln N+o(1),

where o(1) � 0 as LT (p� )&L� T (p� ) � �. K

Cesa-Bianchi et al.'s bounds for GD [3] and Kivinen and Warmuth's bounds
fore EG [12] are, respectively, of the form

LT (GD)&LT (w� )�2R2U - K+(R2U)2 (13)

LT (EG)&LT (p� )�R� - 2K ln N+
R2

� ln N
2

(14)
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for any K�LT (p� ). Note that these bounds and the correspond bounds (11) and
(12) of Corollary 6 are not comparable. Also, Theorem 7.1 in [3] shows that, for
any choice of R2 , U and K=LT (w� ), and for any master algorithm A, there is a trial
sequence such that LT (A)&LT (w� ) is at least as big as the right-hand side of (13).
This shows that bound (13) is the best possible among all bounds that only depend
on the quantities R2=maxt &xt&2 , U=&w� &2 , and K=LT (w� ). For a careful discus-
sion of square loss lower bounds in terms of quantities R� and K=LT (p� ), which
allow us to measure the tightness of EG upper bounds (12) and (14), the reader is
referred to [12].

Results similar to Theorem 5 and Corollary 6 can be proven for loss functions of
the form L( y, x)=|x& y| p, where 1<p<2. We have

L$( y, x)=
�L( y, x)

�x
={& p( y&x) p&1,

p(x& y) p&1,
if x< y,
if x� y.

Thus, similarly to the square loss, L$( y, x)2=p2(x& y)2p&2�p2L( y, x) for any
reals x, y and for all 1<p<2. Furthermore, L"( y, x)=�2L( y, x)��x2 is non-
negative for all x and y.

Theorem 7. Fix any 1<p<2. Let (x1 , y1), ..., (xT , yT) be an arbitrary trial
sequence. Let L be the loss function L( y, x)=|x& y| p. Let R2�maxt &xt &2 and
R��maxt &xt&� . Then, for any vector w� ,

LT (Gd)�
1

1&cp2�2 \LT (w� )+
(R2 &w� &2)2

2c +
whenever GD is run with '=c�R2

2 , where 0<c<2�p2. Moreover, for any vector p�
from the probability simplex,

LT (EG)�
1

1&cp2�8 \LT (p� )+
R2

� ln N
c +

whenever EG is run with '=c�R2
� , where 0<c<8�p2.

Proof. Again, we just give the proof of EG. Using (5) and Lemma 2 with
z='L$( yt , ŷt) and '=c�R2

� , we establish the chain of inequalities

L( yt , ŷt)&L( yt , y� t)�L$( yt , ŷt)( ŷt& y� t)

�
2t(p� )

'
+

'L$( yt , ŷt)
2 R2

�

8

�
R2

� 2t(p� )
c

+
cp2

8
L( yt , ŷt).
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Now sum over trials to get LT (EG)&LT (p� )�(R2
� ln N)�c+(cp2�8) LT (EG). As

c<8�p2, we can solve for LT (EG) and obtain

LT (EG)�
1

1&cp2�8 \LT (p� )+
R2

� ln N
c + ,

concluding the proof. K

Proper tuning of c in Theorem 7 yields bounds similar to those proven in
Corollary 6.

4. NONLINEAR REGRESSION

If the loss function L is convex, but such that L( y, x) grows fast as x moves away
from y, then Theorem 3 is not very useful, as the factor maxt |L$( yt , ŷt)| can get
very big. We can control this growth by applying a squashing ``transfer'' function
to each prediction of the master.

Let , be a real-valued, monotone increasing and differentiable transfer function.
Recall that, in the nonlinear case, GD predicts with ,(ŵt } xt) and EG predicts with
,(p̂t } xt), where ŵt and p̂t are the corresponding weight vectors. Let L$( yt , ,(+̂t))
be the derivative �L( yt , ,(x))��x evaluated at x=+̂t , where we use +̂t to denote
both ŵt } xt and p̂t } xt .

The analysis of nonlinear regression is ruled by the interaction between the loss
and the transfer functions. Let ,(w� } xt) be the prediction at trial t of the reference
predictor using weights w� . We will use +� t to denote w� } xt . For a fixed y, let
L"( y, ,(x))=�2L( y, ,(x))��x2. By Taylor's theorem, for some c between +̂t and +� t ,

L( yt , ,(+̂t))=L( yt , ,(+� ))

=(+̂&+� t) L$( yt , ,(+̂t))

&
L"( yt , ,(c))

2
(+̂t&+� t)

2. (15)

Suppose now L and , ``match,'' so that for some a>0 and for all x and y,

L"( y, ,(x))�0 (16)

L$( y, ,(x))2�aL( y, ,(x)). (17)

Then we can derive inequalities similar to (6) and (7). Namely, using (15) and
Fact 1 with z='L$( yt , ,(+̂t)), we have

L( yt , ,(+̂t))&L( yt , ,(+� t))�
2t(w� )

'
+

'aL( yt , ,(+� t)) &xt &
2
2

2
. (18)

Similarly, using (15) and Lemma 2 with z='L$( yt , ,(+̂t)), we get

L( yt , ,(+̂t))&L( yt , ,(+� t))�
2t(p� )

'
+

'aL( yt , ,(+̂t)) &xt &
2
�

8
. (19)
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These inequalities allow us to prove bounds similar to those proven in Theorem 5.
When the transfer function , is used, we write LT

,(A) and LT
,(w� ) to denote the

cumulative loss after T trials of, respectively, master algorithm A and reference
predictor using weights w� .

Theorem 8. Let (x1 , y1), ..., (xT , yT) be an arbitrary trial sequence. Let L be a
twice differentiable loss function and , a monotone increasing, twice differentiable
transfer function such that condition (16) is satisfied and condition (17) is satisfied for
some a>0. Let R2�maxt &xt &2 and R��maxt &xt&� . Then, for any vector w� ,

LT
,(GD)�

1
1&ac�2 \LT

,(w� )+
(R2 &w� &2)2

2c +
whenever GD is run with '=c�R2

2 , where 0<c<2�a. Moreover, for any vector p�
from the probability simplex,

LT
,(EG)�

1
1&ac�8 \LT

,(p� )+
R2

� ln N
c +

whenever EG is run with '=c�R2
� , where 0<c<8�a.

Proof. Omitted (similar to the proof of Theorem 5).

Tuning c in Theorem 8 yields improved bounds, similar to those proven in
Corollary 6.

Corollary 9. For any vector w� such that &w� &2�U, suppose algorithm GD is
run with '=U�(R2 - aG), where R2�maxt &xt&2 and G>max[LT (w� ), a(R2U)2�4].
Then,

LT
,(GD)&LT

,(w� )�R2U - aG+
a(R2U)2

2
+o(1),

where o(1) � 0 as LT
,(w� ) � �. Furthermore, for any p� from the probability simplex

suppose algorithm EG is run with '=- (8 ln N)�(aG$)�R� , where R��maxt &xt &�

and G$>max[LT (p� ), (aR2
� ln N)�8]. Then,

LT
,(EG)&LT

,(p� )�R� �aG$ ln N
2

+
aR2

� ln N
4

+o(1),

where o(1) � 0 as LT
,(p� ) � �.

Proof. Omitted (similar to the proof of Corollary 6).

Theorem 8 and Corollary 9 can be applied to get bounds with the entropics loss
L( y, x)=y ln( y�x)+(1& y) ln((1& y)�(1&x)). We will use the logistic function
,(x)=(1+e&x)&1 as the transfer function (nonlinear regression with a logistic
transfer function is called logistic regression). Note that ,(x) # [0, 1] and ,$(x)=
,(x)(1&,(x)) for all reals x.

404 NICOLO� CESA-BIANCHI



Lemma 10. Let L be the entropic loss and let , be the logistic function. Then for
all x, y # [0, 1]

�2L( y, ,(x))
�x2 �0, \�L( y, ,(x))

�x +
2

�
L( y, ,(x))

2
. (20)

Proof. We have

�L( y, ,(x))
�x

=
,(x)& y

,(x)(1&,(x))
} ,(x)(1&,(x))=,(x)& y.

Hence, the first inequality of (20) holds because , has the first derivative
everywhere nonnegative. The second inequality is equivalent to (x& y)2�L( y, x)�2
for all x, y # [0, 1], which is a well-known relation (see, e.g., [4, Lemma 12.6.1,
p. 300]). K

Therefore, by using Lemma 10 and applying Theorem 8 with a=1�2, we get
logistic regression bounds for the entropic loss. Furthermore, application of
Corollary 9 yields the bounds

LT
,(Gd)&LT

,(w� )�R2 U - G�2+
(R2U)2

4
+o(1) (21)

LT
,(EG)&LT

,(p� )�R� �G$ ln N
4

+
R2

� ln N
8

+o(1). (22)

The techniques developed by Helmbold et al. in [10] can be used to obtain bounds
similar to (21) and (22). The analysis of nonlinear regression shown here extends
those techniques in much the same way the analysis of the linear case in Section 3
extended the techniques of [12].

To show the generality of our approach, we now prove logistic regression bounds
for GD and EG applied to the Hellinger loss function

H( y, x)=(- y&- x)2+(- 1& y&- 1&x)2.

It appears that the techniques of [10] do not yield any form of regression bounds
for this loss function. In fact, they are shown to work only for loss functions L such
that, for all y, the expression

�L( y, x)
�x

1
x& y

is independent of y. It is easy to check that this condition applies to the entropic
loss and does not hold for the Hellinger loss.

Lemma 11. Let H be the Hellinger loss and let , be the logistic function. Then
for all x, y # [0, 1]

�2H( y, ,(x))
�x2 �0, \�H( y, ,(x))

�x +
2

�
H( y, ,(x))

4
. (23)
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Proof. In Appendix B. K

Using Lemma 11 we can apply Theorem 8 and Corollary 9 with a=1�4 to get
logistic regression bounds for the Hellinger loss.

5. EXTENSIONS

A new family of gradient-based algorithms for on-line regression, including both
GD and EG as special cases, has been recently proposed by Warmuth and Jagota
[22] and, for the multidimensional regression case, by Kivinen and Warmuth [13].
(Both of these works have been done independently of ours.) The algorithms of
this family, which are called general additive algorithms (or GA for short), are
parametrized by weight transformation functions �: RN � RN satisfying certain
properties that we will explain in a moment. In this section GA will be analyzed
(for simplicity just in the linear regression case) using the same tools and termino-
logy we used to analyze GD and EG.

For each fixed weight transformation function �, algorithm GA(�) maintains
a weight vector ŵt updated additively following GD's rule (2); that is, ŵt+1=
ŵt&'L$( yt , ŷt) xt . However, unlike GD, the prediction of GA(�) at trial t is
ŷt=�(ŵt) } xt . Clearly, when � is the identity function, GA(�) reduces to the usual
GD algorithm.

The analysis of GA comes naturally from the proof of Theorem 3, once one
realizes that Fact 1 and Lemma 2 are both applications of Taylor's theorem. As
usual, let L be a twice differentiable loss function with second derivative everywhere
nonnegative. We assume that the weight transformation function � is monotone
increasing and satisfies the key property

{F�(w� , ŵ)=�(ŵ)&�(w� ) (24)

for some weight distance function F� : RN_RN � RN and for all ŵ and w� , where

{F�(w� , ŵ)=\�F�(w� , ŵ)
�ŵ1

, ...,
�F�(w� , ŵ)

�ŵN + .

We use �̂t and �� to denote, respectively, �(ŵt) and �(w� ). Also, y� t will denote
�� } xt . Applying Taylor's theorem in the same way we did for proving (4) and (5),
we find that

L( yt , ŷt)&L( yt , y� t)=( ŷt& y� t) L$( yt , ŷt)&
L"( yt , c)

2
( y� t& ŷt)

2

�( ŷt& y� t) L$( yt , ŷt) (25)

=(�̂t&�� ) } xt L$( yt , ŷt)

=
1
'

(�̂t&�� ) } (ŵt&ŵt+1), (26)

406 NICOLO� CESA-BIANCHI



where we used convexity of L in (25) and invoked GA's update rule (2) for proving
(26).

Applying Taylor's theorem once more, this time to the function F�(w� , } ), we get

(ŵt&ŵt+1) } {F�(w� , ŵt)=F�(w� , ŵt)&F�(w� , ŵt+1)

+E�(w� , ŵt , xt), (27)

where E�(w� , ŵt , xt) is the second-order error term in the Taylor expansion of
F�(w� , } ) around ŵt+1 . Using (24) to connect (26) with (27), we find that

L( yt , ŷt)&L( yt , y� t)�
1
'

[F�(w� , ŵt)&F�(w� , ŵt+1)]

+
1
'

E�(w� , ŵt , xt). (28)

Summing up over t we then get the general bound

LT (GA)&LT (w� )�
1
'

[F�(w� , ŵ1)&F�(w� , ŵT+1)]

+
1
'

:
T

t=1

E�(w� , ŵt , xt). (29)

We now recover the basic bounds for GD and EG shown in Section 3. First, note
that (24) holds when F�(w� , ŵt)= 1

2&w� t&
2
2 and � is the identity function. In this case

GA(�)=GD and E�(w� , ŵt , xt)= 1
2'2L$( yt , ŷt)

2 &xt&
2
2 by Fact 1; thus (28) reduces

to (6) shown in Section 3. Second, (24) holds also when

�(w) i =
ewi

�N
j=1 ewj

for i=1, ..., N;

F�(w� , ŵt)=D(�� &�̂t).

In this second case GA(�)=EG and E�(w� , ŵt , xt)� 1
8'2L$( yt , ŷt)

2 &xt&
2
� by

Lemma 2; thus (28) reduces to (7), also shown in Section 3.
As suggested in [13], we can nicely express the error term E� by choosing

F�(v, w)=|
w

v
(�(u)&�(v)) du

whenever � is such that the value of the integral does not depend on the path taken
from v to w. This choice of F� clearly satisfies (24). Moreover, one can prove that

(ŵt&ŵt+1) {F�(w� , ŵt)=F�(w� , ŵt)&F�(w� , ŵt+1)+F�(ŵt , ŵt+1) (30)
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for all w� , ŵt , and ŵt+1 . Doing the derivation of (29) again, this time using (30)
instead of (27), we then get the appealing form

LT (GA)&LT (w� )�
1
'

[F�(w� , ŵ1)&F�(w� , ŵT+1)]+
1
'

:
T

t=1

F�(ŵt , ŵt+1)

originally shown in Theorem 1 of [22].
We close by observing that the notions of weight transformation and weight

distance functions have been also used by Grove et al. in [8], where they have
proposed a broad family of algorithms, similar to GA, for solving on-line binary
classification problems. Notwithstanding the generality of Grove et al.'s approach,
it is not yet clear how to extend their results to the regression framework.

APPENDIX A: PROOF OF LEMMA 2

We use a simple bound (based on convexity arguments) on the log of the
moment-generating function of a random variable. This result was originally proven
by W. Hoeffding to show bounds on the tails of the binomial distribution. Here we
give a proof due to Pollard [19].

Lemma 12 [11]. Let Y be a random variable with 0 mean and range [a, b].
Then, for any real number z,

ln E[ezY]�
z2

8
(b&a)2.

By convexity of the exponential function we have

ezY�
b&Y
b&a

eza+
Y&a
b&a

ezb.

Taking expectations, recalling that E[Y]=0, we get

E[ezY]�
b

b&a
eza&

a
b&a

ezb=eza \ b
b&a

&
a

b&a
ez(b&a)+ .

Setting u=z(b&a) and taking logs on both sides yields

ln E[ezY]�
a

b&a
u+ln \ b

b&a
&

a
b&a

eu+ .

Let :=&a�(b&a). Note that b�(b&a)=1&:. Set F(u)=&:u+ln(1&:+:eu).
Differentiate function F with respect to u:

F $(u)=&:+
:eu

1&:+:eu= &:+
:

:+(1&:) e&u

F"(u)=
:(1&:) e&u

(:+(1&:) e&u)2=
:

:+(1&:) e&u }
(1&:) e&u

:+(1&:) e&u�
1
4

,
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where the last inequality holds because x(1&x)�1�4 for all 0<x<1 and because
:>0 since a<0<b. Applying Taylor's theorem we finally get

F(u)=F(0)+uF $(0)+
u2

2
F"(v)=

u2

2
F"(v)�

z2

8
(b&a)2,

concluding the proof. K

Proof of Lemma 2.

D(p� & p̂)&D(p� & p̂$)= :
N

i=1

p� i ln
p̂$i
p̂ i

= :
N

i=1

p� i ln e&zxi& :
N

i=1

p� i ln \ :
N

j=1

e&zxjp̂j+
=&zp� } x&ln \ :

N

i=1

e&zxip̂i+
=&zp� } x&ln _ :

N

i=1

exp(&zxi+z p̂ } x&z p̂ } x) p̂ i&
=&zp� } x+z p̂ } x&ln \ :

N

i=1

e&zvip̂i + ,

where vi=xi&p̂ } x. Hence, z(p̂ } x&p� } x)=D(p� & p̂)&D(p� & p̂$)+ln(�N
i=1 e&zvip̂i).

Using Lemma 12 and the assumption on x, we find that ln(�N
i=1 e&zvip̂i)�

(z &x&�)2�8, concluding the proof. K

APPENDIX B: PROOF OF LEMMA 11

We have

�H( y, z)
�s

=
- 1& y&- 1&z

- 1&z
&

- y&- z

- z
=�1& y

1&z
&�y

z
,

�2H( y, z)
�z2 =

1
2 �

1& y
(1&z)3+

1
2 �

y
z3 .

Furthermore, ,$=, } (1&,) and ,"=,$ } (1&2,). As

�H( y, ,(x))
�x

=
�H( y, ,)

�,
} ,$

and

�2H( y, ,(x))
�x2 =

�2H( y, ,)
�,2 } ,$+

�H( y, ,)
�,

} ,"
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to prove the first inequality of (23) we just have to show

�2H( y, ,)
�,2 +

�H( y, ,)
�,

} (1&2,)�0.

Or, equivalently,

1
2 �

1& y
(1&,)3+

1
2 �

y
,3+\�1& y

1&,
&�y

,+ } (1&2,)�0.

Collecting terms we find that

�1& y
1&, \

1
2(1&,)

+1&2,++�y
, \

1
2,

&1+2,+�0.

Finally, reducing to common denominator each term in the left-hand side and mul-
tiplying both sides by 2 we get

�1& y
1&,

}
4,2&6,+3

1&,
+�y

,
}
4,2&2,+1

,
�0.

It is easily verified that 4,2&6,+3 and 4,2&2,+1 are both always positive. This
concludes the proof of the first inequality of (23).

Now let A=- y&- , and B=- 1& y&- 1&,. Then the second inequality in
(23) is equivalent to

\ B

- 1&,
&

A

- ,+
2

,2(1&,)�
A2+B2

4
.

As ,(1&,)�1�4, the above is, in turn, implied by

\ B

- 1&,
&

A

- ,+
2

,(1&,)�A2+B2.

Expanding the square and multiplying through in the left-hand side yields

B2,+A2(1&,)&2AB - ,(1&,)�A2+B2

which is easily seen to hold. This concludes the proof of the lemma. K
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