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1. A motivating example. A simple yet nontrivial example of partial monitoring is the following dynamic
pricing problem. A vendor sells a product to a sequence of customers whom he attends one by one. To each
customer, the seller offers the product at a price he selects, say, from the interval �0�1�. The customer then
decides to buy the product or not. No bargaining is possible, and no other information is exchanged between
buyer and seller. The goal of the seller is to achieve an income almost as large as if he knew the maximal price
each customer is willing to pay for the product. Thus, if the price offered to the tth customer is pt , and the
highest price this customer is willing to pay is yt ∈ �0�1�, then the loss of the seller is yt − pt if the product is
sold and (say) a constant c > 0 if the product is not sold. Formally, the loss of the vendor at time t is

��pt� yt�= �yt −pt��pt�yt + c�pt>yt �

where c ∈ �0�1�. (In another version of the problem the constant c may be replaced by yt . In this case it is easy
to see that all terms depending on yt cancel out when considering the regret, and we obtain the bandit setting
referred to as online posted price mechanism in, e.g., Kleinberg and Leighton [30], Blum et al. [9], Blum and
Hartline [7]—see below.) In either case, if the seller knew in advance the empirical distribution of the yts, then
he could set a constant price q ∈ �0�1�, which minimizes his overall loss. A natural question is whether there
exists a randomized strategy for the seller such that his average regret

1
n

n∑
t=1

��pt� yt�− min
q∈�0�1�

1
n

n∑
t=1

��q� yt�

is guaranteed to converge to zero as n→� regardless of the sequence y1� y2� � � � of prices. The difficulty in
this problem is that the only information the seller (i.e., the forecaster) has access to is whether pt > yt , but
neither yt nor ��pt� yt� are revealed. One of the main results of this paper describes a simple strategy such that
the average regret defined above is of the order of n−1/5.
We treat such limited-feedback (or partial-monitoring) prediction problems in a more general framework

that we describe next. The dynamic pricing problem described above, which is a special case of this more
general framework, has also been investigated by Blum and Hartline [7], Blum et al. [9], and Kleinberg and
Leighton [30] in a simpler setting where the reward of the seller is defined as ��pt� yt� = pt�pt�yt . Note that
by using the feedback information (i.e., whether the customer bought the product or not), here the seller can
compute the value of ��pt� yt�. Therefore, their game reduces to an instance of the multiarmed bandit game (see
Example 2.1 below) with a continuous action space.

2. Main definitions. We adopt a learning-theoretic viewpoint and describe partial monitoring as a repeated
prediction game between a forecaster (the player) and the environment (the opponent). In the same spirit, we call
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Prediction with Partial Monitoring

Parameters: number of actions N , number of outcomes M , loss function �, feedback function h.
For each round t = 1�2� � � � ,
(1) the environment chooses the next outcome yt ∈ �1� � � � �M� without revealing it;
(2) the forecaster chooses a probability distribution pt over the set of N actions and draws

an action It ∈ �1� � � � �N � according to this distribution;
(3) the forecaster incurs loss ��It� yt� and each action i incurs loss ��i� yt�, where none of

these values is revealed to the forecaster;
(4) the feedback h�It� yt� is revealed to the forecaster.

the actions taken by the environment outcomes. At each round t = 1�2� � � � of the game, the forecaster chooses
an action It from the set �1� � � � �N �, and the environment chooses an action yt from the set �1� � � � �M�. The
losses of the forecaster are summarized in the loss matrix L= ���i� j��N×M . (This matrix is assumed to be known
by the forecaster.) Without loss of generality, we rescale the losses so that they all lie in �0�1�. If at time t the
forecaster chooses an action It ∈ �1� � � � �N � and the outcome is yt ∈ �1� � � � �M�, then the forecaster suffers
loss ��It� yt�. However, instead of the outcome yt , the forecaster only observes the feedback h�It� yt�, where h
is a known feedback function that assigns to each action/outcome pair in �1� � � � �N �× �1� � � � �M� an element
of a finite set � = �s1� � � � � sm� of signals. The values of h are collected in a feedback matrix H= �h�i� j��N×M .
Note that we do not make any restrictive assumption on the power of the opponent. The environment may

choose action yt at time t by considering the whole past, that is, the whole sequence of action/outcome pairs
�Is� ys�, s = 1� � � � � t− 1. Without loss of generality, we assume that the opponent uses a deterministic strategy,
so that the value of yt is fixed by the sequence �I1� � � � � It−1�. In comparison, the forecaster has access to sig-
nificantly less information because he knows only the sequence of past feedbacks, �h�I1� y1�� � � � � h�It−1� yt−1��.
We note here that some authors consider a more general setup in which the feedback could be random. For

the sake of clarity, we treat the simpler model described above and return to the more general case in §7.
It is an interesting and complex problem to investigate the possibilities of a predictor supplied only with the

limited information of the feedback. In this paper we focus on the average regret

1
n

n∑
t=1

��It� yt�− min
i=1� � � � �N

1
n

n∑
t=1

��i� yt��

that is, the difference between the average (per-round) loss of the forecaster and the average (per-round) loss of
the best action. Forecasting strategies guaranteeing that the average regret converges to zero almost surely for
all possible strategies of the environment are called Hannan consistent after James Hannan, who first proved the
existence of a Hannan-consistent strategy in the full-information case (Hannan [23]) when h�i� j�= j for all i, j
(i.e., when the true outcome yt is revealed to the forecaster after taking an action). The full-information case has
been studied extensively in the theory of repeated games and in the fields of learning theory and information
theory. A few key references and surveys include Blackwell [6], Cesa-Bianchi et al. [14], Cesa-Bianchi and
Lugosi [10], Feder et al. [16], Foster and Vohra [19], Hart and Mas-Colell [25], Littlestone and Warmuth [31],
Merhav and Feder [35], and Vovk [40, 41].
A natural question one might ask is under what conditions on the loss and feedback matrices it is possible

to achieve Hannan consistency, that is, to guarantee that, asymptotically, the cumulative loss of the forecaster is
not larger than that of the best constant action with probability one. Naturally, this depends on the relationship
between the loss and feedback functions. An initial answer to this question has been provided by the work of
Piccolboni and Schindelhauer [37]. However, because they are concerned only with expected performance, their
results do not imply Hannan consistency. In addition, their bounds have suboptimal rates of convergence. Below,
we extend those results by showing a forecaster that achieves Hannan consistency with optimal convergence
rates.
Note that the forecaster is free to encode the values h�i� j� of the feedback function by real numbers. The

only restriction is that if h�i� j�= h�i� j ′�, then the corresponding real numbers should also coincide. To avoid
ambiguities by trivial rescaling, we assume that �h�i� j��� 1 for all pairs �i� j�. Thus, in the sequel we assume
that H= �h�i� j��N×M is a matrix of real numbers between −1 and 1, and we keep in mind that the forecaster can
replace this matrix by H� = ��i�h�i� j���N×M for arbitrary functions �i� �−1�1�→ �−1�1�, i= 1� � � � �N . Note
that the set � of signals may be chosen such that it has m�M elements, although after numerical encoding
the matrix might have as many as MN distinct elements.
The problem of partial monitoring was considered by Mertens et al. [36], Rustichini [38], Piccolboni and

Schindelhauer [37], and Mannor and Shimkin [32]. The forecaster strategy studied in §3 is first introduced in
Piccolboni and Schindelhauer [37], where its expected regret is shown to have a sublinear growth. Rustichini [38]
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and Mannor and Shimkin [32] consider a more general setup in which the feedback is not necessarily a determin-
istic function of the pair outcome and the forecaster’s action, but it might be random with a distribution indexed
by this pair. Based on Blackwell’s approachability theorem, Rustichini [38] establishes a general existence result
for strategies with asymptotically optimal performance in this more general framework. In this paper we answer
Rustichini’s question about the fastest achievable rate of convergence in the case when Hannan-consistent strate-
gies exist. Mannor and Shimkin also consider cases when Hannan consistency might not be achieved, give a
partial solution, and point out important difficulties in such cases.
Before introducing a general prediction strategy and sufficient conditions for its Hannan consistency, we

describe a few concrete examples of partial-monitoring problems.
Example 2.1 (Multiarmed Bandit Problem). A well-studied special case of the partial monitoring pre-

diction problem is the so-called multiarmed bandit problem. Here the forecaster, after taking an action, is able
to measure his loss (or reward) but does not have access to what would have happened had he chosen another
possible action. Here H = L, that is, the feedback received by the forecaster is just his own loss. This prob-
lem has been widely studied both in a stochastic and in a worst-case setting. The worst-case, or adversarial,
setting considered in this paper was first investigated by Baños [5] (see also Megiddo [34]). Hannan-consistent
strategies were constructed by Foster and Vohra [18], Auer et al. [3], and Hart and Mas-Colell [24, 26] (see
also Fudenberg and Levine [22]). Auer et al. [3] (see also Auer [1] and the refined analysis of Cesa-Bianchi
and Lugosi [12]) define a strategy that guarantees a rate of convergence of the order O�

√
N�logN�/n� for the

regret, which is optimal up to the logarithmic factor.
Example 2.2 (Dynamic Pricing). Consider the dynamic pricing problem described in the introduction sec-

tion under the additional restriction that all prices take their values from the finite set �0�1/N � � � � � �N −1�/N�,
where N is a positive integer (see Example 3.2 for a nondiscretized version). Clearly, if N is sufficiently large,
this discrete version arbitrarily approximates the original problem. Now one can take M = N , and the loss
matrix is

L= ���i� j��N×N �

where
��i� j�= j − i

N
�i�j + c�i>j �

The information the forecaster (i.e., the vendor) receives is simply whether or not the predicted value It is greater
than the outcome yt . Thus, the entries of the feedback matrix H can be taken to be h�i� j�= �i>j or, after an
appropriate reencoding,

h�i� j�= a�i�j + b�i>j i� j = 1� � � � �N �

where a and b are constants chosen by the forecaster, satisfying a�b ∈ �−1�1�.
Example 2.3 (Apple Tasting). This problem was first considered by Helmbold et al. [28] in a somewhat

more restrictive setting. In this example N =M = 2, and the loss and feedback matrices are given by

L=
[
0 1

1 0

]
and H=

[
a a

b c

]
�

Thus, the forecaster receives feedback about the outcome yt only when he chooses the second action. (Imagine
that apples are to be classified as “good for sale” or “rotten.” An apple classified as “rotten” can be opened to
check whether its classification was correct. On the other hand, because apples that have been checked cannot
be put on sale, an apple classified “good for sale” is never checked.)
Example 2.4 (Label-Efficient Prediction). In the problem of label-efficient prediction (see Helmbold

and Panizza [27] and also Cesa-Bianchi et al. [13]), the forecaster, after choosing its prediction for round t,
decides whether to query the outcome yt , which he can do only a limited number of times. In Cesa-Bianchi
et al. [13], matching upper and lower bounds are given for the regret in terms of the number of available labels,
total number of rounds, and number of actions. A variant of the label-efficient prediction problem can also be
cast as a partial-monitoring problem. Let N = 3, M = 2, and consider loss and feedback matrices of the form

L=


1 1
1 0
0 1


 and H=


a b
c c
c c


 �

In this example, the only times useful feedback is received are when the first action is played, but in this case a
maximal loss is incurred regardless of the outcome. Thus, just like in the problem of label-efficient prediction,
playing the “informative” action has to be limited; otherwise, there is no hope for Hannan consistency.



Cesa-Bianchi, Lugosi, and Stoltz: Regret Minimization Under Partial Monitoring
Mathematics of Operations Research 31(3), pp. 562–580, © 2006 INFORMS 565

3. General upper bounds on the regret. The purpose of this section is to derive general upper bounds
for the rate of convergence of the regret achievable under partial monitoring. This will be done by analyzing a
forecasting strategy inspired by Piccolboni and Schindelhauer [37]. This strategy is based on the exponentially
weighted average forecaster, a thoroughly studied predictor in the full information case; see, for example, Auer
et al. [2], Cesa-Bianchi et al. [14], Littlestone and Warmuth [31], Vovk [40, 41]. In the special case of the
multiarmed bandit problem, the forecaster reduces to the strategy of Auer et al. [3] (see also Hart and Mas-
Colell [26] for a closely related method).
The crucial assumption under which the strategy is defined is that there exists an N × N matrix K =

�k�i� j��N×N such that
L=KH�

that is,

H and

[
H

L

]

have the same rank. In other words, we may write, for all i ∈ �1� � � � �N � and j ∈ �1� � � � �M�,

��i� j�=
N∑
l=1

k�i� l�h�l� j��

In this case we consider the forecaster described in Figure 1. This forecaster makes use of the estimated losses �̃
defined by

�̃�i� yt�=
k�i� It�h�It� yt�

pIt� t
� i= 1� � � � �N � (1)

(Note that the estimates proposed above are real valued, and may even be negative.) We denote the cumulative
estimated losses at round t and for action i by L̃i� t =

∑t
s=1 �̃�i� yt�.

Consider the forecaster defined in Figure 1, where k∗ is defined in Theorem 3.1. Roughly speaking, the two
terms in the expression of pi� t correspond to “exploitation” and “exploration.” The first term assigns exponentially
decreasing weights to the actions depending on their estimated cumulative losses, while the second term ensures
sufficient exploration to guarantee accurate estimates of the losses.
A key property of the loss estimates is their unbiasedness in the following sense. Denoting by Ɛt the conditional

expectation given I1� � � � � It−1 (i.e., the expectation with respect to the distribution pt of the random variable It),
observe that this conditioning fixes the value of yt , and thus

Ɛt �̃�i� yt� =
N∑
k=1

k�i� k�h�k� yt�

pk� t
pk� t

=
N∑
k=1

k�i� k�h�k� yt�= ��i� yt�� i= 1� � � � �N �

and therefore �̃�i� yt� is an unbiased estimate of the loss ��i� yt�.

Parameters: matrix L of losses, feedback matrix H, matrix K such that L=KH
Initialization: L̃1�0 = · · · = L̃N�0 = 0.
For each round t = 1�2� � � �
(1) let %t = �k∗�−2/3��lnN�/N�2/3t−2/3 and &t = �k∗�2/3N 2/3�lnN�1/3t−1/3;
(2) choose an action It from the set of actions �1� � � � �N � at random, according to the

distribution pt defined by

pi� t = �1−&t�
e−%t L̃i� t−1∑N
k=1 e

−%t L̃k� t−1
+ &t

N
(

(3) let L̃i� t = L̃i� t−1+ �̃�i� yt� for all i= 1� � � � �N , where

L̃�i� yt�=
k�i� It� h�It� yt�

pIt � t

�

Figure 1. The randomized forecaster for prediction under partial monitoring analyzed in §3.
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The main performance bound of this section is summarized in the next theorem. Note that the average regret

1
n

( n∑
t=1

��It� yt�− min
i=1� � � � �N

n∑
t=1

��i� yt�

)

decreases to zero at a rate n−1/3. This is significantly slower than the best rate n−1/2 obtained in the “full-
information” case. In the next section we show that this rate cannot be improved in general. Thus, the price
paid for having access to only some feedback except for the actual outcomes is the deterioration in the rate
of convergence. However, Hannan consistency is still achievable whenever the conditions of the theorem are
satisfied.

Theorem 3.1. Consider any partial-monitoring problem such that the loss and feedback matrices satisfy
L=KH for some N ×N matrix K with k∗ =max�1�maxi� j �k�i� j���, and consider the forecaster of Figure 1.
Let ) ∈ �0�1�. Then, for all strategies of the opponent, for all

n�
181�k∗N�2

lnN

(
ln
N + 4
)

)3

�

and with probability at least 1− ),

n∑
t=1

��It� yt�− min
i=1� � � � �N

n∑
t=1

��i� yt�� 13�k∗N�2/3�lnN�1/3�n+ 1�2/3
√
ln
1
)
�

The main term in the performance bound has the order of magnitude n2/3�k∗N�2/3�lnN�1/3. Observe that this
theorem directly implies Hannan consistency, by a simple application of the Borel-Cantelli lemma.
Proof. The starting point of the proof of the theorem is an application of Theorem B.1 (shown in Appen-

dix B) to the estimated losses. Because �̃�i� yt� lies between −Bt and Bt , where Bt = k∗N/&t , the proposed
values of &t and %t imply that %tBt � 1 if and only if t � �lnN�/�Nk∗�, that is, for all t � 1. Therefore, defining
for t = 1� � � � � n, the probability vector 
pt by its components

p̃i� t =
e−%tL̃i� t−1∑N
k=1 e

−%tL̃k� t−1
i= 1� � � � �N �

we can apply Theorem B.1 to obtain

n∑
t=1

N∑
i=1

p̃i� t �̃�i� yt�− min
j=1� � � � �N

L̃j�n �
2 lnN
%n+1

+
n∑

t=1
%t

N∑
i=1

p̃i� tL̃�i� yt�
2�

Because pi� t = �1−&t�p̃i� t +&t/N , the inequality above rewrites as

n∑
t=1

N∑
i=1

pi� tL̃�i� yt�− min
j=1� � � � �N

L̃j�n �
2 lnN
%n+1

+
n∑

t=1
%t

N∑
i=1

p̃i� tL̃�i� yt�
2+

n∑
t=1

&t

N∑
i=1

(
1
N

− p̃i� t

)
�̃�i� yt�� (2)

Introduce the notation

Lj�n =
n∑

t=1
��j� yt�� j = 1� � � � �N �

Next we show that, with an overwhelming probability, the right-hand side of the inequality (2) is less than
something of the order n2/3, and that the left-hand side is close to the actual regret

n∑
t=1

��It� yt�− min
j=1� � � � �N

Lj�n�

Our main tool is Bernstein’s inequality for martingales; see Lemma A.1 in Appendix A. This inequality implies
the following four lemmas, whose proofs are similar. We denote )′ = )/�N + 4� and make repeated use of the
following inequality. For all i� j = 1� � � � �N and s = 1� 2,

Ɛt��̃�i� yt�
s�̃�j� yt�

s�=
N∑
l=1

pl� t
k�i� l�sk�j� l�sh�l� yt�

2s

p2sl� t
�
�k∗N�2s

&2s−1t

� (3)
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Lemma 3.1. With probability at least 1− )′,

n∑
t=1

N∑
i=1

pi� t��i� yt��
n∑

t=1

N∑
i=1

pi� t �̃�i� yt�+
√
2
(
�k∗N�2

n∑
t=1

1
&t

)
ln
1
)′

+ 1
3

(
1+ k∗N

&n

)
ln
1
)′
�

Proof. Define Zt = −∑N
i=1 pi� t �̃�i� yt� so that Ɛt�Zt� = −∑N

i=1 pi� t��i� yt�, and consider Xt = Zt − Ɛt�Zt�.
We note that by (3)

Ɛt�X
2
t �� Ɛt�Z

2
t �=

∑
i� j

pi� tpj� tƐt��̃�i� yt��̃�j� yt���
�k∗N�2

&t
�

and therefore,

Vn =
n∑

t=1
Ɛt�X

2
t �� �k∗N�2

n∑
t=1

1
&t
�

On the other hand, Xt is bounded from above by K = 1+ �k∗N�/&n. Bernstein’s inequality (see Lemma A.1)
thus concludes the proof. �

Lemma 3.2. For each fixed j , with probability at least 1− )′,

L̃j�n � Lj�n +
√
2
(
�k∗N�2

n∑
t=1

1
&t

)
ln
1
)′

+ 1
3
k∗N
&n

ln
1
)′
�

Proof. We choose Zt = �̃�j� yt� and proceed as in the proof of Lemma 3.1, except that now choosing
K = �k∗N�/&n is sufficient to guarantee Zt − Ɛt�Zt��K. �

Lemma 3.3. With probability at least 1− )′,

n∑
t=1

%t

N∑
i=1

p̃i� tL̃�i� yt�
2
�

n∑
t=1

%t

�k∗N�2

&t
+
√
2
(
�k∗N�4

n∑
t=1

%2t
&3t

)
ln
1
)′

+ 1
3
ln
1
)′
�

Proof. Let Zt = %t

∑N
i=1 p̃i� tL̃�i� yt�

2 and Xt =Zt − Ɛt�Zt�. All Xt are bounded from above by

K = max
t=1� � � � �n

%t

�k∗N�2

&2t
= 1�

On the other hand, (3) implies

Vn =
n∑

t=1
Ɛt�X

2
t �� �k∗N�4

n∑
t=1

%2t
&3t

and

Ɛt�Zt�� %t

�k∗N�2

&t
�

Bernstein’s inequality (see Lemma A.1) now concludes the proof. �

Lemma 3.4. With probability at least 1− )′,

n∑
t=1

&t

N∑
i=1

(
1
N

− p̃i� t

)
�̃�i� yt��

n∑
t=1

&t +
√
2
(
2�k∗N�2

n∑
t=1

&t

)
ln
1
)′

+ 1
3
�k∗N +&1� ln

1
)′
�

Proof. Let Zt = &t
∑N

i=1��1/N�− p̃i� t��̃�i� yt�. Then Ɛt�Zt�= &t
∑N

i=1��1/N�− p̃i� t���i� yt�. The Xt = Zt −
Ɛt�Zt� are bounded from above by

K = max
t=1� � � � �n

&t

(
1+ k∗N

&t

)
= &1+ k∗N�

On the other hand, (3) implies

Vn �
n∑

t=1
Ɛt�Z

2
t ��

n∑
t=1

&2t

N∑
i� j=1

(
1
N

− p̃i� t

)(
1
N

− p̃j� t

)
�k∗N�2

&t
� 2�k∗N�2

n∑
t=1

&t�

Bernstein’s inequality, together with Ɛt�Zt�� &t , concludes the proof. �
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The next lemma is an easy consequence of the Hoeffding-Azuma inequality for sums of bounded martingale
differences (see Hoeffding [29], Azuma [4]).

Lemma 3.5. With probability at least 1− )′,
n∑

t=1
��It� yt��

n∑
t=1

N∑
i=1

pi� t��i� yt�+
√
n

2
ln
1
)′
�

The proof of the main result now follows from a combination of Lemmas 3.1 to 3.5 with (2) (where Lemma 3.2
is applied N times). Using a union-of-event bound, we see that, with probability at least 1− ),

n∑
t=1

��It� yt�− min
j=1� � � � �N

Lj�n �
2 lnN
%n+1

+
√
n

2
ln
1
)′

+ 2
√
2
(
�k∗N�2

n∑
t=1

1
&t

)
ln
1
)′

+ 2
3
k∗N
&n

ln
1
)′

+ 1
3
ln
1
)′

+
n∑

t=1
%t

�k∗N�2

&t
+
√
2
(
�k∗N�4

n∑
t=1

%2t
&3t

)
ln
1
)′

+ 1
3
ln
1
)′

+
n∑

t=1
&t

+
√
2
(
2�k∗N�2

n∑
t=1

&t

)
ln
1
)′

+ 1
3
�k∗N +&1� ln

1
)′
�

Substituting the proposed values of &t and %t , and using that for −1<0� 0 and 1> 0
n∑

t=1
t0 �

1
0+ 1n

0+1

and
n∑

t=1
t1 �

1
1+ 1 �n+ 1�

1+1�

we find that the last expression is at most

2�k∗N�2/3�lnN�1/3�n+ 1�2/3+√
�n/2� ln�1/)′�+√

6�k∗N�2/3�lnN�−1/6�n+ 1�2/3√ln�1/)′�
+ 2

3 �k
∗N�1/3�lnN�−1/3n1/3 ln�1/)′�+ �1/3� ln�1/)′�+ 3

2 �k
∗N�2/3�lnN�1/3n2/3

+√
3�k∗N�1/3�lnN�1/6n1/3

√
ln�1/)′�+ �1/3� ln�1/)′�+ 3

2 �k
∗N�2/3�lnN�1/3n2/3

+√
6�k∗N�4/3�lnN�1/6n1/3

√
ln�1/)′�+ 1

3 �k
∗N� ln�1/)′�+ 1

3 �k
∗N�2/3�lnN�1/3 ln�1/)′��

Simple algebra and trivial overapproximations give

n∑
t=1

��It� yt�− min
j=1� � � � �N

Lj�n �

(
5+√

6

√
ln��N + 4�/)�

lnN

)
��k∗N�2 lnN�1/3�n+ 1�2/3+

√
n

2
ln
N + 4
)

+ 5�k∗N�4/3�lnN�−1/3n1/3 ln N + 4
)

+ 4
3
�k∗N� ln

N + 4
)

�

If n� 181�k∗N�2�lnN�−1�ln��N + 4�/)��3, the right-hand side is at most
n∑

t=1
��It� yt�− min

j=1� � � � �N
Lj�n � 13�k∗N�2/3�lnN�1/3�n+ 1�2/3√ln�1/)��

as desired. �

We close this section by considering the implications of Theorem 3.1 to the special cases mentioned in the
introduction.
Example 3.1 (Multiarmed Bandit Problem). Recall that in the case of the multiarmed bandit problem

H=L and the condition of the theorem is trivially satisfied. Indeed, one may take K to be the identity matrix so
that k∗ = 1. Thus, Theorem 3.1 implies a bound of the order of ��N 2 lnN�/n�1/3. Even though, as is shown in the
next section, the rate O�n−1/3� cannot be improved in general, faster rates of convergence are achievable for the
special case of the bandit problem. Indeed, for the bandit problem, Auer et al. [3], Auer [1], and Cesa-Bianchi
and Lugosi [12] describe careful modifications of the forecaster of Theorem 3.1 that achieve an upper bound
on the regret of the order of

√
N ln�N/)�/n with probability at least 1−). It remains a challenging problem to

characterize the class of problems that admit rates of convergence faster than O�n−1/3�.
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Example 3.2 (Dynamic Pricing). In the discretized version of the dynamic pricing problem (i.e., when all
prices are restricted to the set �0�1/N � � � � � �N − 1�/N�), the feedback matrix is given by h�i� j�= a�i�j +b�i>j
for some arbitrarily chosen values of a and b. By choosing, for example, a= 1 and b = 0, it is clear that H
is an invertible matrix, and therefore one may choose K= LH−1 and obtain a Hannan-consistent strategy with
average regret of the order of n−1/3. Thus, the seller has a way of selecting the prices It such that his loss is
not much larger than what he could have achieved had he known the values yt of all customers and offered the
best constant price. Note that with this choice of a and b, the value of k∗ equals 1 (i.e., does not depend on N ),
and therefore the upper bound has the form C��N 2 logN�/n�1/3

√
ln�1/)� for some constant C. By choosing

N ≈ n1/5 and running the forecaster into stages of doubling lengths, the effect of discretization decreases at
about the same rate as the average regret, and for the original problem with unrestricted price range one may
obtain a regret bound of the form

1
n

n∑
t=1

��pt� yt�− min
q∈�0�1�

1
n

n∑
t=1

��q� yt�=O�n−1/5 lnn��

We leave out the simple but tedious details of the proof. We simply note here that the discretization to N prices
is done by mapping yt to YN �yt�= �Nyt�/N .
Example 3.3 (Apple Tasting). In the apple-tasting problem described above, one may choose the feedback

values a= b= 1 and c= 0. Then, the feedback matrix is invertible and, once again, Theorem 3.1 applies.
Example 3.4 (Label-Efficient Prediction). Recall next the variant of the label-efficient prediction prob-

lem described in the previous section. Here the rank of L equals two, so it is necessary (and sufficient) to encode
the feedback matrix such that its rank equals two. One possibility is to choose a = 1, b = 1/2, and c = 1/4.
Then we have L=KH for

K=



0 2 2

2 −2 −2
−2 4 4


 �

The obtained rate of convergence O�n−1/3� can be shown to be optimal. In fact, it is this example that we use
in §5 to show that, in general, this rate of convergence cannot be improved.
Remark 3.1. It is interesting to point out that the bound of Theorem 3.1 does not depend explicitly on the

value of the cardinality M of the set of outcomes. Of course, in some problems the value k∗ may depend on M .
However, in some important special cases, such as the multiarmed bandit problem for which k∗ = 1, this value
is independent of M . In such cases the result extends easily to an infinite set of outcomes. In particular, the case
when the loss matrix may change with time can be encoded this way.

4. Other regret-minimizing strategies. In the previous section we saw a forecasting strategy that guarantees
that the average regret is of the order of n−1/3 whenever the loss matrix L can be expressed as KH for some
matrix K. In this section we discuss some alternative strategies that yield small regret under different conditions.
First note that it is not true that the existence of a Hannan-consistent predictor is guaranteed if and only if

the loss matrix L can be expressed as KH. The following example describes such a situation.
Example 4.1. Let N =M = 3,

L=


1 0 0
0 1 0
0 0 1


 and H=



a b c

d d d

e e e


 �

Clearly, for all choices of the numbers a, b, c, d, e, the rank of the feedback matrix is at most two, and therefore
there is no matrix K for which L=KH. However, note that whenever the first action is played, the forecaster has
full information about the outcome yt . Formally, an action i ∈ �1� � � � �N � is said to be revealing for a feedback
matrix H if all entries in the ith row of H are different. Below we prove the existence of a Hannan-consistent
forecaster for all problems in which there exists a revealing action.

Theorem 4.1. Consider an arbitrary partial-monitoring problem �L�H� such that L has a revealing action.
Let ) ∈ �0�1�. If the randomized forecasting strategy of Figure 2 is run with parameters

5=max
{
0�

m−√
2m ln�4/)�

n

}
and %=

√
25 lnN

n
�
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Parameters: 0� 5� 1 and % > 0. Action r is revealing.
Initialization: w1�0 = · · · =wN�0 = 1.
For each round t = 1�2� � � �
(1) draw an action Jt from �1� � � � �N � according to the distribution

pi� t =
wi� t−1∑N
j=1wj� t−1

� i= 1� � � � �N (

(2) draw a Bernoulli random variable Zt such that � �Zt = 1�= 5;
(3) if Zt = 1, then play a revealing action, It = r , observe yt , and compute

wi� t =wi� t−1e
−%��i� yt �/5 for each i= 1� � � � �N (

(4) otherwise, if Zt = 0, play It = Jt and let wi� t =wi� t−i for each i= 1� � � � �N .

Figure 2. The randomized forecaster for feedback matrices with a revealing action.

where m= �4n�2/3�ln�4N/)��1/3, then

1
n

( n∑
t=1

��It� yt�− min
i=1� � � � �N

L1� n

)
� 8n−1/3

(
ln
4N
)

)1/3

holds with probability at least 1− ) for any strategy of the opponent.

Proof. The forecaster of Figure 2 chooses at each round a revealing action with a small probability 5≈m/n
(of the order of n−1/3). At these m stages where a revealing action is chosen, the forecaster suffers a total loss
of about m = O�n2/3�, but gets full information about the outcome yt . This situation is a modification of the
problem of label-efficient prediction studied in Helmbold and Panizza [27], and in Cesa-Bianchi et al. [13]. In
particular, the algorithm proposed in Figure 2 coincides with that of Theorem 2 of Cesa-Bianchi et al. [13]—
except maybe at those rounds when Zt = 1. Indeed, Theorem 2 of Cesa-Bianchi et al. [13] ensures that, with
probability at least 1− ), not more than m among the Zt have value 1, and that

n∑
t=1

��Jt� yt�− min
j=1� � � � �N

n∑
t=1

��j� yt�� 8n

√
ln�4N/)�

m
�

This in turn implies that

n∑
t=1

��It� yt�− min
j=1� � � � �N

n∑
t=1

��j� yt��m+ 8n
√
ln�4N/)�

m
�

and substituting the proposed value for the parameter m concludes the proof. �

Remark 4.1 (Dependence on N ). Observe that even when the condition of Theorem 3.1 is satisfied, the
bound of Theorem 4.1 is considerably tighter. Indeed, even though the dependence on the time horizon n is
identical in both bounds (of the order of n−1/3), the bound of Theorem 4.1 depends on the number of actions N
in a logarithmic way only. As an example, consider the case of the multiarmed bandit problem. Recall that
here H = L, and there is a revealing action if and only if the loss matrix has a row whose elements are all
different. In such a case Theorem 4.1 provides a bound of the order of ��lnN�/n�1/3. On the other hand, there
exist bandit problems for which, if N � n, it is impossible to achieve a regret smaller than �1/20��N/n�1/2 (see
Auer et al. [3]). If N is large, the logarithmic dependence of Theorem 4.1 gives a considerable advantage.
Interestingly, even if L cannot be expressed as KH, if a revealing action exists, the strategy of §3 can be used

to achieve a small regret. This can be done by using a trick of Piccolboni and Schindelhauer [37] to first convert
the problem into another partial-monitoring problem for which the strategy of §3 can be used. The basic step of
this conversion is to replace the pair of N ×M matrices �L�H� by a pair of mN ×M matrices �L′�H′�, where
m�M denotes the cardinality of the set � = �s1� � � � � sm� of signals (i.e., the number of distinct elements of the
matrix H). In the obtained prediction problem the forecaster chooses among mN actions at each time instance.
The converted loss matrix L′ is obtained simply by repeating each row of the original loss matrix m times. The
new feedback matrix H′ is binary and is defined by

H ′�m�i− 1�+ k� j�= �h�i� j�=sk � i= 1� � � � �N � k= 1� � � � �m� j = 1� � � � �M�
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Note that this way we get rid of the inconvenient problem of how to encode in a natural way the feedback
symbols. If the matrices

H′ and

[
H′

L′

]

have the same rank, then there exists a matrix K′ such that L′ =K′H′, and the forecaster of §3 can be applied to
obtain a forecaster that has an average regret of the order of n−1/3 for the converted problem. However, it is easy
to see that any forecaster A with such a bounded regret for the converted problem may be trivially transformed
into a forecaster A′ for the original problem with the same regret bound: A′ simply takes an action i whenever
A takes an action of the form m�i− 1�+ k for any k= 1� � � � �m.
The above conversion procedure guarantees Hannan consistency for a large class of partial-monitoring prob-

lems. For example, if the original problem has a revealing action i, then m =M and the M ×M submatrix
formed by the rows M�i−1�+1� � � � �Mi of H′ is the identity matrix (up to some permutations over the rows),
and therefore has full rank. Then, obviously, a matrix K′ with the desired property exists and the procedure
described above leads to a forecaster with an average regret of the order of n−1/3.
This last statement can be generalized, in a straightforward way, to an even larger class of problems as follows.

Corollary 4.1 (Distinguishing Actions). Assume that the feedback matrix H is such that for each out-
come j = 1� � � � �M there exists an action i ∈ �1� � � � �N � such that for all outcomes j ′ �= j , h�i� j� �= h�i� j ′�.
Then the conversion procedure described above leads to a Hannan-consistent forecaster with an average regret
of the order of n−1/3.

The rank of H′ can be considered as a measure of the information provided by the feedback. The highest
possible value is achieved by matrices H′ with rank M . For such feedback matrices, Hannan consistency can be
achieved for all associated loss matrices L′.
Even though the above conversion strategy applies to a large class of problems, the associated condition fails

to characterize the set of pairs �L�H� for which a Hannan-consistent forecaster exists. Indeed, Piccolboni and
Schindelhauer [37] show a second simple conversion of the pair �L′�H′� that can be applied in situations when
there is no matrix K′ with the property L′ =K′H′. (This second conversion basically deals with some actions
that they define as “nonexploitable” and which correspond to Pareto-dominated actions.) In these situations a
Hannan-consistent procedure can be constructed based on the forecaster of §3. On the other hand, Piccolboni and
Schindelhauer also show that if the condition of Theorem 3.1 is not satisfied after the second step of conversion,
then there exists an external randomization over the sequences of outcomes such that the sequence of expected
regrets grows at least as n, where the expectations are understood with respect to the forecaster’s auxiliary
randomization and the external randomization. Thus, a proof by contradiction using the dominated-convergence
theorem shows that Hannan consistency is impossible to achieve in these cases. This result combined with
Theorem 3.1 implies the following gap theorem.

Corollary 4.2. Consider a partial-monitoring forecasting problem with loss and feedback matrices L
and H. If Hannan consistency can be achieved for this problem, then there exists a Hannan-consistent forecaster
whose average regret vanishes at rate n−1/3.

Thus, whenever it is possible to force the average regret to converge to zero, a convergence rate of the order
of n−1/3 is also possible. In some special cases, such as the multiarmed bandit problem, even faster rates of the
order of n−1/2 might be achieved (see Auer et al. [3] and Auer [1]). However, as is shown in §5 below, for
certain problems in which Hannan consistency is achievable, it can be achieved only with rate of convergence
not faster than n−1/3.

5. A lower bound on the regret. Next we show that the order of magnitude (in terms of the length of the
play n) of the bound of Theorem 3.1 is, in general, not improvable. A closely related idea in a somewhat different
context (as well as the order of magnitude n−1/3 for a lower bound) appears in Mertens et al. [36, p. 290].

Theorem 5.1. Consider the partial-monitoring problem of label-efficient prediction introduced in Exam-
ple 2.4 and defined by the pair of loss and feedback matrices

L=


1 1
1 0
0 1


 and H=


a b
c c
c c


 �
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Then, for any n � 64 and for any (randomized) forecasting strategy, there exists a sequence y1� � � � � yn of
outcomes such that

Ɛ

[
1
n

n∑
t=1

��It� yt�

]
− min

i=1�2�3
1
n

n∑
t=1

��i� yt��
n−1/3

7
�

where Ɛ denotes the expectation with respect to the auxiliary randomization of the forecaster.

Remark 5.1. Using techniques as in Cesa-Bianchi et al. [13], it is easy to extend the theorem above to get
a lower bound of the order of ��lnN�/n�1/3. In view of the upper bound obtained in Theorem 4.1, this lower
bound is the best possible for the variant of label-efficient prediction described in Example 2.4, extended to the
case of N + 1 actions and N outcomes. However, we conjecture that for many other prediction problems with
partial monitoring, significantly larger lower bounds (as a function of N ) hold.
Proof. The proof proceeds by constructing a random sequence of outcomes and showing that, for any

(possibly randomized) forecaster, the expected value of the regret with respect to both the random choice of the
outcome sequence and the forecaster’s random choices is bounded from below by the claimed quantity.
More precisely, fix n� 64 and denote by U1� � � � �Un the auxiliary randomization to which the forecaster has

access. Without loss of generality, it can be taken as an i.i.d. sequence of uniform random variables in �0�1�.
The underlying probability space is equipped with the <-algebra of events generated by the random sequence of
outcomes Y1� � � � � Yn and by the randomization U1� � � � �Un. The random sequence of outcomes is independent
of the auxiliary randomization, whose associated probability distribution is denoted by �A.
We define three different probability distributions, � ⊗ �A, �⊗ �A, and �⊗ �A, formed by the product of

the auxiliary randomization and one of the three probability distributions � , �, and � over the sequence of
outcomes defined as follows. Under � (respectively, �) the sequence Y1� Y2� � � � � Yn is formed by independent,
identically distributed �1�2�-valued random variables with parameter 1/2 − 5 (respectively, 1/2 + 5), where
5> 0 is chosen below. � is the average distribution between � and �.
We denote by Ɛ� (respectively, Ɛ� , Ɛ�, Ɛ�, Ɛ�⊗�A

, Ɛ�⊗�A
, Ɛ�⊗�A

) the expectation with respect to �� (respec-
tively, � , �, �, � ⊗�A, �⊗�A, �⊗�A). Obviously,

sup
y1� � � � �yn

(
Ɛ��L̂n�− min

j=1�2�3
Lj�n

)
� Ɛ�

[
Ɛ��L̂n�− min

j=1�2�3
Lj�n

]
� (4)

Now,
Ɛ�

[
min

j=1�2�3
Lj�n

]
� min

j=1�2�3
Ɛ��Lj�n�=

n

2
− n5�

whereas
Ɛ��L̂n�=

n

2
+ 1
2
Ɛ��N1�+ 5Ɛ��N3�− 5Ɛ��N2��

where Nj is the random variable denoting the number of times the forecaster chooses the action j over the
sequence Y1� � � � � Yn, given the state U1� � � � �Un of the auxiliary randomization, for j = 1�2�3. Thus, using
Fubini’s theorem,

Ɛ�

[
Ɛ��L̂n�− min

j=1�2�3
Lj�n

]
� 1

2Ɛ�⊗�A
�N1�+ 5�n− Ɛ�⊗�A

�N2���

A similar argument shows that

Ɛ�

[
Ɛ��L̂n�− min

j=1�2�3
Lj�n

]
� 1

2Ɛ�⊗�A
�N1�+ 5�n− Ɛ�⊗�A

�N3���

Averaging the two inequalities, we get

Ɛ�

[
Ɛ��L̂n�− min

j=1�2�3
Lj�n

]
� 1

2Ɛ�⊗�A
�N1�+ 5

(
n− 1

2 �Ɛ�⊗�A
�N2�+ Ɛ�⊗�A

�N3��
)
� (5)

Consider first a deterministic forecaster. Denote by T1� � � � � TN1 ∈ �1� � � � � n� the times when the forecaster chose
Action 1. Because Action 1 is revealing, we know the outcomes at these times and denote them by Zn+1 =
�YT1� � � � � YTN1

�. Denote by Kt the (random) index of the largest integer j such that Tj � t− 1. Each action It of
the forecaster is determined1 by the random vector (of random length) Zt = �YT1� � � � � YTKt

�, which gathers all
information available at the beginning of round t. Again, because the forecaster we consider is deterministic,

1 Because the forecaster is deterministic, T1 is a constant, T2 depends only on YT1 , and so on: The Tj , j � Kt , depend only on �YT1 � � � � �

YTKt−1 �.
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Kt is fully determined by Zn+1. Hence, It can be seen as a function of Zn+1 rather than a function of Zt only.
This implies that, denoting by �n (respectively, �n and �n) the distribution of Zn+1 under � (respectively, �
and �), we have ��It = 2�=�n�It = 2� and � �It = 2�= �n�It = 2�. Pinsker’s inequality (see, e.g., Cover and
Thomas [15, Lemma 12.6.1]) then ensures that, for all t,

��It = 2�� � �It = 2�+
√

1
2���n��n�� (6)

where � denotes the Kullback-Leibler divergence. The right-hand side can be further bounded, first by using
the convexity of the Kullback-Leibler divergence in its first argument,

���n��n��
1
2���n��n�

and second by applying the following lemma.

Lemma 5.1. Consider a deterministic forecaster. For 0� 5� 1/4,

���n��n�� 16Ɛ��N1�5
2�

Proof. We note that Zn+1 = Zn, except when In = 1. In this case, Zn+1 = �Zn� Yn�. Therefore, using the
chain rule for relative entropy (see, e.g., Cover and Thomas [15, Lemma 2.5.3]),

���n��n� = ���n−1��n−1�+��In = 1���	1/2+5�	1/2−5�

= ���n−1��n−1�+��In = 1��25� ln
(
1+ 45

1− 25
)

� ���n−1��n−1�+ 1652��In = 1��

where 	p denotes the Bernoulli distribution with parameter p, and we used 5 � 1/4 in the final step. We
conclude by iterating the argument. �

Summing (6) over t = 1� � � � � n, we have proved that Ɛ� �N2�� Ɛ� �N2�+2n5
√
Ɛ� �N1�, and this holds for any

deterministic strategy. (Note that considering a deterministic strategy amounts to conditioning on the auxiliary
randomization U1� � � � �Un.)
Now consider an arbitrary (possibly randomized) forecaster. Using Fubini’s theorem and Jensen’s inequality

yields

Ɛ�⊗�A
�N2�� Ɛ�⊗�A

�N2�+ 2n5
√
Ɛ�⊗�A

�N1�� (7)

Symmetrically,

Ɛ�⊗�A
�N3�� Ɛ�⊗�A

�N3�+ 2n5
√
Ɛ�⊗�A

�N1�� (8)

Averaging (7) and (8) and using the concavity of the root function, we get

1
2 �Ɛ�⊗�A

�N2�+ Ɛ�⊗�A
�N3�� �

1
2 �Ɛ�⊗�A

�N2�+ Ɛ�⊗�A
�N3��+ 2n5

√
Ɛ�⊗�A

�N1�

�
n

2
+ 2n5

√
Ɛ�⊗�A

�N1��

Substituting this into (5) yields

Ɛ�

[
Ɛ��L̂n�− min

j=1�2�3
Lj�n

]
� 1

2m0+ n5
(
1
2 − 25

√
m0

)
� (9)

where m0 denotes Ɛ�⊗�A
�N1�. If m0 � 1/2, then for 5= 1/4 the right-hand side of (9) is at least n/28, which is

greater than n2/3/7 for n� 64. Otherwise, if m0 � 1/2, we set 5= �8
√
m0�

−1, which satisfies 0� 5� 1/4. The
lower bound then becomes

Ɛ�

[
Ɛ��L̂n�− min

j=1�2�3
Lj�n

]
� 1

2m0+
n

32
√
m0

�

and the right-hand side can be seen to always be larger than n2/3/7. An application of (4) concludes the
proof. �
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6. Internal regret. In this section we deal with the stronger notion of internal (or conditional) regret. Internal
regret is concerned with consistent modifications of the forecasting strategy. Each of these possible modifications
is parameterized by a departure function >� �1� � � � �N �→ �1� � � � �N �. After round n, the cumulative loss of
the forecaster is compared to the cumulative loss that would have been accumulated had the forecaster chosen
action >�It� instead of action It at round t = 1� � � � � n. If such a consistent modification does not result in
a much smaller accumulated loss, then the strategy is said to have small internal regret. Formally, we seek
strategies achieving

1
n

n∑
t=1

��It� yt�−
1
n
min
>

n∑
t=1

��>�It�� yt�= o�1��

where the minimization is over all possible functions >. We can extend the notion of Hannan consistency to
internal regret by requiring that the above average regret vanishes with probability 1 as n→�.
The notion of internal regret has been shown to be useful in the theory of equilibria of repeated games.

Foster and Vohra [17, 19] showed that if all players of a finite game choose a strategy that is Hannan consistent
with respect to the internal regret, then the joint empirical frequencies of play converge to the set of correlated
equilibria of the game (see also Fudenberg and Levine [21], Hart and Mas-Colell [24]). Foster and Vohra
[17, 19] proposed internal regret-minimizing strategies for the full-information case; see also Cesa-Bianchi and
Lugosi [11]. Here we design such a procedure in the setting of partial monitoring. The key tool is a conversion
trick described in Stoltz and Lugosi [39] (see also Blum and Mansour [8] for a similar procedure). This trick
essentially converts external regret-minimizing strategies into internal regret-minimizing strategies, under full
information. We extend it here to prediction under partial monitoring.
The forecaster we propose is formed by a subalgorithm and a master algorithm. The parameters %t and &t

used below are tuned as in §3. At each round t, the subalgorithm outputs a probability distribution

ut = �ui→j
t ��i� j�� i �=j

over the set of pairs of different actions; with the help of ut the master algorithm computes a probability
distribution pt over the actions.
Consider the loss estimates �̃�i� yt� defined in (1). For a given distribution p over �1� � � � �N �, denote

�̃�p� y�=
N∑
k=1

pk�̃�k� y��

Now introduce the cumulative losses

L̃
i→j
t−1 =

t−1∑
s=1

�̃�pi→j
s � ys��

where pi→j
s denotes the probability distribution obtained from ps by moving the probability mass pi� s from

i to j; that is, we set pi→j
s� i = 0 and p

i→j
s� j = ps� j + ps� i. The distribution ut computed by the subalgorithm is an

exponentially weighted average associated to the cumulative losses L̃i→j
t−1 , that is,

ui→j
t = exp�−%tL̃

i→j
t−1 �∑

k �=l exp�−%tL̃
k→l
t−1 �

�

Now let 
pt be the probability distribution over the set of actions defined by∑
�i� j�� i �=j

ui→j
t 
pi→j

t = 
pt � (10)

Such a distribution exists and can be computed by a simple Gaussian elimination (see, e.g., Foster and Vohra
[19] or Stoltz and Lugosi [39]). The master algorithm then chooses, at round t, the action It drawn according
to the probability distribution

pt = �1−&t�
pt +
&t
N
1� (11)

where 1= �1� � � � �1�.

Theorem 6.1. Consider any partial-monitoring problem such that the loss and feedback matrices satisfy
L = KH for some N × N matrix K with k∗ = max�1�maxi� j �k�i� j���, and consider the forecaster described
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above. Let ) ∈ �0�1�. Then, for all

n�
181�k∗�2

N lnN

(
ln
2N 2

)

)3

�

and with probability at least 1− ), the internal regret is bounded as

n∑
t=1

��It� yt�−min
>

n∑
t=1

��>�It�� yt�� 15�k∗�2/3N 5/3�lnN�1/3�n+ 1�2/3
√
ln
1
)
�

where the minimum is taken over all functions >� �1� � � � �N �→ �1� � � � �N �.

Note that with the help of the Borel-Cantelli lemma, Theorem 6.1 shows that, under the same conditions on
L and H, the forecaster described above achieves Hannan consistency with respect to internal regret.
Proof. First observe that it suffices to consider departure functions > that differ from the identity function

in only one point of their domain. This follows simply from
n∑

t=1
��It� yt�−min

>

n∑
t=1

��>�It�� yt��N

(
max
i �=j

n∑
t=1

�It=i���i� yt�− ��j� yt��

)
�

We now bound the right-hand side of the latter inequality.
For a given t, the estimated losses �̃�pi→j

t � yt�� i �= j , fall in the interval �−k∗N/&t� k∗N/&t�. Because &t and
%t are tuned as in Theorem 3.1, k∗N%t/&t � 1, and we can apply Theorem B.1 to derive

n∑
t=1

∑
i �=j

ui→j
t �̃�pi→j

t � yt�−min
i �=j

n∑
t=1

�̃�pi→j
t � yt��

2 lnN�N − 1�
%n+1

+
n∑

t=1
%t

∑
i �=j

ui→j
t ��̃�pi→j

t � yt��
2� (12)

For i �= j , 1i→j is the vector v such that vi = 0, vj = 2, and vk = 1 for all k �= i and k �= j . First use (11) and
then (10) to rewrite the first term of the left-hand side of (12) as

n∑
t=1

∑
i �=j

ui→j
t �̃�pi→j

t � yt� =
n∑

t=1

∑
i �=j

ui→j
t

(
�1−&t��̃�
pi→j

t � yt�+
&t
N
�̃�1i→j � yt�

)

=
n∑

t=1
�1−&t��̃�
pt� yt�+

n∑
t=1

&t
N

∑
i �=j

ui→j
t �̃�1i→j � yt�

=
n∑

t=1
�̃�pt� yt�+

n∑
t=1

&t
N

∑
i �=j

ui→j
t ��̃�1i→j � yt�− �̃�1� yt��

=
n∑

t=1
�̃�pt� yt�+

n∑
t=1

&t
N

∑
i �=j

ui→j
t ��̃�j� yt�− �̃�i� yt���

Substituting into (12), we have

max
i �=j

n∑
t=1

pi� t��̃�i� yt�− �̃�j� yt�� =
n∑

t=1
�̃�pt� yt�−min

i �=j

n∑
t=1

�̃�pi→j
t � yt�

�
4 lnN
%n+1

+
n∑

t=1
%t

∑
i �=j

ui→j
t ��̃�pi→j

t � yt��
2+

n∑
t=1

&t
N

∑
i �=j

ui→j
t ��̃�i� yt�− �̃�j� yt��� (13)

Now we apply Bernstein’s inequality (see Lemma A.1) several times and mimic the proofs of Lemmas 3.1 and
3.2. Introduce the notation )′ = )/�2N�N − 1�+ 2�. For all pairs i �= j , with probability at least 1− )′,

n∑
t=1

pi� t��̃�i� yt�− �̃�j� yt�� �
n∑

t=1
pi� t���i� yt�− ��j� yt��

−
(√

2
(
2�k∗N�2

n∑
t=1

1
&t

)
ln
1
)′

+ 1
3

(
1+ 2k

∗N
&n

)
ln
1
)′

)
� (14)

Similarly to Lemma 3.3, we also have, with probability at least 1− )′,

n∑
t=1

%t

∑
i �=j

ui→j
t ��̃�pi→j

t � yt��
2
�

n∑
t=1

%t

�k∗N�2

&t
+
√
2
(
�k∗N�4

n∑
t=1

%2t
&3t

)
ln
1
)′

+ 1
3
ln
1
)′
� (15)
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whereas, similarly to Lemma 3.4, with probability at least 1− )′,

n∑
t=1

&t
N

∑
i �=j

ui→j
t ��̃�i� yt�− �̃�j� yt���

1
N

n∑
t=1

&t +
√
2
(
2�k∗�2

n∑
t=1

&t

)
ln
1
)′

+ 1
3

(
2k∗ + &1

N

)
ln
1
)′
� (16)

We then use the Hoeffding-Azuma inequality (see Hoeffding [29], Azuma [4]) N�N −1� times to show that for
every pair i �= j , with probability at least 1− )′,

n∑
t=1

pi� t���i� yt�− ��j� yt���
n∑

t=1
�It=i���i� yt�− ��j� yt��−

√
2n ln

1
)′
� (17)

Finally, we substitute inequalities (14)–(17) into (13) and use a union-of-event bound to obtain that, with
probability at least 1− ),

max
i �=j

n∑
t=1

�It=i���i� yt�− ��j� yt�� �
4 lnN
%n+1

+
√
2
(
2�k∗N�2

n∑
t=1

1
&t

)
ln
1
)′

+ 1
3

(
1+ 2k

∗N
&n

)
ln
1
)′

+
n∑

t=1
%t

�k∗N�2

&t
+
√
2
(
�k∗N�4

n∑
t=1

%2t
&3t

)
ln
1
)′

+ 1
3
ln
1
)′

+ 1
N

n∑
t=1

&t +
√
2
(
2�k∗�2

n∑
t=1

&t

)
ln
1
)′

+ 1
3

(
2k∗ + &1

N

)
ln
1
)′

+
√
2n ln

1
)′
�

The proof now proceeds similarly to that of Theorem 3.1 by substituting the values of the %t and &t ,

max
i �=j

n∑
t=1

�It=i���i� yt�− ��j� yt�� � 4�k∗N�2/3�lnN�1/3�n+ 1�2/3+√
3�k∗N�2/3�lnN�−1/6�n+ 1�2/3√ln�1/)′�

+ 2
3 �k

∗N�1/3�lnN�−1/3n1/3 ln�1/)′�+ �1/3� ln�1/)′�+ 3
2 �k

∗N�2/3�lnN�1/3n2/3

+√
3�k∗N�1/3�lnN�1/6n1/3

√
ln�1/)′�+ �1/3� ln�1/)′�

+ 3
2 �k

∗�2/3N−1/3�lnN�1/3n2/3+√
6�k∗�4/3N 1/3�lnN�1/6n1/3

√
ln�1/)′�

+ 2
3k

∗ ln�1/)′�+ 1
3 �k

∗�2/3N−1/3�lnN�1/3 ln�1/)′�+√
2n ln�1/)′��

We continue by grouping terms together, using )′ � )/�2N 2� for N � 2 and performing some other simple
overapproximations:

max
i �=j

n∑
t=1

�It=i���i� yt�− ��j� yt�� �

(
7+√

3

√
ln��2N 2�/)�

lnN

)
��k∗N�2 lnN�1/3�n+ 1�2/3+

√
2n ln

2N 2

)

+ 5�k∗�4/3N 1/3�lnN�−1/3n1/3 ln
2N 2

)
+ 5
3
k∗ ln

2N 2

)
�

If n� 181�k∗�2�N lnN
)−1

�ln�2N 2/)��3, then the right-hand side of the above inequality is at most

15�k∗N�2/3�lnN�1/3�n+ 1�2/3
√
ln
1
)
�

as desired. �

7. Random feedback. Several authors consider an extended setup in which the feedbacks are random
variables. See Rustichini [38], Mannor and Shimkin [32], Weissman and Merhav [42], and Weissman et al. [43]
for examples. In this section we briefly point out that most of the results of this paper extend effortlessly to this
more general case.
To describe the model, denote by B�� � the set of all probability distributions over the set of signals � . The

signaling structure is formed by a collection of NM probability distributions C�i� j� over � , for i= 1� � � � �N and
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j = 1� � � � �M . At each round, the forecaster now observes a random variable H�It� yt�, drawn independently
from all the other random variables, with distribution C�It� yt �

.
We can easily generalize the results of Theorems 3.1 and 6.1 to the case of random feedbacks. As above, each

element of � is encoded by a real number in �−1�1�. Let E be the N ×M matrix whose elements are given
by the expectations of the random variables H�i� j�. Theorems 3.1 and 6.1 remain true under the condition that
there exists a matrix K such that L = KE. The only necessary modification is how the losses are estimated.
Here the forecaster uses the estimates

�̆�i� yt�=
k�i� It�H�It� yt�

pIt� t
i= 1� � � � �N

instead of the estimates defined in §3. Conditioned on I1� � � � � It−1, the expectation of �̆�i� yt� is the loss ��i� yt�.
Because this, together with boundedness, are the only conditions that were needed in the proofs, the extension
of the results to this more general framework is immediate.
The results of §4 can be generalized to the case of random feedbacks as well. For example, to construct

H′ when H is a matrix of probability distributions over � , we proceed as follows: for 1 � i � N and s ∈ � ,
denote by H�i� s� the row vector of elements in �0�1� such that the kth element of H�i� s� is C�i�k��s�. Now, the
��k1− 1�m+ k2�-th row of H′, 1� k1 �N , 1� k2 �m, is H�k1� sk2 �

. All the other details of the construction and
the proofs go through.

Appendix A. Bernstein’s inequality. Bernstein’s inequality (see, e.g., Freedman [20], Massart [33]) is used
several times in the proofs.

Lemma A.1 (Bernstein’s Inequality). Let X1�X2� � � � �Xn be a bounded martingale difference sequence
(with respect to the filtration 
 = �
t�1�t�n), with increments bounded from above by K � 0: for all t, Xt �K.
Denote by

Mn =
n∑

t=1
Xt�

the associated martingale, and by

Vn =
n∑

t=1
Ɛ�X2

t �
t−1��

its predictable quadratic variation. Assume that Vn � v for some constant v. Then, for all x > 0,

�
[
Mn >

√
2vx+ �1/3�Kx

]
� e−x�

Appendix B. Basic lemmas.

Theorem B.1. Consider any sequence of losses �i� t ∈ �−Bt�Bt�, i = 1� � � � �N , Bt > 0, t = 1� � � � � n, and
any nonincreasing sequence of tuning parameters %t > 0, t = 1� � � � � n, such that %tBt � 1 for all t. Then, the
forecaster that uses the exponentially weighted averages

qi� t =
wi� t∑N
j=1wj� t

� i= 1� � � � �N �

where

wi� t = exp
(
−%t

t−1∑
s=1

�i� s

)
�

satisfies
n∑

t=1

N∑
i=1

qi� t�i� t − min
j=1� � � � �N

n∑
t=1

�j� t �

(
2

%n+1
− 1
%1

)
lnN +

n∑
t=1

%t

N∑
i=1

qi� t�
2
i� t �

The proof below is a simple modification of an argument first proposed in Auer et al. [2]. Denote the numerator
of the defining expression of qi� t by wi� t = e−%tLi� t−1 , where Li� t−1 = �i�1+ · · · + �i� t−1, and use w′

i� t = e−%t−1Li� t−1
to denote the weight wi� t where the parameter %t is replaced by %t−1. The normalization factors will be denoted
by Wt =

∑N
j=1wj� t and W

′
t =

∑N
j=1w

′
j� t . Finally, we use kt to denote the expert whose loss after the first t rounds

is the lowest (ties are broken by choosing the expert with smallest index). That is, Lkt� t
=mini�N Li� t .

In the proof of the theorem, we also make use of the following technical lemma.
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Lemma B.1. For all N � 2, for all 1� 0� 0, and for all d1� � � � � dN � 0 such that
∑N

i=1 e
−0di � 1,

ln
∑N

i=1 e
−0di∑N

j=1 e
−1dj �

1−0

0
lnN�

Proof. We begin by writing

ln
∑N

i=1 e
−0di∑N

j=1 e
−1dj = ln

∑N
i=1 e

−0di∑N
j=1 e

�0−1�dj e−0dj

= − lnƐ�e�0−1�D�
� �1−0�Ɛ�D��

where we applied Jensen’s inequality to the random variable D, taking value di with probability e
−0di/

∑N
j=1 e

−0dj
for each i= 1� � � � �N . Because D takes at most N distinct values, its entropy H�D� is at most lnN . Therefore,

lnN �H�D� =
∑N

i=1 e
−0di(0di + ln∑N

j=1 e
−0dj )∑N

j=1 e
−0dj

= 0Ɛ�D�+ ln
N∑
j=1

e−0dj � 0Ɛ�D��

where the last inequality holds because
∑N

i=1 e
−0di � 1. Hence, Ɛ�D�� �lnN�/0. As 1� 0 by hypothesis, we

can substitute the bound on Ɛ�D� in the upper bound above and conclude the proof. �

Proof. As is usual in the analysis of the exponentially weighted average predictor, we study the evolution
of ln�Wt+1/Wt�. However, here we need to couple this term with ln�wkt−1� t/wkt� t+1�, including in both terms the
time-varying parameter %t . Tracking kt , the best expert, is used to lower bound the weight ln�wkt� t+1/Wt+1�. In
fact, the weight of the overall best expert (after n rounds) could become arbitrarily small during the prediction
process. We thus obtain the following:

1
%t

ln
wkt−1� t

Wt

− 1
%t+1

ln
wkt� t+1
Wt+1

=
(

1
%t+1

− 1
%t

)
ln

Wt+1
wkt� t+1

+ 1
%t

ln
w′
kt � t+1/W

′
t+1

wkt� t+1/Wt+1
+ 1
%t

ln
wkt−1� t/Wt

w′
kt � t+1/W

′
t+1

= �A�+ �B�+ �C��

We now bound separately the three terms on the right-hand side. The term �A� is easily bounded by using
%t+1 � %t and the fact that kt is the index of the expert with the smallest loss after the first t rounds. Therefore,
wkt� t+1/Wt+1 must be at least 1/N . Thus, we have

�A�=
(

1
%t+1

− 1
%t

)
ln

Wt+1
wkt� t+1

�

(
1

%t+1
− 1
%t

)
lnN�

We proceed to bounding the term �B� as follows:

�B� = 1
%t

ln
w′
kt � t+1/W

′
t+1

wkt� t+1/Wt+1
= 1
%t

ln
∑N

i=1 e
−%t+1�Li� t−Lkt � t �∑N

j=1 e
−%t�Lj� t−Lkt � t �

�
%t −%t+1
%t%t+1

lnN =
(

1
%t+1

− 1
%t

)
lnN�

where the inequality is proven by applying Lemma B.1 with di = Li� t −Lkt� t
. Note that di � 0 because kt is the

index of the expert with the smallest loss after the first t rounds and
∑N

i=1 e
−%t+1di � 1, as for i = kt we have

di = 0. The term �C� is first split as follows:

�C�= 1
%t

ln
wkt−1� t/Wt

w′
kt � t+1/W

′
t+1

= 1
%t

ln
wkt−1� t

w′
kt � t+1

+ 1
%t

ln
W ′

t+1
Wt

�

We bound separately each one of the two terms on the right-hand side. For the first one, we have

1
%t

ln
wkt−1� t

w′
kt � t+1

= 1
%t

ln
e−%tLkt−1� t−1

e−%tLkt � t
= Lkt� t

−Lkt−1� t−1�
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For the second term, we consider the random variable Zt that takes value �i� t with probability qi� t =wi� t/Wt for
each i= 1� � � � �N . As %tBt � 1, we have in particular %t�i� t � 1, so we can use the inequality ex � 1+ x+ x2

for x� 1, and ln�1+ u�� u for u>−1, to obtain
1
%t

ln
W ′

t+1
Wt

= 1
%t

ln

∑N
i=1wi� te

−%t�i� t

Wt

= 1
%t

ln
N∑
i=1

qi� te
−%t�i� t

�
1
%t

ln
( N∑

i=1
qi� t�1−%t�i� t +%2t �

2
i� t�

)

� −
N∑
i=1

qi� t�i� t +%t

N∑
i=1

qi� t�
2
i� t �

Finally, we plug back into the main equation the bounds on the first two terms �A� and �B� and the bounds on
the two parts of the term �C�. After rearranging we obtain

N∑
i=1

qi� t�i� t � �Lkt� t
−Lkt−1� t−1�+%t

N∑
i=1

qi� t�
2
i� t +

1
%t+1

ln
wkt� t+1
Wt+1

− 1
%t

ln
wkt−1� t

Wt

+ 2
(

1
%t+1

− 1
%t

)
lnN�

We apply the above inequalities to each t = 1� � � � � n and sum up using

n∑
t=1

�Lkt� t
−Lkt−1� t−1�= min

j=1� � � � �N
Lj�n�

n∑
t=1

(
1

%t+1
ln
wkt� t+1
Wt+1

− 1
%t

ln
wkt−1� t

Wt

)
�− 1

%1
ln
wk0�1

W1

= lnN
%1

to conclude the proof. �
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