
Complementi di Algoritmi e Strutture Dati

Conteggio approssimato

Docente: Nicolò Cesa-Bianchi versione 1 aprile 2025

Supponiamo di dover trovare, in una tabella di grande dimensioni, tutti gli elementi che si ripetono
più di un certo numero di volte. Per esempio, vogliamo trovare i prodotti visualizzati più frequen-
temente su Amazon, oppure le parole cercate più frequentemente su Google. Questo problema
prende il nome di ricerca degli heavy hitters e, in astratto, richiede di trovare in una tabella di n
interi tutti gli interi che si ripetono almeno n/k volte, dove n≫ k. Si noti che ci possono essere al
più k heavy hitters e potrebbe non essercene neanche uno.

Partiamo da una versione più semplice di questo problema: vogliamo trovare nella tabella un
numero che si ripete almeno n/2 volte sapendo che ce n’è uno. Chiaramente, questo valore deve
corrispondere alla mediana di tutti i valori nella tabella e posso trovarlo in tempo O(n) con un
algoritmo deterministico. Vediamo ora un semplicissimo algoritmo ad hoc che trova tale valore
scandendo l’array una sola volta dall’inizio alla fine e usando una memoria ausiliaria sublineare
(algoritmi di questo tipo si chiamano streaming).

Algorithm 1 (Boyer-Moore)

Require: Array A
1: c← 0 ▷ inizializza contatore maggioranza
2: v ← NULL ▷ inizializza maggioranza corrente
3: for i = 1, . . . , n do
4: if c = 0 then ▷ nessuna maggioranza
5: v ← A[i]
6: c← c+ 1
7: else if A[i] = v then ▷ incremento maggioranza corrente
8: c← c+ 1
9: else ▷ decremento maggioranza corrente

10: c← c− 1
11: end if
12: end for

Non è difficile verificare che quando l’algoritmo termina il valore corrente di v corrisponde al valore
di maggioranza nella tabella. Ora ci chiediamo se esista una soluzione streaming anche per il
problema di trovare gli heavy hitters. In realtà è possibile dimostrare che non esiste un algoritmo
streaming che risolve il problema di ricerca degli heavy hitters con memoria ausiliaria sublineare
(dimostrazione omessa).

Per riuscire a trovare una soluzione streaming, rilassiamo il problema originario introducendo una
versione approssimata. Nel problema di ricerca di heavy hitters ε-approssimati (indicato ε-HH)
abbiamo una tabella A di lunghezza n e due parametri k e ε con 1

n < ε < 1
k . L’algoritmo deve

produrre una lista di valori tale che:

1. ogni valore che compare in A almeno n
k volte è nella lista,

1



2. ogni valore nella lista compare almeno n
k − εn volte in A.

L’algoritmo che proponiamo è probabilistico e usa memoria ausiliaria Θ
(
lnn
ε

)
.

Per risolvere il problema ε-HH utilizzeremo una struttura dati probabilistica chiamata count-min
sketch. Questa struttura supporta due operazioni: Inc(x) che incrementa il contatore associato al
valore x e Count(x) che ritorna il numero di volte che Inc(x) è stato invocato. La struttura dati è
composta da ℓ tabelle hash ciascuna di dimensione b. Siano h1 . . . , hℓ : {1, . . . , n} → {0, . . . , b− 1}
le funzioni hash associate alle ℓ tabelle. Ogni tabella hash comprime la tabella di n elementi in
una di dimensione b ≪ n. Le ℓ tabelle diverse servono a ridurre la probabilità di errore dovuto
a collisione. Il codice per le due operazioni e per la routine principale SelectEl è estremamente
semplice.

Algorithm 2 Count-Min Sketch

1: Crea matrice CMS[ℓ][b]

2: procedure Inc(x)
3: for i = 1, . . . , ℓ do
4: Incrementa CMS[i]

[
hi(x)]

5: end for
6: end procedure

7: procedure Count(x)
8: Ritorna min

i=1,...,ℓ
CMS[i]

[
hi(x)]

9: end procedure

10: procedure SelectEl(A, k)
11: Crea lista vuota
12: for t = 1, . . . , n do
13: Leggi il prossimo elemento xt = A[t]
14: Esegui Inc(xt)
15: if Count(xt) ≥ n

k then
16: Aggiungi xt alla lista (solo se xt non è già nella lista)
17: end if
18: end for
19: Ritorna la lista
20: end procedure

Sia x un valore che compare almeno una volta nella tabella A e sia nx il numero di occorrenze di
x in A. Dato che b≪ n ci saranno delle collisioni, ovvero h(x) = h(y) con x ̸= y. Questo significa
che

nx ≤ CMS[i]
[
hi(x)] i = 1, . . . , ℓ.

Infatti Inc(x) verrà chiamata esattamente nx volte, ma—a causa delle collisioni—due chiamate
Inc(x) e Inc(y) tali che hi(x) = hi(y) incrementeranno lo stesso contatore. Quindi, dato che ogni
CMS[i]

[
hi(x)] sovrastima nx è sensato utilizzare come valore di Count(x) la più piccola di tali

stime.

2



Analizziamo ora la probabilità di errore del count-min sketch quando le funzioni hash h1 . . . , hℓ
sono estratte a caso e in modo indipendente da una famiglia universale H di funzioni hash. Usiamo
la notazione H1, . . . ,Hℓ per indicare che le funzioni sono variabili casuali opportunamente definite.
Dato x siano Z1, . . . , Zℓ le variabili casuali Zi = CMS[i]

[
Hi(x)] dove la probabilità è rispetto

all’estrazione di Hi da H. Allora

Zi = nx +
∑
y ̸=x

ny I{Hi(y) = Hi(x)} .

Ora, dato che H è una famiglia universale,

P
(
Hi(x) = Hi(y)

)
≤ 1

b
i = 1, . . . , ℓ.

Quindi,

E
[
Zi

]
= nx +

∑
y ̸=x

ny P
(
Hi(y) = Hi(x)

)
≤ nx +

∑
y ̸=x

ny

b
≤ nx +

n

b
.

Introduciamo le variabili casuali non negative Xi = Zi − nx. Scegliendo b = e
ε abbiamo che

E
[
Xi

]
≤ εn

e . Applicando la disuguaglianza di Markov alle Xi otteniamo quindi

P (Zi ≥ nx + εn) = P
(
Xi ≥ e

εn

e

)
≤ 1

e
.

Ora, dato che le funzioni hash H1 . . . , Hℓ sono indipendenti, anche le Z1, . . . , Zℓ sono indipendenti
e quindi, in particolare, gli eventi Zi ≥ nx + εn (i = 1, . . . , ℓ) sono indipendenti. Questo implica
che

P (Count(x) ≥ nx + εn) = P
(

min
i=1,...,ℓ

Zi ≥ nx + εn

)
=

ℓ∏
i=1

P (Zi ≥ nx + εn)

= P

 ∧
i=1,...,ℓ

(
Zi ≥ nx + εn

)
≤ e−ℓ .

Per capire i prossimi passaggi ricordiamo che, per qualsiasi insieme di eventi A1, . . . , AN vale che

P
(
∃i : Ai

)
= P

(
A1 ∪ · · · ∪AN

)
≤

N∑
i=1

P(Ai) .

Dato che vogliamo conteggi corretti con alta probabilità per ogni x nella tabella A di lunghezza n,

P (∃x ∈ A : Count(x) ≥ nx + εn) = P

(⋃
x∈A

(Count(x) ≥ nx + εn)

)
≤
∑
x∈A

P (Count(x) ≥ nx + εn)

≤ n e−ℓ ≤ δ

3



per ℓ ≥ ln n
δ .

Quindi, se fissiamo δ = 0,01, abbiamo che b = Θ
(
1
ε

)
e ℓ = Θ(log n). Quindi lo spazio totale

utilizzato è Θ
(
1
ε log n

)
, ovvero logaritmico nella taglia della tabella A se ε non dipende da n.1 La

routine SelectEl soddisfa le seguenti proprietà:

1. ogni valore che compare almeno n
k volte in A è nella lista,

2. con probabilità almeno del 99%, ogni valore nella lista compare almeno n
k − εn volte in A.

1In realtà dobbiamo anche contare lo spazio utilizzato dalla lista che contiene gli heavy hitters. Questo sarà di
ordine O

(
k/(1− εk)

)
.

4


