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This material is partially based on the book: Networks, Crowds, and Markets: Reasoning about a
Highly Connected World, by David Easley and Jon Kleinberg. Cambridge University Press, 2010.

The underlying assumption we make when modeling auctions is that each bidder i has an intrinsic
value vi ∈ [0, 1] for the item being auctioned. They are willing to purchase the item for a price up
to this value, but not for any higher price.

Ascending-bid auctions: These auctions (also called English auctions) are carried out interac-
tively in real time. The seller gradually raises the price, bidders drop out until finally only one
bidder remains, and that bidder wins the object at this final price. These correspond to second-price
sealed-bid auctions, where bidders submit simultaneous sealed bids to the seller and the highest
bidder wins the object paying the value of the second-highest bid.

Descending-bid auctions: This is also an interactive auction format (also called Dutch auction),
in which the seller gradually lowers the price from some high initial value until the first moment
when some bidder accepts and pays the current price. These correspond to first-price sealed-bid
auctions, where bidders submit simultaneous sealed bids to the seller and the highest bidder wins
the object paying the value of their bid.

A shading strategy s : [0, 1] → [0, 1] is a map from valuations to bids. As we assume that bidders
are rational, s(v) ≤ v holds for all v ∈ [0, 1]. Hence s(0) = 0. We also assume that s is monotone:
v′ > v implies s(v′) > s(v). In other words, we always increase a bid if the valuation increases.

Second-price auctions. If there are n bidders with valuations v1, . . . , vn and using shading
strategies s1, . . . , sn, the payoff function for bidder 1 in a second-price auction is

f1(v1, . . . , vn, s1, . . . , sn) = I
{
s1(v1) > max

i ̸=1
si(vi)

}(
v1 −max

i ̸=1
s1(v1)

)
and similarly for the other bidders.

We say that strategy s1 is dominating for bidder 1 if

f1(v1, . . . , vn, s1, . . . , sn) ≥ f1(v1, . . . , vn, s
′, . . . , sn) for all v1, . . . , vn, s1, . . . , sn, s

′

Teorema 1 In a second-price auction, the strategy s : v 7→ v is dominating for any bidder.

Dimostrazione. Consider bidder i with valuation vi and bid bi. Consider first bi > vi. If i is
winning with bi = vi, then increasing the bid does not change the payoff. If i is losing with bi = vi,
then then payoff remains zero unless the new bid goes above the highest bid maxj ̸=i bj > vi. In this
case the payoff becomes negative. Hence i should not consider bi > vi. Now consider bi < vi. If i is
losing with bi = vi, then decreasing the bid does not change the payoff. If i is winning with bi = vi,
then then payoff remains vi −maxj ̸=i bj > 0 unless the new bid goes below the second-highest bid
maxj ̸=i bj . In this case the payoff becomes zero. Hence i should not consider bi < vi. This concludes
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the proof. □

First-price auctions. If there are two bidders with valuations v1, v2 and using shading strategies
s1, s2, the payoff function for bidder 1 in a first-price auction is

g1(v1, v2, s1, s2) = I{s1(v1) > s2(v2)}
(
v1 − s1(v1)

)
and similarly for bidder 2.

Assuming the valuations v1, v2 are realizations of two random variables V1, V2, an equilibrium for
the two bidders is a pair (s1, s2) of strategies such that

E
[
g1(v1, V2, s1, s2)− g1(v1, V2, s

′, s2)
]
≥ 0

E
[
g2(V1, v2, s1, s2)− g2(V1, v2, s1, s

′)
]
≥ 0

for all s′, v1, v2

Teorema 2 If the valuations V1, V2 for the two bidders are independently drawn from the uniform
distribution over the [0, 1] interval and the two bidders use the same shading strategy s, then (s, s)
with s : v 7→ v/2 is an equilibrium for the bidders in a first-price auction.

Dimostrazione. Given the realized valuation v1, the expected payoff for player 1 is

E
[
g1(v1, V2, s, s)

]
= P

(
s(v1) > s(V2)

)(
v1 − s(v1)

)
= P

(
v1 > V2

)(
v1 − s(v1)

)
= v1

(
v1 − s(v1)

)
where we used the monotonicity assumption: s(v) > s(v′) if and only if v > v′, and our assumption
on the uniform distribution for V1, V2. The equilibrium condition for player 1 then states that

v1
(
v1 − s(v1)

)
≥ v1

(
v1 − s′(v1)

)
Since bidder 2 is never going to bid more than s(1), we can assume that s′ satisfies the additional
condition s′(v) ∈ [0, s(1)] for all v ∈ [0, 1]. Indeed, bidding higher than s(1) would only reduce the
payoff of bidder 1, without increasing the probability of winning. This implies that we can find
v ∈ [0, 1] such that s′(v1) = s(v). Hence, the equilibrium condition becomes

v1
(
v1 − s(v1)

)
≥ v1

(
v1 − s(v)

)
Substituting s(v) = v/2 we get

v21
2

≥ v21 −
vv1
2

Multiplying by 2 both sides and rearranging we obtain v21 + v2 − 2vv1 ≥ 0 which is always true.
This concludes the proof. □
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