Complementi di Algoritmi e Strutture Dati
Hedge and Exp3 for sequential decision-making

Written by Tommaso R. Cesari and Nicolo Cesa-Bianchi versione 20 maggio 2025

Consider an online decision-making problem in which an algorithm has to respond to a sequence
of requests that arrive one by one. The algorithm must take an action as each request arrives, and
it may discover later that its past actions were suboptimal. However, once they are played, past
actions cannot be changed. We begin by illustrating this setting with a concrete example.

Imagine the process of picking good times to invest in a stock. For simplicity, assume that there is
a single stock of interest and its daily price movement is modeled as a sequence of binary events:
up or down. (This will be generalized later to allow non-binary events.) Each morning we try to
predict whether the price will go up or down that day; if our prediction happens to be wrong we
lose a dollar that day, and if it is correct, we lose nothing. We let the stock movements in the
model be arbitrary and even adversarial, meaning that there might be an antagonistic environment
which picks the movements with the deliberate purpose of causing us the largest possible loss.
To balance out this pessimistic assumption, we assume that while making our predictions, we are
allowed access to the predictions of K “experts”. These experts could be arbitrarily correlated,
and they may or may not be able to make reliable predictions. The algorithm’s goal is to limit its
cumulative losses (i.e., its bad predictions) to roughly the same as the best of these experts.

At first sight this seems an impossible goal, since it is not known until the end of the sequence
who the best expert was, whereas the algorithm is required to make predictions along the way. For
example, a first, naive algorithm may compute each day’s up or down prediction by going with
the majority opinion among the experts that day. However, it is easy to see that this algorithm
is doomed to failure because a majority of experts may be consistently wrong on every single day.
A better way to pick a prediction consists in maintaining a weighting of the experts. Initially
all have equal weight. As time goes on, some experts are seen as making better predictions than
others, and the algorithm increases their weight proportionally. The algorithm’s prediction of up
or down for each day is then computed by going with the opinion of the weighted majority of the
experts for that day. This way, experts that made good predictions in the past are preferred to
ones who performed poorly. A famous implementation of this concept is an algorithm called Hedge.
Before going through its mechanics in details we introduce rigorously the aforementioned online
decision-making problem, called prediction from expert advice.

Prediction with expert advice is based on the following protocol for sequential decisions. A finite
set of experts {1,...,K} is fixed and known by both the decision maker and the (adversarial)
environment. At each round ¢t = 1,2,... the environment secretly chooses a loss ¢ (i) € [0, 1] for
each expert i; the decision maker picks an expert [, (possibly at random), then they incur a loss
0,(I;) and the losses ¢;(i) of all experts i are revealed. The performance of the decision maker at
time 7' is measured by the difference between its sequential risk and the average loss of the best
expert for £1,...,¢p € [0,1]%, that is

1< . 1
Fy o] - (7 300)

E

where the expectation is taken with respect to the draw of I,..., Ir.

We want to design an algorithm for choosing I, ..., Iy such that, for T" — oo,

1 & LT
T tzl&(ft)] - (T tzlﬁt(z)) -0

That is, the sequential risk of the algorithm converges to the average loss of the optimal expert
irrespective of the sequence of losses ¢; € [0,1]%. As a first attempt we may consider the simple
algorithm that selects the expert that performed best in the past,

E

t—1
I = argmme
=1, Ks 1

and I is chosen arbitrarily. However, this simple algorithm is doomed to have linear regret for some
sequence of losses. For example, consider K = 2 and loss vectors chosen as follows: ¢; = (0,1/2)
and, for the time steps t > 1, ¢35 = (1,0), €3 = (0,1), £4 = (1,0), and so on. For simplicity, assume
I = 0 so that ¢1(I1) = 0. Then Iy = 1 because ¢;(2) = 1/2. This implies (o) = 1. At t =3
we have £1(1) 4+ f2(1) = 1 and £1(2) + ¢5(2) = 1/2. Hence I3 = 2 and ¢3(I;) = 1. It is easy to see
that, after any number 7" > 1 of time steps, the algorithm accumulates loss T'— 1 whereas the best
expert has loss at most 7'/2, which implies linear regret.

Algorithm Hedge

Parameter: learning rate v € (0,1)
Initialization: wq(i) =1foralli=1,..., K
Fort=1,...,T

1. define the distribution p:(i) = w(i) /Wy, where W = Zszl we(F)
2. draw I; according to p;
3. incur a loss ¢;(I;) and £.(7) is revealed for each expert i

4. update the weights

Weg1 (i) = wy(i)e 7@

In order to overcome this problem, we inject a bit of randomness and pick an expert ¢ at time ¢
with probability proportional to exp (-y, Es(z’)). The resulting algorithm is called Hedge (see
box above). The analysis of Hedge looks at the ratio between the total weight on the experts at
subsequent rounds:

Wit smwi1(i) o= wili)6 & —te(
= _; = _; z:: yeu(i
K
gszi)(l—wt(z‘)ﬂ?et() /2) —1—v2pt (i)es(i +f2pt (i)es(i
i=1

where the inequality follows by e™* < 1 — z + 22/2 (which holds for all x > 0). Taking logs, we

obtain
n (Yt - Ejpt (D) (0) +f§jpt (D)6 (0)
W,

t

Now note that 0 < e™® < 1 — x + 22/2 implies —z + 22/2 > —1. Hence,

Zpt (VEe(4) 721‘,) Zpt -1

Now using In(1 + z) < z (which holds for all z > —1) and summing over 1,...,7T yields

In (WTH) 21 (Wt+l)< S m@a fizmww

t=1 i=1 t=1 i=1

On the other hand, for any fixed arm k

W w
In <VTV+> >n (TJV> - _72&

1
Putting together the two bounds on In(Wp1/W7) and dividing by v gives

d an ’y d
ZZ% (2)e(d Z 522% (i)6,(i (1)

t=1 i=1

Note now that

ft It Zpt Et (2)

by definition of expectation. Furthermore, upper bounding each £;(i)? by 1 and using the fact that
p; is a distribution, we obtain

4 InK ~
E Zét It Zﬁt <7+2T
t=1

Being the previous inequality true for all experts k and all learning rates «, tuning v = /2 In(K)/T
and dividing both sides by T yields

1 2In K
E [T;gt(lt)] _i min (th) ~ T

With a slightly more complicated proof, one can prove the same bound with a slightly worse
constant when the weights in step 4 of Hedge are defined by

wiy1(4) —eXP< 'Ytzg)

3

and vy = /21In(K)/t. This proves that the sequential risk of Hedge converges to the average loss
of the optimal expert for T — co.

Surprisingly, a similar result can be achieved even if the only loss that is revealed at each round
is ¢(I;). Imagine the problem of placing ads on the Web. For each incoming user ¢t = 1,2,... a
publisher selects an ad I; from a pool of K ads, and displays the corresponding ad to the user.
The publisher then loses 1 if the ad is not clicked by the user, otherwise they lose 0. After each
interaction the publisher finds out if the user did or did not click on the chosen ad but they have
no way of knowing if the user would have clicked on any of the other ads.

This problem is modeled by the following protocol for sequential decisions, called multi-armed
bandit setting. A finite set of actions {1,..., K} is fixed and known by both the decision maker
and the (adversarial) environment. At each round ¢ = 1,2,... the environment secretly chooses a
loss ¢:(i) € [0, 1] for each action ¢; the decision maker picks an action I; (possibly at random), then
they incur a loss ¢;(1;) and only the loss of the chosen action is revealed. The performance of the
decision maker at time 7' is measured by the difference between its sequential risk and the average

loss of the best action for #1, ..., ¢p, that is the difference
1 & 1 &
BT ;Wﬂl L (T ;W)
where the expectation is taken with respect to the draw of Iy,..., It.

It is possible to modify Hedge in such a way that the rate of convergence O(T‘l/ 2) is preserved.
The idea is substituting ¢;(7) (which is never revealed) in the update of the weights (line 4) with
an unbiased estimate of it. This is done by an algorithm called Exp3 using “importance-weighted”
estimators

~ (1) .
be(1) = ~{I;, =1
t() pt(l) { t }
Being Zg a random variable, p.(7) is also a random variable. However p;(i) is determined for any
given realization of Iy, ..., I;_1. Moreover, by construction, p;(i) = P(It =il I,..., [t—1)~ Hence
~ e(3) . 4y(1) .
E |7 I,...,I,]:E L= Ly | = 2P =i | 1, T
t(2)| 1 t—1 [pt(l) {t Z} 1 t—1 pt(’b) (t Z| 1 t 1)

_ i)
pe(7)

pe(i) = 4() (3)

and
Ci(i)?
pi(i)?

I{I, = i}

11,...,1}_1] - SP(L=i| L. Ii1)

i)
w
—
.
~—
|
s
~
—
~
~—

& - In K -
SO naG) — S k) < 2 % PIPRAOLIOE

t=1 i=1 t=1

Taking expectations on both sides gives

- oomi] =[] <5
E Zzpt(Z)ft Zﬁt <7+ E

t=1 i=1

T K N
> Zpta)et(z')?]
t=1 i=1

Now, using linearity of expectation, the tower rule E[X] = E[E[X | Y]] that holds for any two

random variable X and Y, and the fact that p; is determined given I, ..., I;_1, we obtain
T K ~
E [Z Zpt(i)E[&(i) I, I 1]] ZE[&)| I, .. .,It_l}]
t=1 i=1
InK ~ T ~
<=t oE ZZpt(i)E[Et(i)Q I, ... ,It_l}]
t=1 i=1

where k is any arbitrary action. By applying (3) and (4) we get

[ZZpt ()04 (i)] Zzt <@+%E

t=1 i=1

Now, noting that
K
Ele(L) | In, ... 1] = > pu(i)u(i)

using the tower rule E[X] = E[E[X | Y]] we can write

T T T
E [Z > pi(i)le(i) > El(L) | I, .., [t_l]] =E [Z Et(It)]

=K
t=1 i=1 t=1

Moreover,

Putting together, dividing by 7" and picking v = /2In(K)/(KT) yields

1 & T [2KIn K
T;Et(ft)] —iirnln (Z) —r

This is quite surprising as, up to a v/K factor, this is exactly the same rate of convergence achievable
in the prediction with expert advice setting where all losses are revealed after each round. The extra
V'K term can be seen as a consequence of the fact that in the multi-armed bandit setting at each
round we only see 1/K-th of the total number of losses.

Similarly to Hedge, one can run Exp3 with

w41(i) = exp (Z)

and v, = 1/21In(K)/t. This gives the same bound as above with a slightly worse constant.

