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These lecture notes are based on a set of slides written by Marco Bressan in 2023.

Recall the k-means problem: given a set X C R% of size n and 1 < k < n, find

C* € argmin ®(ci,...,ck)
ci,...,cp€R4

where, for any C C R,

®(C) =) ¢(Cx) = minz -

zEX zcX
Let OPT = &(C*) and, for any C C R? and A C X, let
$(C.A) =) ¢(C )
xzcA

We identify a clustering C via its centers {ci, ..., cx} or with its clusters {C1,...,Ci}. Note that,
for any clustering C output by Lloyd’s algorithm, including the optimal clustering C*,

»(C,C) = Z |z — pol for all C' € C, where p is the centroid of C. (1)
zcC

We proved that Lloyd’s algorithm does not have any approximation guarantee because, while
outliers can contribute a lot to the overall cost, they are are not favored in the initial random draw
of centers.

Algoritmo 1 k-means++

Input: Finite set of points X C R?, integer 1 < k < |X|.
1: Draw a center ¢; w.a.r. from X and let C; = {¢;}
2: fori=2,...,k do

Ci_
3: draw ¢; from X according to the distribution P(¢; = x | C;—1) = W
i—1
4: Ci=0Ci_1 U {CZ}
5: end for
Output: The output of Lloyd’s algorithm run with initial centers cy,...,ck

We prove a simplified version of the following theorem.
Teorema 1 The clustering C found by k-means++ satisfies E[®(C)] < 8(Ink + 2)OPT.

Note that the currently best known approximation algorithms for k-means is based on a linear
programming rounding approach and produces a clustering with a cost ¢ x OPT where ¢ € [6, 7].

Consider any optimal clustering C* = (A, ..., Ar) and for let C; be the clustering of k-means++
after drawing the first ¢ centers in Line 3.



Lemma 2 For any A € C* and for any i € [k],

E|¢(Ci, )

¢ € A,CH} < 86(C*, A)

DIMOSTRAZIONE. Consider first ¢ = 1. Then C;_y = Cy = () and ¢; is drawn according to the
uniform distribution over X', and we can write

E[p(C1,A) |1 € A] = |A|Z<Z\|wa\|> (€1 = {e1})

acA \zcA
A Z (Z e lL|| + |Al ||la — pl| ) (p is the centroid of A)
| | acA \xzcA
=) e —pl*+ > lla—pl?
xrEA acA
=2 Z Iz — pl® = 26(C*, A) (because of (1).)
xeA

In particular, note that

ZZIICB—GII <2¢(C7, A) (2)

a,GA xrEA

Now assume ¢ > 1. Then

#(Ci—1,a)
ZmeA qb(cifla m)

For any «,a € A, let ¢ be the center of C;_1 closest to . Then

Plci=alacAC )=

_min__fla—¢jf| <fla—c|
7j=1,...;i—1
<|lx—c|+|a— (by the triangular inequality.)
Using (a + b)% < 2(a® + b?) for all a,b € R and || — ¢||* = ¢(C;_1, ) we get

6(Ci1,0) < 2(9(Ci1,2) + la— x|

By averaging the above inequality over all x € A, we get

0Cr.a) < 5 Y (6(C1.2) +la — =)

xTEA

Note also that, for any « € X,

6(Ci,@) = min {$(Ci-1, ), |z — ei]]* |



Therefore, for C; = C;—1 U {¢;},

#(Ci—1,a)
E|o(C;, A i € A,Ci) =
(PG leeata] =) = e 5

2y et la el 5 i focna) o o)

#(Ci, A)

aEAa:eA A
2 Dwen z‘—hw) _ o ,
Al g S pea dCit, ) %mm{d 1,a'),||a’ - al| }
la ol | o
min { ¢(C;—1,a’), ||a’ — a
Mr PPN e e PRl ool
,A‘ T Xl —alf+ 5 3 fa—a?
acAa'€A acAxzcA
|z — alf?
P>
<8 4) (because of (2).)
concluding the proof. -

A cluster A € C* is uncovered in C; if AN{ey,...,¢} = 0. Lemma 2 shows that we pay O(OPT)
for every optimal cluster that we cover. This justifies the following simplifying assumptions, stating
that the cost of each optimal cluster is set to 1, and we pay 1 for each optimal cluster that is covered
and L for each optimal cluster that remains uncovered.

Assunzione 3 For all A € C*:
1. ¢p(C*,A) =1
2. for all i € [k], if A is covered in C;, then then ¢(C;, A) = 1; otherwise, ¢(C;, A) = L.

Lemma 4 Under the above assumptions, E[®(C)] < (2 + Ink)OPT.

DIMOSTRAZIONE. Let C; = (eq,...,¢;). Conventionally, Cy = () and ®(Cy) = kL (as if there were
a default faraway center). Now, observing that C = Cy,

N
—_

P(Cr) = 2(Co) + ) (2(Cit1) — 2(C2))

7
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Taking expectations,

=k+) ((L-1)+E[®(Cir1)] —E[2(C)])
i=0
Let N; the number of uncovered clusters in C;. Because of our assumptions, ®(C;) = N; L+ (k— N;).
For any uncovered A, the probability that at round 7 + 1 we choose a center from A is
¢(Ciy A) L
P(¢; A|C) = =
(cir €41 o(C;)  NiL+ (k—N;)
So the probability p;;1 that we choose a center from some uncovered cluster is:
B N;L S (k—14)L
N NiL—i-(k—Ni) - (k‘—i)L-i-i

P(HAEC* : CZ'_HEA/\Aﬂ{cl,...,ci}:@|ci>

where in the last inequality we used N; > k — 4.

Now, if ¢;+1 does not cover any A that was uncovered in C; (which happens with probability
1 —pit1), then ®(C;y1) < ®(C;). On the other hand, if ¢;+1 covers some A that was uncovered in C;
(which happens with probability p;y1), then ®(Cij+1) = ®(C;) — L+ 1 = ®(C;) — (L — 1). Therefore

(L — 1) + E[‘I’(CZ_H) ‘ CZ] - E[(I)(CZ) ‘ Cz] < (L - 1) + 0 x (1 —pi+1) — (L — 1)pi+1

(k—i)L
s(@=-D-E-Da=5153
== 1)'<(l<:—z')L—|—i>
<Lla=or+

k k
R y A
Therefore,
k—1
E[®Ch)] =k+ ) ((L—1)+E[®(Cit1)] —E[®(C)])
=0
k—1
—k+ > E[(L—1)+E[®(Ci1) | €] —E[®(C:) | Ci]]
=0
k—1
=0
k
:k+k:zg < k(2+1Ink)
=1



where we used the bound on the harmonic sum 1+ % + % +-- -—l—% < 1+Ink. The proof is concluded
by noticing that, under our assumptions, OPT = ®(C*) = k. O



