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These lecture notes are based on a set of slides written by Marco Bressan in 2023.

Recall the k-means problem: given a set X ⊂ Rd of size n and 1 < k < n, find

C∗ ∈ argmin
c1,...,ck∈Rd

Φ(c1, . . . , ck)

where, for any C ⊂ Rd,

Φ(C) =
∑
x∈X

ϕ(C,x) =
∑
x∈X

min
ci∈C

∥x− ci∥2

Let OPT = Φ(C∗) and, for any C ⊂ Rd and A ⊆ X , let

ϕ(C, A) =
∑
x∈A

ϕ(C,x)

We identify a clustering C via its centers {c1, . . . , ck} or with its clusters {C1, . . . , Ck}. Note that,
for any clustering C output by Lloyd’s algorithm, including the optimal clustering C∗,

ϕ(C, C) =
∑
x∈C

∥x− µC∥
2 for all C ∈ C, where µC is the centroid of C. (1)

We proved that Lloyd’s algorithm does not have any approximation guarantee because, while
outliers can contribute a lot to the overall cost, they are are not favored in the initial random draw
of centers.

Algoritmo 1 k-means++

Input: Finite set of points X ⊂ Rd, integer 1 < k < |X |.
1: Draw a center c1 u.a.r. from X and let C1 = {c1}
2: for i = 2, . . . , k do

3: draw ci from X according to the distribution P(ci = x | Ci−1) =
ϕ(Ci−1,x)

Φ(Ci−1)
4: Ci = Ci−1 ∪ {ci}
5: end for

Output: The output of Lloyd’s algorithm run with initial centers c1, . . . , ck

We prove a simplified version of the following theorem.

Teorema 1 The clustering C found by k-means++ satisfies E
[
Φ(C)

]
≤ 8(ln k + 2)OPT.

Note that the currently best known approximation algorithms for k-means is based on a linear
programming rounding approach and produces a clustering with a cost c×OPT where c ∈ [6, 7].

Consider any optimal clustering C∗ = (A1, . . . , Ak) and for let Ci be the clustering of k-means++
after drawing the first i centers in Line 3.
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Lemma 2 For any A ∈ C∗ and for any i ∈ [k],

E
[
ϕ(Ci, A)

∣∣∣ ci ∈ A, Ci−1

]
≤ 8ϕ(C∗, A)

Dimostrazione. Consider first i = 1. Then Ci−1 = C0 = ∅ and ci is drawn according to the
uniform distribution over X , and we can write

E
[
ϕ(C1, A) | c1 ∈ A

]
=

1

|A|
∑
a∈A

(∑
x∈A

∥x− a∥2
)

(C1 = {c1})

≤ 1

|A|
∑
a∈A

(∑
x∈A

∥x− µ∥2 + |A| ∥a− µ∥2
)

(µ is the centroid of A)

=
∑
x∈A

∥x− µ∥2 +
∑
a∈A

∥a− µ∥2

= 2
∑
x∈A

∥x− µ∥2 = 2ϕ(C∗, A) (because of (1).)

In particular, note that
1

|A|
∑
a∈A

∑
x∈A

∥x− a∥2 ≤ 2ϕ(C∗, A) (2)

Now assume i > 1. Then

P
(
ci = a | a ∈ A, Ci−1

)
=

ϕ(Ci−1,a)∑
x∈A ϕ(Ci−1,x)

For any x,a ∈ A, let c be the center of Ci−1 closest to x. Then

min
j=1,...,i−1

∥a− cj∥ ≤ ∥a− c∥

≤ ∥x− c∥+ ∥a− x∥ (by the triangular inequality.)

Using (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R and ∥x− c∥2 = ϕ(Ci−1,x) we get

ϕ(Ci−1,a) ≤ 2
(
ϕ(Ci−1,x) + ∥a− x∥2

)
By averaging the above inequality over all x ∈ A, we get

ϕ(Ci−1,a) ≤
2

|A|
∑
x∈A

(
ϕ(Ci−1,x) + ∥a− x∥2

)
Note also that, for any x ∈ X ,

ϕ(Ci,x) = min
{
ϕ(Ci−1,x), ∥x− ci∥2

}
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Therefore, for Ci = Ci−1 ∪ {ci},

E
[
ϕ(Ci, A) | ci ∈ A, Ci−1

]
=
∑
a∈A

ϕ(Ci−1,a)∑
x∈A ϕ(Ci−1,x)

ϕ(Ci, A)

≤ 2

|A|
∑
a∈A

∑
x∈A

ϕ(Ci−1,x) + ∥a− x∥2∑
x′∈A ϕ(Ci−1,x′)

∑
a′∈A

min
{
ϕ(Ci−1,a

′),
∥∥a′ − a

∥∥2}
=

2

|A|
∑
a∈A

∑
x∈A ϕ(Ci−1,x)∑
x′∈A ϕ(Ci−1,x′)

∑
a′∈A

min
{
ϕ(Ci−1,a

′),
∥∥a′ − a

∥∥2}
+

2

|A|
∑
a∈A

∑
x∈A

∥a− x∥2∑
x′∈A ϕ(Ci−1,x′)

∑
a′∈A

min
{
ϕ(Ci−1,a

′),
∥∥a′ − a

∥∥2}
≤ 2

|A|
∑
a∈A

∑
a′∈A

∥∥a′ − a
∥∥2 + 2

|A|
∑
a∈A

∑
x∈A

∥a− x∥2

=
4

|A|
∑
a∈A

∑
x∈A

∥x− a∥2

≤ 8ϕ(C∗, A) (because of (2).)

concluding the proof. □

A cluster A ∈ C∗ is uncovered in Ci if A ∩ {c1, . . . , ci} = ∅. Lemma 2 shows that we pay O(OPT)
for every optimal cluster that we cover. This justifies the following simplifying assumptions, stating
that the cost of each optimal cluster is set to 1, and we pay 1 for each optimal cluster that is covered
and L for each optimal cluster that remains uncovered.

Assunzione 3 For all A ∈ C∗:

1. ϕ(C∗, A) = 1

2. for all i ∈ [k], if A is covered in Ci, then then ϕ(Ci, A) = 1; otherwise, ϕ(Ci, A) = L.

Lemma 4 Under the above assumptions, E
[
Φ(C)

]
≤
(
2 + ln k

)
OPT.

Dimostrazione. Let Ci = (c1, . . . , ci). Conventionally, C0 = ∅ and Φ(C0) = kL (as if there were
a default faraway center). Now, observing that C = Ck,

Φ(Ck) = Φ(C0) +
k−1∑
i=0

(Φ(Ci+1)− Φ(Ci))
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Taking expectations,

E
[
Φ(Ck)

]
= Φ(C0) +

k−1∑
i=0

(
E
[
Φ(Ci+1)

]
− E

[
Φ(Ci)

])
= kL+

k−1∑
i=0

(
E
[
Φ(Ci+1)

]
− E

[
Φ(Ci)

])
= k +

k−1∑
i=0

(
(L− 1) + E

[
Φ(Ci+1)

]
− E

[
Φ(Ci)

])
Let Ni the number of uncovered clusters in Ci. Because of our assumptions, Φ(Ci) = NiL+(k−Ni).

For any uncovered A, the probability that at round i+ 1 we choose a center from A is

P(ci+1 ∈ A | Ci) =
ϕ(Ci, A)
Φ(Ci)

=
L

NiL+ (k −Ni)

So the probability pi+1 that we choose a center from some uncovered cluster is:

P
(
∃A ∈ C∗ : ci+1 ∈ A ∧ A ∩ {c1, . . . , ci} = ∅ | Ci

)
=

NiL

NiL+ (k −Ni)
≥ (k − i)L

(k − i)L+ i

where in the last inequality we used Ni ≥ k − i.

Now, if ci+1 does not cover any A that was uncovered in Ci (which happens with probability
1−pi+1), then Φ(Ci+1) ≤ Φ(Ci). On the other hand, if ci+1 covers some A that was uncovered in Ci
(which happens with probability pi+1), then Φ(Ci+1) = Φ(Ci)−L+1 = Φ(Ci)− (L− 1). Therefore

(L− 1) + E
[
Φ(Ci+1) | Ci

]
− E

[
Φ(Ci) | Ci

]
≤ (L− 1) + 0× (1− pi+1)− (L− 1)pi+1

≤ (L− 1)− (L− 1)
(k − i)L

(k − i)L+ i

= (L− 1)

(
i

(k − i)L+ i

)
< L

i

(k − i)L+ i

< L
k

(k − i)L
=

k

k − i

Therefore,

E
[
Φ(Ck)

]
= k +

k−1∑
i=0

(
(L− 1) + E

[
Φ(Ci+1)

]
− E

[
Φ(Ci)

])
= k +

k−1∑
i=0

E
[
(L− 1) + E

[
Φ(Ci+1) | Ci

]
− E

[
Φ(Ci) | Ci

]]
≤ k +

k−1∑
i=0

k

k − i

= k + k

k∑
i=1

1

i
≤ k(2 + ln k)
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where we used the bound on the harmonic sum 1+ 1
2+

1
3+ · · ·+ 1

k ≤ 1+ln k. The proof is concluded
by noticing that, under our assumptions, OPT = Φ(C∗) = k. □
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