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Si consideri un grafo non orientato G = (V, E)). Una partizione S,T C V dei vertici di G (dunque,
SNT=0eSUT =V) & detta ammissibile se S,T # (). Un taglio in G & un insieme I'(S,T) =
{(u,v) € B : we S, veT} per una partizione ammissibile S,T dei vertici di G. In un grafo non
pesato, il costo di un taglio corrisponde alla sua cardinalita }F (S,T) ‘ In quanto segue, consideriamo
grafi non pesati e senza cappi (self-loop); tuttavia, ammettiamo la presenza di archi multipli fra
coppie di nodi: questo tipo di grafo prende il nome di multigrafo. In questo caso, E' ¢ un multinsieme
di archi, poiché archi fra coppie di vertici distinti possono essere presenti con molteplicita diverse.

Figura 1: Un taglio in un multigrafo. Il taglio evidenziato ¢ formato da 6 archi e corrisponde al
multinsieme I'(S,T'), dove S = {1,2,4} e T' = {3, 5}.

I1 problema del taglio minimo (MinCut) in un multigrafo ¢ definito nel modo seguente.

Problema MinCut.
Istanza: Un multigrafo G = (V, E).
Soluzione: Una partizione ammissibile S,T" di V' che minimizza il costo ’I‘(S, T)’

Il problema MinCut ha tantissime applicazioni. Per esempio, in un sistema distribuito dove i nodi
rappresentano processi e gli archi canali di comunicazione fra di essi, il taglio minimo corrisponde ad
assegnare i processi a due CPU in modo che la comunicazione interprocessore —che & tipicamente
lenta— sia minimizzata. Una seconda applicazione ¢ la segmentazione di immagini. Qui i nodi
rappresentano pixel e gli archi del grafo connettono pixel simili. Il taglio minimo corrisponde allora
ad una segmentazione dell’immagine in due parti che sono fra loro il piu dissimili possibile.

Il problema di MinCut e facilmente risolvibile in tempo polinomiale deterministico, per esem-
pio usando 'algoritmo di Stoer-Wagner che ha un tempo di esecuzione dell'ordine O(|E||V] +
[V[*log [V]). Mostriamo ora un semplice algoritmo probabilistico Monte Carlo, I'algoritmo di
Karger, che trova il taglio minimo con probabilita almeno 1 — € in tempo pari a (9(|E [[V]? log %)
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Figura 2: La contrazione di un arco in un multigrafo.

L’algoritmo di Karger ¢ basato sull’operazione di contrazione di un arco (si veda la Figura 2).
La contrazione di un arco (u,v) in un multigrafo G produce un multigrafo G/(u,v) definito come
risultato delle seguenti operazioni:

1. Un nuovo vertice z & aggiunto al grafo.

2. Ogni arco (w,u) € E con w # v & sostituito da un arco (w, z).
3. Ogni arco (w,v) € E con w # u & sostituito da un arco (w, z).
4. Gli archi del tipo (u,v) e i vertici w, v sono rimossi.

Nel seguito, diciamo che z € un supervertice che contiene u e v. Quando uno o entrambi i due
vertici agli estremi di un arco contratto sono a loro volta supervertici, allora i nodi in essi contenuti
diventano parte del nuovo supervertice.

Introduciamo ora 'algoritmo di Karger “base” che ripetutamente contrae archi a caso del multigrafo
fino a quando il numero di supervertici rimanenti ¢ pari a due. Dato che la contrazione di un arco
riduce di uno il numero di supervertici, 1’algoritmo si fermera esattamente dopo |V| — 2 passi. A
questo punto, l'algoritmo produce il cut corrispondente all’unica partizione ammissibile dei due
supervertici. Dato che i supervertici del multigrafo finale corrispondono ad una partizione dei
vertici del multigrafo iniziale, abbiamo ottenuto un taglio del multigrafo iniziale.

Algoritmo 1 KARGER-BASE(G)
Input: Multigrafo G = (V, E) con |V| > 2
1: while |[V| > 2 do
2: Scegli un arco a caso (u,v) € E
3: G+ G/(u,v)
4: end while
Output: 'unica partizione ammissibile S, 7T rimasta in G

KARGER-BASE puo essere implementato in tempo O(|E|) rappresentando la sequenza di contrazioni
tramite una permutazione causale degli archi di G (dettagli omessi).

Vediamo ora qual ¢ la probabilitd che KARGER-BASE(G) ritorni una partizione ammissibile S*, T*
fissata che definisce un taglio I'™* = I'(S*, T%) di costo minimo & in Gj; in particolare

k=T = (rn&%}r(s,T)}

dove il minimo & su tutte le partizioni ammissibili S, 7" di V. Per prima cosa, si noti che KARGER-BASE(G)
ritorna I'* se e solo se nessun arco nel taglio viene contratto. Denotiamo ora con Xi,..., X|y|_2 la



sequenza di archi contratti da KARGER-BASE(G). La probabilita che il primo arco X; contratto
da KARGER-BASE sia nel taglio I'* corrisponde a
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dove d, ¢ il grado di v € V in G (tenendo conto della molteplicita degli archi), mentre dpmin € il
grado minimo dei nodi del grafo. In particolare, si osservi che dpyi, > k € vero perché il costo k
di un taglio minimo ¢ sicuramente non superiore rispetto al costo d,, del taglio I'({v}, V' \ {v}) per

qualsiasi vertice v € V. Quindi, P(X; ¢T') > 1 — %

N

La probabilita che il secondo arco contratto X» non sia nel taglio I'*, dato che X1 ¢ I'*, &
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In generale, denotando con A; 'evento X; &€ I'* per ¢ > 1, osserviamo che nessun arco di I'* & stato
gia contratto nel momento in cui dobbiamo scegliere X; se condizioniamo sugli eventi Ay, ..., A;_1.
Il taglio I'* & dunque preservato sotto questo condizionamento. In aggiunta, al passo ¢-esimo, il
grafo presenta |V| — i+ 1 (super)vertici e un suo taglio minimo avra ancora costo k condizionando
su Ay, ..., A;_1: le contrazioni si limitano a restringere le scelte di partizioni ammissibili dei vertici
su cui valutare il costo dei taglio, e sappiamo che I'* & preservato.

Di conseguenza, abbiamo che
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Dunque, indicando convenzionalmente P(A; | Ag) = P(A;), dove Ay corrisponde all’evento certo,
possiamo scrivere
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Possiamo amplificare la probabilita di successo eseguendo piu volte KARGER-BASE(G) e scegliendo
la partizione ammissibile che minimizza il costo del taglio fra tutte quelle ottenute. In particolare,
se M & un numero sufficientemente grande, allora siamo in grado di ottenere un taglio di costo
minimo in una delle M esecuzioni indipendenti di KARGER-BASE(G) con probabilita almeno 1 —¢,
data una probabilita massima d’errore ¢ € (0, 1]. Questa idea & implementata da KARGER(G, ¢).



Algoritmo 2 KARGER(G,¢)
Input: Multigrafo G = (V, E) con |V| > 2, parametro di confidenza ¢ € (0, 1]
v
M [(5) ]
2: fori=1,...,M do
3: S;, T; < KARGER-BASE(G)
4: end for
5: j € argmin; g [T'(S, T;)|
Output: 5;,T;

Ripetendo KARGER-BASE(G) per M = {('g') In ﬂ = O(!V|21né) volte e scegliendo un taglio
di costo minimo fra quelli prodotti, la probabilita che questo non abbia costo ottimo (e dunque
KARGER(G, ¢) fallisce) &

P(KARGER(G, ) fallisce) = P(|T'(S;, T;)| > k,Vi € [M]) (nessun taglio prodotto € minimo)

< P(D(S;,T;) # I'*, Vi € [M]) (nessun taglio prodotto & I'*)

= P(KARCER-BASE(G) non restituisce F*)M (indipendenza)
) M

<[1--—r .
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2
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dove abbiamo usato la maggiorazione 1 — x < e~ per ogni x € R. Il tempo totale di esecuzione,
considerando anche il costo di ciascuna contrazione, & quindi O(|E|[V[*In1).

Una versione piu sofisticata, nota come algoritmo di Karger-Stein, trova un taglio di costo minimo
con probabilitd almeno 1 — ¢ in tempo O((|V|In|V])?In1).



