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Si consideri un grafo non orientato G = (V,E). Una partizione S, T ⊆ V dei vertici di G (dunque,
S ∩ T ≡ ∅ e S ∪ T ≡ V ) è detta ammissibile se S, T ̸≡ ∅. Un taglio in G è un insieme Γ(S, T ) ≡
{(u, v) ∈ E : u ∈ S, v ∈ T} per una partizione ammissibile S, T dei vertici di G. In un grafo non
pesato, il costo di un taglio corrisponde alla sua cardinalità

∣∣Γ(S, T )∣∣. In quanto segue, consideriamo
grafi non pesati e senza cappi (self-loop); tuttavia, ammettiamo la presenza di archi multipli fra
coppie di nodi: questo tipo di grafo prende il nome dimultigrafo. In questo caso, E è un multinsieme
di archi, poiché archi fra coppie di vertici distinti possono essere presenti con molteplicità diverse.
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Figura 1: Un taglio in un multigrafo. Il taglio evidenziato è formato da 6 archi e corrisponde al
multinsieme Γ(S, T ), dove S = {1, 2, 4} e T = {3, 5}.

Il problema del taglio minimo (MinCut) in un multigrafo è definito nel modo seguente.

Problema MinCut.
Istanza: Un multigrafo G = (V,E).
Soluzione: Una partizione ammissibile S, T di V che minimizza il costo

∣∣Γ(S, T )∣∣.
Il problema MinCut ha tantissime applicazioni. Per esempio, in un sistema distribuito dove i nodi
rappresentano processi e gli archi canali di comunicazione fra di essi, il taglio minimo corrisponde ad
assegnare i processi a due CPU in modo che la comunicazione interprocessore —che è tipicamente
lenta— sia minimizzata. Una seconda applicazione è la segmentazione di immagini. Qui i nodi
rappresentano pixel e gli archi del grafo connettono pixel simili. Il taglio minimo corrisponde allora
ad una segmentazione dell’immagine in due parti che sono fra loro il più dissimili possibile.

Il problema di MinCut è facilmente risolvibile in tempo polinomiale deterministico, per esem-
pio usando l’algoritmo di Stoer–Wagner che ha un tempo di esecuzione dell’ordine O

(
|E||V | +

|V |2 log |V |
)
. Mostriamo ora un semplice algoritmo probabilistico Monte Carlo, l’algoritmo di

Karger, che trova il taglio minimo con probabilità almeno 1− ε in tempo pari a O
(
|E||V |2 log 1

ε

)
.
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Figura 2: La contrazione di un arco in un multigrafo.

L’algoritmo di Karger è basato sull’operazione di contrazione di un arco (si veda la Figura 2).
La contrazione di un arco (u, v) in un multigrafo G produce un multigrafo G/(u, v) definito come
risultato delle seguenti operazioni:

1. Un nuovo vertice z è aggiunto al grafo.
2. Ogni arco (w, u) ∈ E con w ̸= v è sostituito da un arco (w, z).
3. Ogni arco (w, v) ∈ E con w ̸= u è sostituito da un arco (w, z).
4. Gli archi del tipo (u, v) e i vertici u, v sono rimossi.

Nel seguito, diciamo che z è un supervertice che contiene u e v. Quando uno o entrambi i due
vertici agli estremi di un arco contratto sono a loro volta supervertici, allora i nodi in essi contenuti
diventano parte del nuovo supervertice.

Introduciamo ora l’algoritmo di Karger “base” che ripetutamente contrae archi a caso del multigrafo
fino a quando il numero di supervertici rimanenti è pari a due. Dato che la contrazione di un arco
riduce di uno il numero di supervertici, l’algoritmo si fermerà esattamente dopo |V | − 2 passi. A
questo punto, l’algoritmo produce il cut corrispondente all’unica partizione ammissibile dei due
supervertici. Dato che i supervertici del multigrafo finale corrispondono ad una partizione dei
vertici del multigrafo iniziale, abbiamo ottenuto un taglio del multigrafo iniziale.

Algoritmo 1 Karger-Base(G)

Input: Multigrafo G = (V,E) con |V | ≥ 2
1: while |V | > 2 do
2: Scegli un arco a caso (u, v) ∈ E
3: G← G/(u, v)
4: end while

Output: l’unica partizione ammissibile S, T rimasta in G

Karger-Base può essere implementato in tempo O(|E|) rappresentando la sequenza di contrazioni
tramite una permutazione causale degli archi di G (dettagli omessi).

Vediamo ora qual è la probabilità che Karger-Base(G) ritorni una partizione ammissibile S∗, T ∗

fissata che definisce un taglio Γ∗ = Γ(S∗, T ∗) di costo minimo k in G; in particolare

k =
∣∣Γ∗∣∣ = min

(S,T )

∣∣Γ(S, T )∣∣
dove il minimo è su tutte le partizioni ammissibili S, T di V . Per prima cosa, si noti cheKarger-Base(G)
ritorna Γ∗ se e solo se nessun arco nel taglio viene contratto. Denotiamo ora con X1, . . . , X|V |−2 la
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sequenza di archi contratti da Karger-Base(G). La probabilità che il primo arco X1 contratto
da Karger-Base sia nel taglio Γ∗ corrisponde a

P(X1 ∈ Γ∗) =
k

|E|
≤ k

|V |k/2
=

2

|V |

perché la cardinalità di E è tale che

|E| = 1

2

∑
v∈V

dv ≥
1

2
|V |dmin ≥

1

2
|V |k ,

dove dv è il grado di v ∈ V in G (tenendo conto della molteplicità degli archi), mentre dmin è il
grado minimo dei nodi del grafo. In particolare, si osservi che dmin ≥ k è vero perché il costo k
di un taglio minimo è sicuramente non superiore rispetto al costo dv del taglio Γ({v}, V \ {v}) per
qualsiasi vertice v ∈ V . Quindi, P(X1 ̸∈ Γ∗) ≥ 1− 2

|V | .

La probabilità che il secondo arco contratto X2 non sia nel taglio Γ∗, dato che X1 ̸∈ Γ∗, è

P
(
X2 ̸∈ Γ∗ | X1 ̸∈ Γ∗) = 1− P

(
X2 ∈ Γ∗ | X1 ̸∈ Γ∗) ≥ 1− k

(|V | − 1)k/2
= 1− 2

|V | − 1
.

In generale, denotando con Ai l’evento Xi ̸∈ Γ∗ per i ≥ 1, osserviamo che nessun arco di Γ∗ è stato
già contratto nel momento in cui dobbiamo scegliere Xi se condizioniamo sugli eventi A1, . . . , Ai−1.
Il taglio Γ∗ è dunque preservato sotto questo condizionamento. In aggiunta, al passo i-esimo, il
grafo presenta |V | − i+ 1 (super)vertici e un suo taglio minimo avrà ancora costo k condizionando
su A1, . . . , Ai−1: le contrazioni si limitano a restringere le scelte di partizioni ammissibili dei vertici
su cui valutare il costo dei taglio, e sappiamo che Γ∗ è preservato.

Di conseguenza, abbiamo che

P
(
Ai | A1, . . . , Ai−1

)
≥ 1− k

(|V | − i+ 1)k/2
= 1− 2

|V | − i+ 1
.

Dunque, indicando convenzionalmente P(A1 | A0) = P(A1), dove A0 corrisponde all’evento certo,
possiamo scrivere

P
(
Karger-Base(G) restituisce Γ∗) = P

(
Xi /∈ Γ∗,∀i ∈ [|V | − 2]

)
= P

(|V |−2⋂
i=1

Ai

)

=

|V |−2∏
i=1

P
(
Ai | A0, . . . , Ai−1

)
≥

|V |−3∏
i=0

(
1− 2

|V | − i

)
=

|V |−3∏
i=0

|V | − i− 2

|V | − i

=

∏|V |−2
i=1 i∏|V |
j=3 j

=
(|V | − 2)!

|V |!
2!

=
1(|V |
2

) . (1)

Possiamo amplificare la probabilità di successo eseguendo più volte Karger-Base(G) e scegliendo
la partizione ammissibile che minimizza il costo del taglio fra tutte quelle ottenute. In particolare,
se M è un numero sufficientemente grande, allora siamo in grado di ottenere un taglio di costo
minimo in una delle M esecuzioni indipendenti di Karger-Base(G) con probabilità almeno 1− ε,
data una probabilità massima d’errore ε ∈ (0, 1]. Questa idea è implementata da Karger(G, ε).
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Algoritmo 2 Karger(G, ε)

Input: Multigrafo G = (V,E) con |V | ≥ 2, parametro di confidenza ε ∈ (0, 1]
1: M ←

⌈(|V |
2

)
ln 1

ε

⌉
2: for i = 1, . . . ,M do
3: Si, Ti ← Karger-Base(G)
4: end for
5: j ∈ argmini=1,...,M |Γ(Si, Ti)|

Output: Sj , Tj

Ripetendo Karger-Base(G) per M =
⌈(|V |

2

)
ln 1

ε

⌉
= O

(
|V |2 ln 1

ε

)
volte e scegliendo un taglio

di costo minimo fra quelli prodotti, la probabilità che questo non abbia costo ottimo (e dunque
Karger(G, ε) fallisce) è

P
(
Karger(G, ε) fallisce

)
= P

(∣∣Γ(Si, Ti)
∣∣ > k, ∀i ∈ [M ]

)
(nessun taglio prodotto è minimo)

≤ P
(
Γ(Si, Ti) ̸≡ Γ∗,∀i ∈ [M ]

)
(nessun taglio prodotto è Γ∗)

= P
(
Karger-Base(G) non restituisce Γ∗)M (indipendenza)

≤

(
1− 1(|V |

2

))M

(eq. (1))

≤ e− ln 1
ε = ε ,

dove abbiamo usato la maggiorazione 1 − x ≤ e−x per ogni x ∈ R. Il tempo totale di esecuzione,
considerando anche il costo di ciascuna contrazione, è quindi O

(
|E||V |2 ln 1

ε

)
.

Una versione più sofisticata, nota come algoritmo di Karger-Stein, trova un taglio di costo minimo
con probabilità almeno 1− ε in tempo O

(
(|V | ln |V |)2 ln 1

ε

)
.
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