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Consideriamo un gioco come la morra cinese (carta, forbice e sasso) oppure pari-e-dispari, dove il
giocatore e il suo avversario rivelano simultaneamente le proprie mosse. Questi giochi sono detti
a somma zero, in quanto ciò che vince il giocatore lo perde l’avversario e viceversa; possiamo
rappresentarli con una matrice reale G di dimensioni m×n, dove le m righe rappresentano le mosse
del giocatore e le n colonne rappresentano le mosse dell’avversario. Se il giocatore sceglie la mossa
i e l’avversario sceglie la mossa j, allora il giocatore guadagna Gi,j e l’avversario perde −Gi,j . Se
Gi,j > 0, allora l’avversario paga Gi,j al giocatore. Se invece Gi,j < 0 è il giocatore a pagare Gi,j

all’avversario. Per esempio, la matrice G di morra cinese è indicata qui sotto a sinistra

carta forbice sasso

carta 0 −1 +1

forbice +1 0 −1

sasso −1 +1 0

alto basso centro

sinistra +3 −1 +2

destra −1 +2 −2

Ragionamo un istante su quello che può fare il giocatore nel gioco a destra. La mossa sinistra
gli dà un guadagno massimo di +3 e una perdita massima di −1. La mossa destra gli dà un
guadagno massimo di +2 e una perdita massima di −2. Quindi il giocatore preferirà giocare sinistra.
L’avversario, usando un argomento del tutto simile, preferisce giocare centro. Se entrambi i giocatori
seguono il proprio ragionamento, ovvero il giocatore sceglie sinistra e l’avversario centro, abbiamo
che il giocatore vince due punti all’avversario. D’altra parte, l’avversario può immaginare che il
giocatore faccia il ragionamento che lo porti a giocare sinistra e di conseguenza potrebbe scegliere
basso invece di centro, in modo da prendere un punto al giocatore. A sua volta, però, il giocatore
può prevedere la contromossa dell’avversario e prevenirla, e cos̀ı via. Per spezzare questo circolo
vizioso e neutralizzare il ragionamento dell’avversario il giocatore può usare la randomizzazione.

Supponiamo che il giocatore riveli all’avversario la distribuzione p da cui estrarrà la propria mossa
I ∈ {1, . . . ,m}. L’avversario sceglie quindi la propria mossa J ∈ {1, . . . , n}, dopodiché la mossa
del giocatore viene estratta da p e il gioco termina. In questo modo il giocatore delega la scelta
effettiva della sua mossa alla randomizzazione usata per estrarre I (il che non vuol dire che ogni
mossa venga scelta con la stessa probabilità). Il circolo vizioso è cos̀ı spezzato in quanto l’avversario
conosce p e può quindi calcolare la propria mossa migliore a meno della randomizzazione usata per
estrarre I sulla quale il giocatore non ha però più alcun controllo. Rivelando la propria strategia,
sembra però ovvio che il giocatore abbia avvantaggiato l’avversario. Il teorema minimax ci mostra,
sorprendentemente, che questo non è vero.

L’avversario può utilizzare la conoscenza di p per giocare la mossa J che minimizza il valore atteso
del guadagno del giocatore,

J = argmin
j=1,...,n

m∑
i=1

Gi,j pi (1)

dove pi = P
(
I = i

)
.
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A questo punto, il giocatore sceglierà la distribuzione p∗ che massimizza il proprio guadagno atteso,

p∗ = argmax
p

(
min

j=1,...,n

m∑
i=1

Gi,j pi

)
.

Si noti che l’avversario che conosce p non ha alcun vantaggio a estrarre la propria mossa J da una
distribuzione q. Ovvero,

min
j=1,...,n

m∑
i=1

Gi,j pi = min
q

n∑
j=1

(
m∑
i=1

Gi,j pi

)
qj = min

q
p⊤Gq (2)

dove l’ultimo termine utilizza la notazione matriciale per denotare la doppia somma che lo precede.
Sfruttando questa identità, possiamo allora scrivere il guadagno atteso del giocatore come

max
p

(
min
q

p⊤Gq

)
.

Simmetricamente, possiamo pensare che sia l’avversario a rivelare q al giocatore, che quindi può
calcolare la propria mossa migliore I per massimizzare il valore atteso della propria vincita,

I = argmax
i=1,...,n

n∑
j=1

Gi,j qj .

La strategia migliore dell’avversario porta allora ad un guadagno atteso per il giocatore pari a

min
q

 max
i=1,...,m

n∑
j=1

Gi,j qj

 = min
q

(
max
p

p⊤Gq

)
. (3)

Il teorema minimax dice che il guadagno atteso del giocatore non cambia a seconda di chi sia il
primo a rivelare la propria strategia randomizzata.

Teorema 1 (Minimax) In qualsiasi gioco G a somma zero vale

max
p

(
min
q

p⊤Gq

)
= min

q

(
max
p

p⊤Gq

)
.

Un altro modo di interpretare teorema minimax è il seguente. Sia VG il valore comune delle formule
al membro sinistro e destro nell’enunciato del teorema. Allora il giocatore ha una strategia

p∗ = argmax
p

(
min
q

p⊤Gq

)
che gli garantisce un guadagno atteso di almeno VG qualunque sia la strategia q dell’avversario.
Viceversa, l’avversario ha una strategia

q∗ = argmin
q

(
max
p

p⊤Gq

)

2



che garantisce un guadagno atteso del giocatore pari ad al più VG qualunque sia la strategia p del
giocatore.

Nel seguito, assumiamo senza perdita di generalità che gli elementi di G siano riscalati nell’intervallo
[−1, 1]. Per comodità notazionale, nel seguito usiamo p(i) e q(j) per denotare, rispettivamente, le
componenti di p e q.

Lemma 2 Per qualsiasi intero positivo T e per qualsiasi sequenza q1, . . . , qT di strategie dell’av-
versario, l’algoritmo Hedge con parametro η > 0 garantisce

T∑
t=1

p⊤
t Gqt ≥ max

p

T∑
t=1

p⊤Gqt −
2 lnm

η
− ηT

Dimostrazione. Per applicare Hedge, riscaliamo gli elementi di G nell’intervallo [0, 1]. Definiamo
quindi il vettore delle perdite delle azioni al tempo t come ℓt = (1 − Gqt)/2 ∈ [0, 1] dove 1 =
(1, . . . , 1). L’analisi di Hedge garantisce che le distribuzioni p1, . . . ,pT calcolate dall’algoritmo
soddisfano

T∑
t=1

ℓ⊤t pt ≤ min
i=1,...,m

T∑
t=1

ℓt(i) +
lnm

η
+

η

2
T (4)

Dato che nel simplesso delle probabilità
{
p ≥ 0 : p⊤1 = 1

}
la funzione lineare

F (p) =
T∑
t=1

ℓ⊤t p

è minimizzata in un vertice del simplesso, abbiamo che

min
i=1,...,m

T∑
t=1

ℓt(i) = min
p

T∑
t=1

ℓ⊤t p

Ricordando che ℓt = (1−Gqt)/2 abbiamo che, per un p arbitrario,

p⊤ℓt = p⊤1−Gqt
2

=
1− p⊤Gqt

2

Infine, moltiplicando per 2 entrambi i membri di (4) per cancellare il fattore 1
2 , otteniamo la tesi.

□

Siamo ora pronti per la dimostrazione del teorema minimax.

Dimostrazione del teorema minimax. Sia

q∗ = argmin
q

max
p

p⊤Gq

Allora,

max
p

min
q

p⊤Gq ≤ max
p

p⊤Gq∗ = min
q

max
p

p⊤Gq
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Per dimostrare l’altra direzione, supponiamo che p1, . . . ,pT siano generati da Hedge rispetto alle
strategie q1, . . . , qT dell’avversario definite come

qt = argmin
q

p⊤
t Gq

Definiamo anche

p =
1

T

T∑
t=1

pt e q =
1

T

T∑
t=1

qt

Possiamo quindi scrivere:

max
p

min
q

p⊤Gq ≥ min
q

p⊤Gq

= min
q

1

T

T∑
t=1

p⊤
t Gq

≥ 1

T

T∑
t=1

min
q

p⊤
t Gq

=
1

T

T∑
t=1

p⊤
t Gqt

≥ max
p

1

T

T∑
t=1

p⊤Gqt −
2 lnm

ηT
− η

= max
p

p⊤G q − 2 lnm

ηT
− η

≥ min
q

max
p

p⊤Gq − 2 lnm

ηT
− η

dove abbiamo applicato il Lemma 2. Scegliendo

η =

√
2 lnm

T

otteniamo

max
p

min
q

p⊤Gq ≥ min
q

max
p

p⊤Gq −
√

8 lnm

T

Dato che la disuguaglianza vale per qualsiasi T , per T → ∞ abbiamo che

max
p

min
q

p⊤Gq ≥ min
q

max
p

p⊤Gq

che conclude la dimostrazione. □
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