
Complementi di Algoritmi e Strutture Dati

Algoritmi Probabilistici
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Un algoritmo probabilistico è un algoritmo che ha accesso a un oracolo che, ad ogni chiamata,
restituisce in tempo unitario un bit causale, cioè una variabile casuale Y tale che P(Y = 1) = P(Y =
0) = 1

2 . Inoltre, i bit restituiti in una sequenza di chiamate all’oracolo sono indipendenti. Nel
seguito, indicheremo con Z ∈ {0, 1}∗ la stringa di bit casuali indipendenti che l’oracolo restituisce
in una sequenza di chiamate. Indicheremo anche con A(I, Z) ∈ {0, 1} la variabile casuale che
rappresenta l’output dell’algoritmo probabilistico A per un problema di decisione X = (I, q) e
avente come input l’istanza I ∈ I e i bit casuali Z dell’oracolo. In modo simile, indichiamo con
TA(I, Z) la variabile casuale che rappresenta il tempo di esecuzione di A con input I ∈ I e bit
casuali Z forniti dall’oracolo.

Esistono due principali tipi di algoritmi probabilistici.

Algoritmi Montecarlo. Sono algoritmi A tali che:

• Per ogni I ∈ I, TA(I, Z) dipende solo da I (ovvero il tempo di esecuzione è deterministico).
• Esiste I ∈ I per cui P

(
A(I, Z) ̸= q(I)

)
> 0 (ovvero l’output non è sempre corretto).

Gli algoritmi Montecarlo si dividono ulteriormente in:

• Algoritmi con errore one-sided. Un algoritmo ha errore one-sided quando è sempre corretto
almeno su uno dei suoi due possibili output. Convenzionalmente, assumeremo che l’algoritmo
sia sempre corretto quando il suo output è 1. Ovvero, A è Montecarlo one-sided quando, per
ogni I ∈ I, P

(
A(I, Z) = q(I) | A(I, Z) = 1

)
= 1 e P

(
A(I, Z) = q(I) | A(I, Z) = 0

)
> 0.

• Algoritmi con errore two-sided. Possono sbagliare su entrambi i possibili output. Ovvero,
A è Montecarlo two-sided quando P

(
A(I, Z) = q(I)

)
> 1

2 per ogni I ∈ I.

Una rappresentazione grafica della relazione fra q(I) e A(I, Z) per un algoritmo Montecarlo one-
sided è la seguente

q(I) = 0 // A(I, Z) = 0

q(I) = 1 //

88

A(I, Z) = 1

Questo mostra come A(I, Z) = 1 può solo corrispondere a q(I) = 1 mentre A(I, Z) = 0 lascia
incertezza sul valore di q(I). Si noti anche che quando q(I) = 0 l’algoritmo è sempre corretto.

Algoritmi Las Vegas. Sono algoritmi che producono sempre l’output corretto ma che hanno un
tempo di esecuzione probabilistico (ovvero che dipende dai bit forniti dall’oracolo). Ovvero, un
algoritmo A è Las Vegas quando P

(
A(I, Z) = q(I)

)
= 1 per ogni I ∈ I ma il tempo di calcolo di A

su una qualunque istanza I ∈ I è una variabile casuale TA(I, Z) tale che E
[
TA(I, Z)

]
< ∞.

Amplificazione. Un algoritmo Montecarlo one-sided può essere facilmente trasformato in un algo-
ritmo con probabilità di errore arbitrariamente piccola attraverso un meccanismo di amplificazione.
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Sia
P
(
A(I, Z) ̸= q(I) | A(I, Z) = 0

)
≤ 1− pn per ogni I ∈ I con |I| = n

Se su una data istanza l’algoritmo produce 0 in output possiamo eseguirlo nuovamente per ampli-
ficare la probabilità di avere l’output corretto. Se k esecuzioni indipendenti producono sistemati-
camente la risposta 0 allora la probabilità che la risposta corretta sia 1 è al più (1− pn)

k ≤ e−pnk.
Perché questa probabilità sia al più un ε > 0 piccolo a piacere è sufficiente scegliere k ≥ 1

pn
ln 1

ε .

Un meccanismo di amplificazione simile ma leggermente più complesso esiste anche per gli algoritmi
Montecarlo two-sided. Supponiamo che su istanze di taglia n l’algoritmo fornisca la risposta errata
con probabilità al più 1

2 − pn < 1
2 . Per amplificare la probabilità di ottenere la risposta corretta,

possiamo ripetere l’esecuzione k volte e utilizzare un voto di maggioranza sui k output prodotti
(per semplicità, supponiamo che k sia dispari).

Per analizzare il voto di maggioranza utilizzeremo il seguente lemma (dimostrazione omessa).

Lemma 1 (Chernoff-Hoeffding) Siano Y1, . . . , Yk variabili casuali Bernoulliane (cioè con valori
in {0, 1}), indipendenti e tali che P(Yt = 1) ≤ µ per t = 1, . . . , k. Allora, per ogni ε > 0 fissato,

P

(
1

k

k∑
t=1

Yt > µ+ ε

)
≤ e−2ε2k

Sia pE = P
(
A(I, Z) ̸= q(I)

)
la probabilità di errore dell’algoritmo su un’istanza I del problema di

decisione (I, q). Siano X1, . . . , Xk ∈ {0, 1} le variabili casuali indipendenti che denotano gli output
prodotti dalle k esecuzioni dell’algoritmo. Sia Mk ∈ {0, 1} la variabile casuale che denota il voto di
maggioranza su X1, . . . , Xk (ovvero Mk = 1 se e solo se

∑k
t=1Xt >

k
2 ). Allora,

Mk = q(I) ⇐⇒
k∑

t=1

Yt <
k

2

dove Yt = 1 se e solo se Xt ̸= q(I), per t = 1, . . . , k. In altre parole, il voto di maggioranza Mk è
corretto se e solo se l’algoritmo genera l’output errato in non più di

⌊
k
2

⌋
delle k esecuzioni. Ora,

Y1, . . . , Yk sono variabili casuali indipendenti (perché le esecuzioni dell’algoritmo sono indipendenti),
identicamente distribuite, con valori in {0, 1} e tali che P(Yt = 1) = pE ≤ 1

2−pn per ogni t = 1, . . . , k.
Applicando il lemma di Chernoff-Hoeffding otteniamo che la probabilità che il voto di maggioranza
sia sbagliato è limitata da

P

(
k∑

t=1

Yt >
k

2

)
= P

(
1

k

k∑
t=1

Yt >

(
1

2
− pn

)
+ pn

)
≤ P

(
1

k

k∑
t=1

Yt > pE + pn

)
≤ e−2p2nk .

Perché la probabilità e−2p2nk sia al più un ε > 0 piccolo a piacere è sufficiente scegliere k ≥ 1
2p2n

ln 1
ε .

Si noti che nel caso one-sided possiamo usare l’amplificazione per ridurre qualsiasi probabilità di
errore strettamente minore di 1 mentre nel caso two-sided la stessa cosa vale per qualsiasi probabilità
strettamente minore di 1

2 .

Da Las Vegas a Montecarlo one-sided. Un algoritmo Las Vegas per un problema di de-
cisione può essere trasformato in un algoritmo Montecarlo one-sided. Per far ciò utilizziamo la
disuguaglianza di Markov.
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Lemma 2 (Markov) Sia Z una variabile casuale non negativa tale che E[Z] < ∞. Allora per
ogni c > 0,

P
(
Z > c

)
≤ E[Z]

c
.

Dimostrazione. Sia A l’insieme di numeri non negativi tali che Z ∈ A. Allora

E[Z] =
∑
a∈A

aP(Z = a) =

≥0︷ ︸︸ ︷∑
a∈A : a≤c

aP(Z = a)+
∑

a∈A : a>c

aP(Z = a)

≥ c
∑

a∈A : a>c

P(Z = a) = cP(Z > c)

che conclude la dimostrazione. □

Sia A un algoritmo Las Vegas per un problema di decisione (I, q). Sia f : N → R la funzione tale
che

f(n) = max
{
E
[
TA(I, Z)

]
: I ∈ I, |I| = n

}
.

Dato che A è Las Vegas, f(n) < ∞ per ogni n ∈ N. Quindi posso trovare una funzione t : N → N
tale che

t(n) ≥ 3

2
f(n) n ∈ N

Posso quindi costruire un algoritmo A′ che simula A sull’istanza I arrestando la simulazione dopo
t(n) passi. Se A non ha terminato allora A′ produce 0 in output. Dato che A è Las Vegas, A′ sbaglia
solo quando A non termina entro t(n) passi. Per la disuguaglianza di Markov, la probabilità che
ciò accada è al più

P
(
TA(I, Z) > t(n)

)
≤

E
[
TA(I, Z)

]
t(n)

≤ f(n)

t(n)
≤ 2

3
.

Inoltre, dato che quando A non termina l’output di A′ è 0, A′ è one-sided dato che l’output 1 è
sempre corretto. Quindi A′ è un algoritmo Montecarlo one-sided con probabilità di errore al più 2

3 .
Infine, si noti che il tempo di esecuzione di A′ soddisfa TA′(I) ≤ t(|I|) = O

(
f(|I|)

)
.
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