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Un algoritmo probabilistico ¢ un algoritmo che ha accesso a un oracolo che, ad ogni chiamata,
restituisce in tempo unitario un bit causale, cioé una variabile casuale Y tale che P(Y = 1) = P(Y =
0) = % Inoltre, i bit restituiti in una sequenza di chiamate all’oracolo sono indipendenti. Nel
seguito, indicheremo con Z € {0, 1}* la stringa di bit casuali indipendenti che 'oracolo restituisce
in una sequenza di chiamate. Indicheremo anche con A(I,Z) € {0,1} la variabile casuale che
rappresenta 'output dell’algoritmo probabilistico A per un problema di decisione X = (Z,q) e
avente come input l'istanza I € 7 e i bit casuali Z dell’oracolo. In modo simile, indichiamo con
Ta(I,Z) la variabile casuale che rappresenta il tempo di esecuzione di A con input I € Z e bit
casuali Z forniti dall’oracolo.

Esistono due principali tipi di algoritmi probabilistici.
Algoritmi Montecarlo. Sono algoritmi A tali che:

e Per ogni I € Z, T4(1, Z) dipende solo da I (ovvero il tempo di esecuzione ¢ deterministico).
e Esiste I € Z per cui P(A(I, Z) # q(I)) > 0 (ovvero output non & sempre corretto).

Gli algoritmi Montecarlo si dividono ulteriormente in:

e Algoritmi con errore one-sided. Un algoritmo ha errore one-sided quando & sempre corretto
almeno su uno dei suoi due possibili output. Convenzionalmente, assumeremo che ’algoritmo
sia sempre corretto quando il suo output ¢ 1. Ovvero, A € Montecarlo one-sided quando, per
ogni I € 7, P(A(I,Z) =q(I)| A(1,Z) = 1) =1le IP’(A(I,Z) =q(I)| A(1,Z) = 0) > 0.

e Algoritmi con errore two-sided. Possono sbagliare su entrambi i possibili output. Ovvero,
A & Montecarlo two-sided quando P(A(I,Z) = ¢(I)) > 1 per ogni I € T.

Una rappresentazione grafica della relazione fra ¢(I) e A(I,Z) per un algoritmo Montecarlo one-

sided ¢ la seguente
q(l) =0 —[A(1,2) =0
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Questo mostra come A(I,Z) = 1 puo solo corrispondere a ¢(/) = 1 mentre A(I,Z) = 0 lascia
incertezza sul valore di ¢(I). Si noti anche che quando ¢(I) = 0 lalgoritmo ¢ sempre corretto.

Algoritmi Las Vegas. Sono algoritmi che producono sempre 'output corretto ma che hanno un
tempo di esecuzione probabilistico (ovvero che dipende dai bit forniti dall’oracolo). Ovvero, un
algoritmo A ¢ Las Vegas quando P(A(I,Z) = ¢(I)) =1 per ogni I € Z ma il tempo di calcolo di A
su una qualunque istanza I € Z & una variabile casuale T4 ([, Z) tale che E[T4(I, Z)] < occ.

Amplificazione. Un algoritmo Montecarlo one-sided puo essere facilmente trasformato in un algo-
ritmo con probabilita di errore arbitrariamente piccola attraverso un meccanismo di amplificazione.



Sia

P(A(I,Z) #q(I)| A(I,Z)=0) <1—p, per ogni I € Z con |I| =n
Se su una data istanza ’algoritmo produce 0 in output possiamo eseguirlo nuovamente per ampli-
ficare la probabilita di avere I'output corretto. Se k esecuzioni indipendenti producono sistemati-

camente la risposta 0 allora la probabilita che la risposta corretta sia 1 ¢ al piu (1 — pn)k < e Pnk,
Perché questa probabilita sia al pit un € > 0 piccolo a piacere ¢ sufficiente scegliere k > pin In %

Un meccanismo di amplificazione simile ma leggermente pit complesso esiste anche per gli algoritmi
Montecarlo two-sided. Supponiamo che su istanze di taglia n ’algoritmo fornisca la risposta errata
con probabilita al piu % —pn < % Per amplificare la probabilita di ottenere la risposta corretta,
possiamo ripetere ’esecuzione k volte e utilizzare un voto di maggioranza sui k output prodotti
(per semplicita, supponiamo che k sia dispari).

Per analizzare il voto di maggioranza utilizzeremo il seguente lemma (dimostrazione omessa).

Lemma 1 (Chernoff-Hoeffding) Siano Y1,...,Y} variabili casuali Bernoulliane (cioé con valori
in {0,1}), indipendenti e tali che P(Y; = 1) < p pert=1,... k. Allora, per ogni e > 0 fissato,
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Sia pp = P(A(I, Z) # q(I)) la probabilita di errore dell’algoritmo su un’istanza I del problema di
decisione (Z, ). Siano X1,..., Xy € {0,1} le variabili casuali indipendenti che denotano gli output
prodotti dalle & esecuzioni dell’algoritmo. Sia M}, € {0, 1} la variabile casuale che denota il voto di
maggioranza su Xi,..., Xy (ovvero My =1 se e solo se Zle X > %) Allora,
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dove Y; = 1 se e solo se Xy # ¢(I), per t = 1,...,k. In altre parole, il voto di maggioranza M, ¢
corretto se e solo se l'algoritmo genera l'output errato in non piu di L%J delle k esecuzioni. Ora,
Y1, ..., Yy sono variabili casuali indipendenti (perché le esecuzioni dell’algoritmo sono indipendenti),
identicamente distribuite, con valoriin {0, 1} e taliche P(Y; = 1) = pp < %—pn perognit=1,... k.
Applicando il lemma di Chernoff-Hoeffding otteniamo che la probabilita che il voto di maggioranza
sia sbagliato e limitata da
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Perché la probabilita e 277 sia al pitt un € > 0 piccolo a piacere ¢ sufficiente scegliere k > ﬁ In é

Si noti che nel caso one-sided possiamo usare ’amplificazione per ridurre qualsiasi probabilita di
errore strettamente minore di 1 mentre nel caso two-sided la stessa cosa vale per qualsiasi probabilita
strettamente minore di %

Da Las Vegas a Montecarlo one-sided. Un algoritmo Las Vegas per un problema di de-
cisione puo essere trasformato in un algoritmo Montecarlo one-sided. Per far cio utilizziamo la
disuguaglianza di Markov.



Lemma 2 (Markov) Sia Z una variabile casuale non negativa tale che E[Z] < co. Allora per
ogni ¢ > 0,
E[Z]

o

P(Z >¢) <

DIMOSTRAZIONE. Sia A l'insieme di numeri non negativi tali che Z € A. Allora

>0
E[Z]=) aP(Z=a)= Y aP(Z=a)+ Y aP(Z=a)
acA a€A:a<c acA:a>c
>c Z P(Z =a)=cP(Z > ¢)
ac€A:a>c
che conclude la dimostrazione. O

Sia A un algoritmo Las Vegas per un problema di decisione (Z,¢). Sia f : N — R la funzione tale
che
f(n) =max{E[T4(I,2)] : I €Z, |I|=n} .

Dato che A & Las Vegas, f(n) < oo per ogni n € N. Quindi posso trovare una funzione ¢t : N — N
tale che

t(n) > =f(n) neN

| W

Posso quindi costruire un algoritmo A’ che simula A sull’istanza I arrestando la simulazione dopo

t(n) passi. Se A non ha terminato allora A’ produce 0 in output. Dato che A ¢ Las Vegas, A’ sbaglia

solo quando A non termina entro ¢(n) passi. Per la disuguaglianza di Markov, la probabilita che

cio accada e al piu

E[Ta(I, 2)]
t(n)

2

P(Ta(I,Z) > t(n)) < <
Inoltre, dato che quando A non termina 'output di A" & 0, A’ & one-sided dato che l'output 1 &
sempre corretto. Quindi A’ ¢ un algoritmo Montecarlo one-sided con probabilita di errore al pit %
Infine, si noti che il tempo di esecuzione di A’ soddisfa T (I) < ¢(|I]) = O(f(|1])).



