
Complementi di Algoritmi e Strutture Dati

Le classi di complessità probabilistiche

Docente: Nicolò Cesa-Bianchi versione 20 marzo 2023

Un algoritmo probabilistico per un problema di decisione X = (I, q) può essere visto come un
algoritmo deterministico che ha accesso ad una stringa Z di bit casuali. L’algoritmo calcola una
funzione B : I ×{0, 1}∗ → {0, 1} tale che, per ogni I ∈ I, B(I, Z) = q(I) con una certa probabilità
rispetto all’estrazione della stringa Z.

In analogia con la definizione della classe NP, possiamo definire le classi di problemi di decisione
solubili in tempo polinomiale da diversi tipi di algoritmi probabilistici rivisitando la nozione di
certificatore polinomiale.

La classe di problemi di decisione risolti in modo efficiente da algoritmi Montecarlo two-sided è la
classe BPP. Un problema di decisione X = (I, q) appartiene alla classe BPP se esiste una funzione
B : I × {0, 1}∗ → {0, 1} calcolabile in tempo polinomiale e un polinomio p(·) tali che, per ogni
istanza I ∈ I, essi soddisfano

P
(
B(I, Z) ̸= q(I)

)
≤ 1

3
(1)

dove la probabilità è calcolata rispetto all’estrazione di Z con probabilità uniforme da {0, 1}p(|I|).

Si noti che la costante 1
3 è arbitraria dato che, come abbiamo visto, la probabilità di errore di un

algoritmo two-sided può essere ridotta a piacere tramite il meccanismo di amplificazione. Infatti,
una definizione equivalente di BPP sostituisce (1) con

P
(
B(I, Z) ̸= q(I)

)
≤ 1

2
− 1

p′(|I|)

dove p′(·) è un polinomio. Il meccanismo di amplificazione tramite Lemma di Chernoff-Hoeffding
implica che è sufficiente eseguire l’algoritmo un numero di volte pari a ordine di p′(|I|)2 per ottenere
una probabilità di errore limitata da 1

3 . Dato che p′(·) è un polinomio, l’algoritmo risultante è ancora
polinomiale in |I|.

Si noti che P ⊆ BPP, dato che avendo un algoritmo polinomiale per calcolare la funzione di
decisione q possiamo implementare il certificatore B in tempo polinomiale con probabilità di errore
pari a zero. Non è invece noto se P ≡ BPP, ovvero se ogni algoritmo Montecarlo two-sided
possa essere “derandomizzato” in modo da ottenere un algoritmo deterministico polinomiale per
lo stesso problema. Non è neanche noto se BPP ⊆ NP. D’altra parte, dato che la condizione (1)
è simmetrica rispetto al valore di q(I), ne deduciamo che BPP è chiusa rispetto al complemento,
ovvero BPP ≡ co−BPP.

La classe di problemi di decisione risolti in modo efficiente da algoritmi Montecarlo one-sided è la
classe RP. Un problema di decisione X = (I, q) appartiene alla classe RP se esiste una funzione
B : I × {0, 1}∗ → {0, 1} calcolabile in tempo polinomiale e un polinomio p(·) tali che, per ogni
istanza I ∈ I,

P
(
B(I, Z) = 1

)
≥ 2

3 se q(I) = 1,

P
(
B(I, Z) = 0

)
= 1 se q(I) = 0

(2)

1

dove la probabilità è calcolata rispetto all’estrazione di Z con probabilità uniforme da {0, 1}p(|I|).

Si noti che questa definizione corrisponde all’osservazione precedentemente fatta che un algoritmo
Montecarlo one-sided è sempre corretto quando q(I) = 0. Quando q(I) = 1, l’algoritmo è corretto
con probabilità almeno 2

3 . Quindi l’algoritmo è sempre corretto su output 1 mentre sbaglia con
probabilità al più 1

3 su output 0. Anche in questo caso la costante 1
3 è arbitraria dato che possiamo

ridurre a piacere la probabilità di errore tramite il meccanismo di amplificazione. Infatti, possiamo
dare una definizione equivalente di RP sostituendo la prima condizione di (2) con

P
(
B(I, Z) = 1

)
≥ 1

p′(|I|)
se q(I) = 1

dove p′(·) è un polinomio. Il meccanismo di amplificazione implica che è sufficiente eseguire l’algo-
ritmo un numero di volte pari a ordine di p′(|I|) per ottenere una probabilità di errore limitata da
1
3 . Dato che p′(·) è un polinomio, l’algoritmo risultante è ancora polinomiale in |I|.

Con un ragionamento simile a quello che ci ha portato a concludere che P ⊆ BPP, possiamo
anche dimostrare che P ⊆ RP. Ma, a differenza di BPP, questa volta possiamo stabilire una
relazione fra RP e NP. Infatti, la definizione di NP può essere equivalentemente riscritta nel
modo seguente. Un problema di decisione X = (I, q) appartiene alla classe NP se esiste una
funzione B : I × {0, 1}∗ → {0, 1} calcolabile in tempo polinomiale e un polinomio p(·) tali che, per
ogni istanza I ∈ I, essi soddisfano

P
(
B(I, Z) = 1

)
> 0 se q(I) = 1,

P
(
B(I, Z) = 0

)
= 1 se q(I) = 0

dove le probabilità sono calcolate rispetto all’estrazione di Z con probabilità uniforme da {0, 1}p(|I|).

Dato che per la prima condizione di (2), P
(
B(I, Z) = 1

)
≥ 2

3 implica P
(
B(I, Z) = 1

)
> 0, mentre

la seconda condizione di (2) è uguale sia nella definizione di RP che in quella di NP, concludiamo
che RP ⊆ NP. In altre parole, interpretiamo i bit casuali Z nella definizione di RP come un
certificato del fatto che q(I) = 1.

La classe co−RP contiene i problemi che sono complementi di problemi in RP. La definizione di
co−RP è semplicemente ottenuta scrivendo in (2) q(I) = 0 al posto di q(I) = 1 e viceversa. Con
una dimostrazione simile a quella di RP ⊆ NP possiamo dimostrare che co−RP ⊆ co−NP. Come
vale P ⊆ RP cos̀ı possiamo dimostrare che P ⊆ co−RP.

Possiamo mettere in relazione RP e co−RP con BPP riscrivendo la definizione di quest’ultima
come

P
(
B(I, Z) = 1

)
≥ 2

3 se q(I) = 1,

P
(
B(I, Z) = 0

)
≥ 2

3 se q(I) = 0.
(3)

Arriviamo cos̀ı alla conclusione RP ⊆ BPP e co−RP ⊆ BPP.

Introduciamo ora la classe ZPP ≡ RP ∩ co−RP. Un problema di decisione X = (I, q) appartiene
alla classe ZPP se esistono due funzioni B,B′ : I×{0, 1}∗ → {0, 1} calcolabili in tempo polinomiale
e due polinomi p(·), p′(·) tali che, per ogni istanza I ∈ I, essi soddisfano

P
(
B(I, Z) = 1

)
≥ 2

3 e P
(
B′(I, Z ′) = 1

)
= 1 se q(I) = 1,

P
(
B′(I, Z ′) = 0

)
≥ 2

3 e P
(
B(I, Z) = 0

)
= 1 se q(I) = 0,

(4)

2

dove le probabilità sono calcolate rispetto all’estrazione di Z con probabilità uniforme da {0, 1}p(|I|)
e di Z ′ con probabilità uniforme da {0, 1}p′(|I|).

Non è difficile vedere che la classe ZPP è la classe dei problemi risolti da algoritmi Las Vegas
che terminano in tempo atteso limitato da un polinomio nella lunghezza dell’istanza. Per farlo,
abbiamo bisogno del lemma seguente.

Lemma 1 (Valore atteso distribuzione Geometrica) Siano Z1, Z2, . . . variabili casuali Ber-
noulliane, indipendenti e tali che P(Zt = 1) = p per t ≥ 1. Sia G = min {k : Zk = 1}. Allora
E[G] = 1

p .

Dimostrazione.

E[G] =
∞∑
k=1

k(1− p)k−1p = p
∞∑
k=1

k(1− p)k−1 = −p
∞∑
k=1

d

dp
(1− p)k

= −p
d

dp

∞∑
k=1

(1− p)k = −p
d

dp

(
1

1− (1− p)
− 1

)
= −p

d

dp

1− p

p

= −p
−1

p2
=

1

p
.

□

Ora, se X ∈ ZPP allora posso costruire un algoritmo probabilistico A che, su input I ∈ I, esegue B
e B′ arrestandosi non appena B(I, Z) = 1 oppure B′(I, Z ′) = 0. In entrambi questi casi sappiamo
che l’output è corretto, quindi A si arresta sempre con la soluzione corretta. La probabilità che su
una particolare istanza I si verifichi B(I, Z) = 0 e B′(I, Z ′) = 1 è

P
(
B(I, Z) = 0 ∧ B′(I, Z ′) = 1

)
= P

(
B(I, Z) = 0

)
P
(
B′(I, Z ′) = 1

)
≤

{
1
3 × 1 if q(I) = 1
1× 1

3 if q(I) = 0

ovvero al più 1
3 indipendentemente dal valore di q(I). Quindi la probabilità che A si arresti con

la soluzione corretta è almeno 2
3 in ogni esecuzione di B e B′. Usando il lemma sul valore atteso

della Geometrica, il numero atteso di ripetizioni è quindi al più 3
2 < 2. Dato che per ipotesi B e

B′ terminano entrambi in tempo polinomiale, il tempo atteso di calcolo di A è pure polinomiale.

D’altra parte, sia A è un algoritmo Las Vegas per (I, q) e sia µ(I) < p(|I|) il valore atteso del
tempo di calcolo TA(I, Z) di A su input I. Per la disuguaglianza di Markov,

P
(
TA(I, Z) ≥ ⌈3µ(I)⌉

)
≤ 1

3
.

Quindi se su input I arresto A dopo ⌈3µ(I)⌉ passi, la probabilità che A non abbia terminato è al
più 1

3 . Viceversa, quando A termina l’output è sempre corretto. Possiamo quindi implementare le
funzioni B e B′ come segue. B esegue A e produce 0 se A non termina. Quindi quando q(I) = 0
l’output di B(I, Z) è deterministicamente 0, mentre quando q(I) = 1 l’output di B(I, Z) è 1 con
probabilità almeno 2

3 . In modo simile possiamo implementare B′. Dato che µ(I) < p(|I|), B e B′

terminano entrambi in tempo deterministico polinomiale.

Quindi, in particolare, ZPP ⊆ RP come avevamo già osservato trasformando un algoritmo Las
Vegas in uno Montecarlo one-sided. Ciò implica che risolvere un problema di decisione con un
algoritmo Las Vegas è un risultato più forte che risolverlo con un algoritmo Montecarlo (one-sided
o two-sided). Infine, dato che P è incluso sia in RP che in co−RP, abbiamo che P ⊆ ZPP.

3

