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In online advertising, publishers sell their online ad space to advertisers through second-price auc-
tions managed by ad exchanges. For each impression (ad display) created on the publisher’s website,
the ad exchange runs an auction on the fly. Empirical evidence shows that an informed choice of
the seller’s reserve price, disqualifying any bid below it, can indeed have a significant impact on
the revenue of the seller. We assume the seller is also observing the highest bid together with the
revenue.

The seller’s revenue in a second-price auction is computed as follows: if the reserve price r is not
larger than the second-highest bid b(2), then the item is sold to the highest bidder and the seller’s
revenue is b(2). If r is between b(2) and the highest bid b(1), then the item is sold to the highest
bidder and the seller’s revenue is the reserve price. Finally, if r is bigger than b(1), then the item
is not sold and the seller’s revenue is zero. Formally, the seller’s revenue is

g(r, b(1), b(2)) = max {r, b(2)}]1{7“ <b(1)}

Note that the revenue only depends on the reserve price r and on the two highest bids b(1) > b(2),
where we assume all quantities be in the unit interval [0, 1].

At the beginning of each auction ¢t = 1,2,..., the seller computes a reserve price r € [0,1]. Then,
bids b(1),b(2),... are collected by the auctioneer, and the seller (which is not the same as the
auctioneer) observes the revenue g;(r¢) = g(r¢,b¢(1),b:(2)), together with the highest bid by(1).
Crucially, knowing ¢;(r;) and b;(1) allows to compute g(r) for all r > r;. For technical reasons, we
use losses ¢(r;) = 1 — g¢(r¢) instead of revenues, see Figure 1 for a pictorial representation.
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Figura 1: The loss function ¢;(r¢) = 1—max{r, b:(2) }I{r; < b:(1)} when b;(1) = 0.7 and b:(2) = 0.5.

The loss functions ¢ : [0, 1] — [0, 1] satisfy the semi-Lipschitz condition,

by +06) > b(y)— ¢ forall 0 <y<y+d<1. (1)



The learner’s regret is defined by
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where the expectation is with respect to the randomness in the reserves ;. We introduce the Exp3-
RTB algorithm, a variant of Exp3 exploiting the richer feedback {Et(y) Ty > rt}. The algorithm
uses a discretization of the action space [0,1] in K = [1/~v] actions y ;= (k—1)yfork=1,..., K.

Algoritmo 1 (Exp3-RTB)
Input: Exploration parameter 0 < v < 1.
1: Set learning rate 7 = /2 and uniform distribution p; over {1,..., K} where K = [1/7]
2: fort=1,2,... do
3: compute distribution q;(k) = (1 —y)pe(k) + Y I{k =1} for k=1,..., K;
4: draw I; ~ ¢ and set r, = (I — 1);
5

for each kK =1,..., K, compute the estimated loss
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6: for each kK =1,..., K, compute the new probability assignment
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7. end for

Teorema 1 The Fxp3-RTB algorithm tuned with 0 < v < 1 satisfies
1 2Inf1
1. 6) L 2t/
4y gl
In particular, v = T~'/? gives Ry = O((InT)VT).
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DiMOSTRAZIONE. The proof follows the same lines as the regret analysis of Exp3. The key change
is a tighter control of the variance term allowed by the richer feedback.

Pick any reserve price yr = (k—1)~y. We first control the regret associated with actions drawn from
pt (the regret associated with ¢ will be studied as a direct consequence). More precisely, since the
estimated losses ¢;(j) are nonnegative, we can apply the standard analysis of Exp3 to get
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Writing E;_;[-] for the expectation conditioned on Iy, ..., I;_1, we note that
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where we used the definition of ¢; and the fact that ¢;(y;) < 1 by assumption. Therefore, taking
expectation on both sides of (2) implies, again similarly to what is done in the analysis of Exp3,
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Setting s4(j) = 25:1 q:(i), we can upper bound the sum with an integral,
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where we used ¢;(1) > . Therefore, substituting into the previous bound, we get
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We now control the regret of the reserves r, = (I; —1)~, where I; is drawn from ¢ = (1 —y)p +7v01.
We have
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where the last inequality is by (3).

To conclude the proof, we upper bound the regret against any fixed y € [0, 1]. Since there exists
ke {1,...,K} such that y € [yx, yr +7], and since each ¢, satisfies the semi-Lipschitz condition (1),
we have ¢;(y) > ¢¢(yr) — 7. This gives
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Replacing the last inequality into (4), and recalling that K = [1/v] and n = 3, finally yields
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Choosing v~ T concludes the proof. g



Note that, if instead of Exp3-RTB we had run Exp3 with learning rate n > 0 on the grid of
K = [1/~] prices, we would have obtained a bound of the form
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which, for v = T3 and n = T72/3 gives Ry = (’)(TQ/ 3) ignoring logarithmic factors, a bound
much worse than that obtained by Exp3-RTB exploiting the richer feedback structure of this
problem.



