Part 10

April 14, 2020

1 Linear Regression

In linear regression our predictors are linear functions f : R? — R each parameterized by a vector w € R real coefficients. Thatis, f(x) = w"x.

Given a training set (x1,y1), ..., (Xm, ym) € R? x R, the linear regression predictor is the Empirical Risk Minimizer with respect to the square

loss,
m

@ = argmin y_ (w'x; — yt)z
weR? t=1

Now letv = (w'xy,...,w xy,) andy = (y1,...,Ym). Then

2
(w'x—yi) = [lo -yl

NgE

t

Il
—_

Since v = Sw, where S is a m x d matrix such that ST = [x1,...,%n], we may also write

@ = argmin ||Sw — y||*

weRd
Since F(w) = ||Sw — y||* is a convex function, the minimizer satisfies the condition VF(w) = 0.
Using matrix calculus, we have that V ||Sw — y||* = 25T (Sw — y). Hence, V ||Sw — y||* = 0 for w = (STS) 715Ty provided S'S is invertible.
Therefore, whenever S' S is invertible we have that w = (S'S) 15Ty,

Since the Bayes optimal predictor for square loss is f(x) = E[Y |], the Bayes optimal predictor is a linear function when y = u ' x + ¢,, where
gx is an independent random variable such that E[e, | x| = 0.

In [1]: import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import decomposition

from sklearn.linear_model import LinearRegression, Ridge

from sklearn.model_selection import train_test_split, learning_curve, cross_val_score, validation_curve, GridSearchCV
from sklearn.metrics import mean_squared_error

from sklearn.datasets import make_regression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.pipeline import make_pipeline

#from auxCode tmport *
Jmatplotlib inline

We start by using the function make_regression() to generate a random dataset on which the Bayes optimal predictor is a linear function. We

setd =1, m = 1000, and y/Var[e, | x| = 10.

In [2]: X, y, w = make_regression(n_samples=1000, n_features=1, n_informative=1, n_targets=1,
noise=10.0, shuffle=True, coef=True, random_state=42)

We can inspect the coefficient of the Bayes optimal predictor.
In [3]: np.round(w.item(), decimals=2)
Out[3]: 16.75

The Bayes risk is the squared conditional variance, averaged over data points. In our case, Bayes risk (10)? = 100.
If we compute it on our dataset we get something close but not quite the same, which is reasonable considering we have sampled just 1000
data points.

In [4]: y_opt = w.item()*X
np.round(mean_squared_error(y, y_opt), decimals=2)

Out[4]: 98.03
Next, we split the dataset in train and test, with proportions 60% and 40%.
In [6]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

We run a linear regression learner on the training data and print the learned coefficient.

In [6]: learner = LinearRegression()
learner.fit(X_train, y_train)
np.round(learner.coef_[0], decimals=2)

Out[6]: 16.93

Note that the learned linear regressor is pretty close to the coefficient 16.75 of the Bayes optimal predictor.
We then compute test predictions and measure test error with respect to the square loss.

In [7]: y_pred = learner.predict(X_test)
np.round(mean_squared_error(y_test, y_pred), decimals=2)

OQut[7]: 102.37

If we plot the test points and the two linear regressors (the one we learned and the Bayes optimal one) we can get an idea of how good is linear
regression when the Bayes optimal predictor is also a linear function.

In [8]: x_min = np.min(X)
x_max = np.max(X)
v = np.arange(x_min, x_max, 0.2)

plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=2)
plt.plot(v, v*w.item(), color='red', linewidth=2)
plt.show()

20 -

|
3]
=]

The test error of the Bayes optimal predictor is only slightly lower than that of the linear regressor learned on the training set.

In [9]: y_opt = w.item()*X_test
np.round(mean_squared_error(y_test, y_opt), decimals=2)

Out[9]: 101.31

Now we keep the same training set and change the labels to make the Bayes optimal predictor a nonlinear function of x, namely y = sin(x) +
0.3ey, where g, is an independent Gaussian random variable with zero mean and variance equal to 0.25.

In [10]: y = X * np.sin(X) + 0.5+%np.random.randn(1000,1)

In [11]: plt.scatter(X, y, color='black')
plt.show()

If we train on the entire dataset, linear regression achieves a large training error.

In [12]:

Out [12]:

learner.fit(X, y)
y_pred = learner.predict(X)

np.round(mean_squared_error(y, y_pred), decimals=2)

0.59

We now use a trick to make linear regression more powerful at the expense of increasing the number of features.
The function PolynomialFeatures () replaces the original features x = (x1,..
less than or equal to a specified degree n. For instance, if d = 2 and n = 2, the original features (x1, x2) are replaced by (1, x1, x2, x1x2, x%, x%) Note
that the number of new features is of order d".

With n = 5 the training error of linear regression goes down a lot.

In [13]:

In [14]:
Out [14] :

In [15]:

We are now ready to try out linear regression on a real-world dataset.

., x4) with all polynomial combinations of features with degree

poly = PolynomialFeatures(degree=5, interaction_only=False, include_bias=True)
X_poly = poly.fit_transform(X)
learner.fit (X_poly, y)
y_pred = learner.predict(X_poly)

np.round(mean_squared_error(y, y_pred), decimals=2)

0.25

plt.scatter(X, vy,

plt.scatter(X, y_pred,
plt.show()

color="'black')

color='red')

L
L
[
T L
3 2 4 1 2 3 4

The Boston Housing Dataset originates from the UCI Machine Learning Repository. The data was collected in 1978 and each of the 506 entries
represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. The label is the column MEDV.
We load the dataset and add column names. Note the the field separator in the file is whitespace instead of comma.

In [16]: names = ['CRIM', 'ZN',
housing = pd.read_csv("Datasets/housing.csv", delim_whitespace=True, names=names)
housing.info()

'INDUS',

<class 'pandas.core.frame.DataFrame'>

RangelIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

CRIM
ZN
INDUS
CHAS
NOX
RM
AGE
DIS
RAD
TAX
PTRATIO
B
LSTAT
MEDV

506
506
506
506
506
506
506
506
506
506
506
506
506
506

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

float64
float64
float64
int64

float64
float64
float64
float64
int64

float64
float64
float64
float64
float64

dtypes: float64(12), int64(2)

memory usage:

55.4 KB

'CHAS',

'NOX',

'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']

In [17]: housing.describe()

Out [17]: CRIM ZN INDUS CHAS NOX RM \
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634
std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617
min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000
25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500
75% 3.677082 12.500000 18.100000 0.000000 0.624000 6.623500
max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000

AGE DIS RAD TAX PTRATIO B \
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032
std 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864
min 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000
25%, 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500
50% 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000
75% 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000
max 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000
LSTAT MEDV
count 506.000000 506.000000
mean 12.653063 22.532806
std 7.141062 9.197104
min 1.730000 5.000000
25% 6.950000 17.025000
50% 11.360000 21.200000
75% 16.955000 25.000000
max 37.970000 50.000000
In [18]: housing.head()
Out [18]: CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296.0
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242.0
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242.0
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222.0
4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222.0
PTRATIO B LSTAT MEDV
0 156.3 396.90 4.98 24.0
1 17.8 396.90 9.14 21.6
2 17.8 392.83 4.03 34.7
3 18.7 394.63 2.94 33.4
4 18.7 396.90 5.33 36.2
We take a look at the distribution of the labels using the distplot () function of Seaborn.
In [19]: sns.distplot(housing['MEDV']);
fig = plt.figure()
0,07 1
0.06 -
005 1
0.04 1
003 +
0.02 1
001 A
I}. I:'{I 1 1]] 1 1
0 10 20 30 40 30
MEDV

<Figure size 432x288 with 0 Axes>

We also look at the correlation matrix between features. The DataFrame method corr () of Pandas computes the Pearson correlation coefficient
of the sample, defined for each pair i, j of features by

_ Y (e — i) (%6 — 1)
VI (o = 1P (i —)

1’1‘,]'

where p; = (xj1+ -+ Xj)/ m.
Recall that the Pearson correlation coefficient ; ; is always in the [—1, +1] interval. Values of r;; closer to the extremes indicate that i and j tend
to be linearly correlated, whereas values of 7; ; close to zero indicate that i and j are nearly independent.

In [20]: corr=housing.corr()
plt.figure(figsize=(20, 20))
sns.heatmap(corr, vmax=.8, linewidths=0.01,
square=True,annot=True,cmap='Y1GnBu',linecolor="white")
plt.title('Correlation between features');

Correlation between features

06

0.099 0.0074 . .
03

0.0

Pairs of features with correlation coefficient close to —1 or +1 are redundant (for example, TAX and RAD in this dataset), and we could only
keep one for each pair.
We check which feature has a correlation larger than 0.75 in absolute value with at least some other feature.

In [21]: corr[((corr > 0.75) | (corr < -0.75)) & (corr != 1.0)].dropna(axis='index', how='all')

Out[21]: CRIM ZN INDUS CHAS NOX RM AGE DIS RAD \
INDUS NaN NaN NaN NaN 0.763651 NaN NaN NaN NaN
NOX NaN NaN 0.763651 NaN NaN NaN NaN -0.76923 NaN
DIS NaN NaN NaN NaN -0.769230 NaN NaN NaN NaN

RAD NaN NaN NaN NaN NaN NaN NaN NaN NaN
TAX NaN NaN NaN NaN NaN NaN NaN NaN 0.910228

TAX PTRATIO B LSTAT MEDV

INDUS NaN NaN NaN NaN NaN
NOX NaN NaN NaN NaN NaN
DIS NaN NaN NaN NaN NaN
RAD 0.910228 NaN NaN NaN NaN
TAX NaN NaN NaN NaN NaN

It turns out that we can safely drop NOX and RAD.

In [22]: X
y

housing.drop(columns=['NOX', 'RAD', 'MEDV']).values
housing['MEDV'] .values

We now set the linear regression learner with the (negative) square loss as scoring function. In our experiments, use the setting normalize=True
which applies the data transformation x; — (x; — p)/ ||x¢|| where u is the average of the data points.

In [23]: learner = LinearRegression(normalize=True)
RMS = 'neg_mean_squared_error'

The cross-validated risk estimate is 34.77

In [24]: scores = cross_val_score(learner, X, y, cv=5, scoring=RMS)
np.round(-scores.mean(), decimals=2)

Out[24]: 34.77
We now look at the learning curve for training set values from 150 to 300

In [25]: sizes = range(150, 301, 25)
train_size, train_score, val_score = learning_curve(learner, X, y, train_sizes=sizes, cv=5, scoring=RMS)

In [26]: train_score_mean = -np.mean(train_score, axis=1)
train_score_std = np.std(train_score, axis=1)
val_score_mean = -np.mean(val_score, axis=1)
val_score_std = np.std(val_score, axis=1)
plt.grid()
plt.fill_between(sizes, train_score_mean - train_score_std,
train_score_mean + train_score_std, alpha=0.1,
color="r"
plt.fill_between(sizes, val_score_mean - val_score_std,
val_score_mean + val_score_std, alpha=0.1, color="g")
plt.plot(sizes, train_score_mean, 'o-', color="r",
label="Training error")
plt.plot(sizes, val_score_mean, 'o-', color="g",
label="CV accuracy")
plt.legend()
plt.xlabel('Training size')
plt.ylabel('Square loss')

plt.show()
175 A —&— Training error
150 —&— [V accuracy
125
1
o 100
o
g 75 - *
4
E,D -
25 4

160 180 200 220 240 260 280 300
Training size

Linear regression look unstable here. The risk estimates oscillate between 40 and 80 and have a huge variance.
We repeat the experiment without cross-validation so that we can extract the linear model w learned by linear regression for each training set
size

In [27]: coef_list = []

for s in range(150, 301, 25):
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=s, random_state=42)
learner.fit(X_train, y_train)
coef_list.append(learner.coef_)

coef_matrix = np.array(coef_list)

/home/nicolo/anaconda3/1ib/python3.7/site-packages/sklearn/model_selection/_split.py:2026: FutureWarning: From version 0.21, test_size w:
FutureWarning)

Then, we use PCA to visually check how different the learned models are.

In [28]: pca = decomposition.PCA(n_components=2)
pca.fit(coef_matrix)
coef_pca = pca.transform(coef_matrix)

fig, ax = plt.subplots()
ax.set_xlim(-1.5, 1.5)

ax.set_ylim(-0.5, 0.5)
plt.scatter(coef_pcal:,0], coef_pcal:,1])

Out [28] : <matplotlib.collections.PathCollection at 0x7£5d37f6cel0>

0.4 4 s *
0.2 - .
0.0 -
-0.2 . &
* .
—0.4 4
-15 ~10 0.5 0.0 0.5 10 15

In order to increase the stability of linear regression, we first use PCA to reduce the number of features and increase the bias.

In [29]: pca = decomposition.PCA(n_components=11)
pca.fit(X)

plt.title('PCA")

plt.plot(pca.singular_values_, label='Singular values')
plt.legend()

plt.show()

PCA

4000 4 — Singular values
3500 4
3000 1
2500 1
2000 1
1500 1
1000 1

500 1

We project all the datapoints on the six principal components. Then we check the learning curve again.

In [30]: pca = decomposition.PCA(n_components=6)
pca.fit(X)
X_pca = pca.transform(X)

In [31]: sizes = range(150, 301, 25)
train_size, train_score, val_score = learning_curve(learner, X_pca, y, train_sizes=sizes, cv=5, scoring=RMS)

In [32]: plt.title('PCA Linear Regression')

train_score_mean = -np.mean(train_score, axis=1)
train_score_std = np.std(train_score, axis=1)
val_score_mean = -np.mean(val_score, axis=1)
val_score_std = np.std(val_score, axis=1)
plt.grid()

plt.fill_between(sizes, train_score_mean - train_score_std,
train_score_mean + train_score_std, alpha=0.1,
color="r"
plt.fill_between(sizes, val_score_mean - val_score_std,
val_score_mean + val_score_std, alpha=0.1, color="g")
plt.plot(sizes, train_score_mean, 'o-', color="r",
label="Training error")
plt.plot(sizes, val_score_mean, 'o-', color='"g",
label="CV risk estimate")
plt.legend()
plt.xlabel('Training size')
plt.ylabel('Square loss')
plt.show()

PCA Linear Regression

—&— Training error
120 1 —&— CV risk estimate

100 1

Square loss

40 - — '__h_'______,.-v———o
zn-r"/"_

1ad 150 200 220 240 2al 280 300
Training size

The learning curve looks more stable now. We doublecheck by repeating the procedure to plot the spread of the vectors learned using increasing
sizes of the training set.

In [33]: coef_list = []

for s in range(150, 301, 25):
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, train_size=s, random_state=42)
learner.fit(X_train, y_train)
coef_list.append(learner.coef_)

coef_matrix = np.array(coef_list)

pca = decomposition.PCA(n_components=2)
pca.fit(coef_matrix)
coef_pca = pca.transform(coef_matrix)

/home/nicolo/anaconda3/1ib/python3.7/site-packages/sklearn/model_selection/_split.py:2026: FutureWarning: From version 0.21, test_size w:
FutureWarning)

In [34]: fig, ax = plt.subplots()
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-0.5, 0.5)
plt.scatter(coef_pcal:,0], coef_pcal:,1])

Out[34]: <matplotlib.collections.PathCollection at 0x7£5d37e279b0>

04 -
02 -
0.0 - “
0.2
04 -
15 1.0 05 0.0 05 10 15

As the plot shows, the learned models are a indeed more stable after PCA.

1.1 Ridge Regression

A better way to increase the bias in linear regression, and thus make the model more stable, is by introducing a regularizer in the ERM functional.
In other words, instead defining w by
@ = argmin ||Sw — y||*
weR?

we use the regularized form, also known as Ridge Regression,

@ = argmin ||Sw — y||* + « ||w)|?
weR?
where & > 0 is the regularization parameter. When a is zero we recover the standard linear regression solution. When « is very large, the solution
w becomes the zero vector. Hence a can be used to control the bias of the algorithm.
Similarly to before, we have that

V(1w =yl +aw]*) =28 (Sw —y) + 20w

Hence, the gradient vanishes for w = (aI +S'S) s Ty. Note that we do not have to worry anymore about the invertibility of S'S. Indeed, if
A > -+ > A4 > 0 are the eigenvalues of ST S, the eigenvalues of al + S'S are simplya +A_1>--- > a+A_d > 0. Hence, al + S'S is invertible
whenever a > 0.

We start by investigating the sensitivity of the CV risk estimate to the choice of .

In [35]: alpha_vals = np.linspace(0.01,2.0,20)
train_score, val_score = validation_curve(Ridge(normalize=True), X, y, 'alpha', alpha_vals, cv=5, scoring=RMS)

In [36]: plt.title('Ridge Regression')

train_score_mean = -np.mean(train_score, axis=1)
train_score_std = np.std(train_score, axis=1)
val_score_mean = -np.mean(val_score, axis=1)
val_score_std = np.std(val_score, axis=1)
plt.grid()

plt.fill_between(alpha_vals, train_score_mean - train_score_std,
train_score_mean + train_score_std, alpha=0.1,
color="r")
plt.fill_between(alpha_vals, val_score_mean - val_score_std,
val_score_mean + val_score_std, alpha=0.1, color="g")
plt.plot(alpha_vals, train_score_mean, color="r",
label="Training error")
plt.plot(alpha_vals, val_score_mean, color="g",
label="CV risk estimate")
plt.legend()
plt.xlabel('Alpha')
plt.ylabel('Square loss')
plt.show()

Ridge Regression

—— Training error
— W risk estimate

& 2

&

Square loss

000 025 05 075 1o 125 150 175 200
Alpha

We see that overfitting essentially disappears for « > 0.5, and bias progressively increases. The variance of the CV risk estimate remains high
though.

With normalized data (as performed by the flag normalize=True), the choice « = 1 is often reasonable.

We now compare the learning curves of PCA Linear Regression and Ridge Regression.

In [37]: lin_reg = LinearRegression(normalize=True)

sizes = range(150, 301, 25)
1_train_size, 1l_train_score, 1l_val_score = learning_curve(lin_reg,

X_pca, y, train_sizes=sizes, cv=5, scoring=RMS)
r_train_size, r_train_score, r_val_score = learning_curve(Ridge(normalize=True),

X_pca, y, train_sizes=sizes, cv=5, scoring=RMS)

In [38]: plt.title('PCA Linear Regression vs. Ridge Regression')

1_val_score_mean = -np.mean(l_val_score, axis=1)
1_val_score_std = np.std(l_val_score, axis=1)
r_val_score_mean = -np.mean(r_val_score, axis=1)
r_val_score_std = np.std(r_val_score, axis=1)
plt.grid()

plt.fill_between(sizes, 1_val_score_mean - 1_val_score_std,
1_val_score_mean + 1_val_score_std, alpha=0.1,
color="r")

plt.fill_between(sizes, r_val_score_mean - r_val_score_std,
r_val_score_mean + r_val_score_std, alpha=0.1, color="g")

plt.plot(sizes, 1_val_score_mean, 'o-', color="r",
label="PCA Linear Regression")
plt.plot(sizes, r_val_score_mean, 'o-', color="g",

label="Ridge Regression")
plt.legend()
plt.xlabel('Training size')
plt.ylabel('CV risk estimate')
plt.show()

PCA Linear Regression vs. Ridge Regression

—&— PCA Linear Regression
120 —&— Ridge Regression

100 1

CV risk estimate
=

Eﬂ-.‘-‘ﬁ-*—“\ﬂ .

160 180 200 220 240 260 280 300
Training size

10

We see that, despite a large variance in the CV risk estimate, Ridge Regression is better than PCA Linear Regression, especially in the small
training set regime.

11

	Linear Regression
	Ridge Regression

