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A set of edges in a graph G = (V, E) is independent if no two edges have an incident vertex in
common. Independent sets of edges are called matchings. M is a matching of U C V if every
vertex in U is incident with some edge in M. The vertices in U are then called matched (by M);
vertices not incident with any edge of M are unmatched. A perfect matching in G = (V,E) is a
matching of all vertices in V. We want to find conditions ensuring the existence of large or perfect
matchings in arbitrary graphs.

Matchings in bipartite graphs. An important special case of matching considers bipartite
graphs G = (V, E) where V=X UY and X NY = (). We study this special case through the lens
of the max-flow min-cut theorem. First, we transform G in a flow network G’ = (V/, E’) where
V=V U{s,t}and ' = EU{(s,z) : (€ X}U{(y,t) : y € Y}, see figure below here.

The max flow problem in G’ is to find an admissible flow of maximum value between s and ¢
under a capacity constraint ¢ : F — R, where c(e) > 0 is a nonnegative capacity assigned to each
edge.

A flow is a function f : F — R assigning f(e) > 0 to each e of G’. A flow f is admissible when
the two following set of constraints are satisfied:

1. capacity constraints, f(e) < c(e) for all e € E.
2. flow conservation constraints, for all v € V,
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yeY : (z,y)€E

f(y)t): Z f(x,y) yey

zeX : (z,y)EE

The value of an admissible flow f is

Vi=> fls,2)=>_ fly.t)

zeX yey



A cut of G' is a partition S, T of V' such that s € Sand t € T. The cost of a cutis ¢(I') = >~ . c(e),
where I' = I'(S,T) = {(u,v) € E : ue S,ve€T}. The min-cut problem is to find a cut of
minimum cost. The next result, which we do not prove here, is a fundamental consequence of
linear programming duality.

Theorem 1 (Max-flow min-cut) In any flow network, the mazimum value of an admissible flow
equals the minimum cost of a cut.

We also use (without proof) this important fact.

Theorem 2 (Integral flow) If each edge in a flow network has integral capacity, then there exists
an integral admissible flow of maximum value.

Fact 3 Let G be a bipartite graph and let G' be the flow network derived by G such that c(e) = 1
for all e € E'. Then the value of the mazimum flow equals the size of a mazimum matching in E.

PROOF. Due to the integral flow theorem, and recalling that c(e) = 1 for all e € E’, there exists a
maximum flow f* such that f*(e) € {0,1} for all e € E’. Due to the flow conservation constraints, if
f*(z,y) =1 for some (z,y) € E, then it must be f*(z,y’) =0 for ally € Y\ {y} and f*(2/,y) =0
for all ' € X \ {z}. Hence f* defines a set of V} edge-disjoint paths from s to ¢ of the form
P ={(s,2),(z,y), (y,t)} with f(e) =1 if and only if e € P. This implies that

M ={(z,y) € E: f(z,y) =1}
is a matching in G of size [M| = Vj«. Hence the maximum matching M* satisfies |M*| > V.

For the other direction, let M* be a maximum matching in G. Then there exists an edge-disjoint
path P = {(s,z), (z,9), (y,t)} in G’ for each (z,y) € M*. Let f be the flow such that f(e) =1 if
and only if e belongs to one of these paths. This f is admissible and has value V; = |M*|. This
implies that the maximum flow f* satisfies Vi« > |M*|, and the proof is concluded. O

A vertex cover of a graph G = (V, E) is any subset U C V such that for any (x,y) € E it holds
that U N {x,y} # 0. We use the max-flow min-cut theorem to prove the next result.

Theorem 4 (Konig, 1931) The maximum cardinality of a matching in a bipartite graph G is
equal to the minimum cardinality of a vertex cover of its edges.

PrROOF. Let M be a maximum matching in G. We first show that there exists a vertex cover
of size equal to |M|. Let G., be the flow network derived from G with capacity ¢ such that
c(s,z) =c(y,t) =1forallz € X andy € Y, and ¢(z,y) = oo for all (z,y) € E. Now, the minimum
cut S,T must be such that

'S, T)={(y,t) : ye StU{(z,s) : z €T}

because all edges between X and Y have infinite capacity. Therefore, ¢(S,T) = |A| where A =
(XNTHu (Y NS). We know show that A is a vertex cover. Indeed, if there exists (z,y) € E
not incident in A, then y ¢ S and x ¢ T, which is equivalent to z € S and y € T. But then



c(S,T) = oo contradicting the minimality of S,T". So A is a vertex cover of size ¢(S,T). By the
max-flow min-cut theorem, this is also the value of the maximum flow, which because of Fact 3 is
equal to the size of the maximum matching.

Next, we show that no vertex cover can be smaller than |M|. Indeed, if A is a vertex cover, then
it must cover the edges in M. As each v € A can cover at most one edge of M (because M is a
matching), we conclude that |A| > |M]|. O

The next theorem gives a characterization of bipartite graphs that contain a perfect matching. If

G = (V,E) with V = X UY is bipartite, then it can contain a perfect matching only if | X| = |Y].
Forall W C V, let N(W) = e N(w).

Theorem 5 (Hall, 1935) A bipartite graph G such that | X| = |Y| contains a perfect matching of
if and only if IN(W)| > |W| for all W C X.

Hall’s theorem is also known as the marriage theorem, where the vertices are viewed as individuals
in two disjoint groups and edges represent a potential relationship between two individuals.

PrROOF. Assume G has a perfect matching and fix any W C X. Then each w € W is uniquely
matched to a y € N(w). But this is impossible unless |N(W)| > |W]|.

Vice versa, assume |N(W)| > |W]| for all W C X holds and build the flow network G from G as
we did in the proof of Konig’s theorem. We consider two cases.

Case 1. There exists a flow f with value |X|. Then Fact 3 implies that there exists a matching of
size | X| which must then be perfect.

Case 2. Any flow f has value V; < |X|. Then the max-flow min-cut theorem implies that the
minimum cut S, 7T has cost k = ¢(S,T) < |X|. From the proof of Konig’s theorem, we also know
that

IXNT|+|YnS|=k<|X|=]|XNT|+|XNS]|

Therefore, |[Y NS| < |XNS|. Now set W = X NS and note that N(W) C Y NS must hold. Other-
wise, there exists y € T such that (x,y) € E for some x € S. But this implies ¢(S,T") = co and we
have a contradiction. Hence, |[N(W)| < |[Y N S| < |W], which contradicts our initial assumption. [J

Matching in arbitrary graphs. We move on to state and prove a generalization of Hall’s
theorem, characterizing the existence of a perfect matching in an arbitrary graph.

Theorem 6 (Tutte, 1947) A graph G = (V, E) has a perfect matching if and only if for every
subset U C V., the subgraph induced by V' \ U has at most |U| connected components with an odd
number of vertices.

Note that a graph of odd order cannot clearly have a perfect matching, and this is captured by the
choice U = () since in this case G must have at least one odd component.

PROOF. In the following, for any graph G = (V, E) and for all S C V we write G — S to denote
the subgraph induced by V' \ S. Also o(G) denotes the number of components of odd order in G.



Consider a graph G, with a perfect matching. Pick any U C V and let C' be an arbitrary odd
component in G — U. Since G had a perfect matching, at least one vertex in C' must be matched
to a vertex in U. Hence, each odd component has at least one vertex matched with a vertex in U.
Since each vertex in U can be in this relation with at most one connected component (because of
it being matched at most once in a perfect matching), o(G —U) < |U].

Now let G = (V, E) be a graph without a perfect matching. A bad set is a set S C V violating
Tutte’s condition o(G — S) < |S|. Our task is to find a bad set.

We may assume that G is of even order (otherwise we know the empty set is a bad set) and edge-
maximal (adding any edge would create a perfect matching). Indeed, if G’ is obtained from G by
adding edges and S C V is bad for G’, then S is also bad for G: any odd component of G’ — S is
the union of components of G — S and at least one of these must be odd, so o(G' — S) < o(G — S).

Claim 7 Assume G = (V, E) has even order, is edge-mazimal, and has no perfect matching. Then
S CV is bad if and only if

1. G — S is a union of disjoint cliques,
2. every s € S has degree |V| — 1.

PRrROOF OF CLAIM. Assume S is a bad set and G — S has a component with a missing edge. Note
that adding this edge cannot turn .S into a good set (odd components remain odd components and
|S| does not increase). Since G is edge-maximal, adding the edge creates a perfect matching. This
contradicts what we already proved, namely that bad sets prevent perfect matchings. Now assume
S has a vertex of degree smaller than |V| — 1. Just like before, adding this missing edge does
not turn S into a good set. However, since G is edge-maximal, adding the edge creates a perfect
matching and we have again a contradiction.

Conversely, if a set S C V satisfies both conditions in the claim, then S must be bad. For the
purpose of contradiction, assume S is good. If S = () satisfies the conditions, then the o(G) = 0 and
so G has zero odd components. So G is a set of disjoint cliques all of even order, contradicting the
hypothesis that G has no perfect matching. If S # () satisfies the conditions, then o(G — S) < |5].
Hence we can fix each odd components of G — S using a vertex from S (a different vertex for
each odd component), and pair up all the remaining vertices in S because |V| is even. Again this
contradicts the hypothesis that G has no perfect matching. U

So it suffices to prove that any even-order and edge-maximal G without a perfect matching has
a set S of vertices satisfying the two conditions of Claim 7. For the purpose of contradiction, let
assume that G has no perfect matching and there is no S satisfying the two conditions. Let S
be the (possibly empty) set of vertices that are adjacent to every other vertex. If G — S is not a
union of disjoint cliques, then some component of G — S has non-adjacent vertices z,y. Let x,a,b
be the first three vertices on a shortest z—y path in this component; then (z,a), (a,b) € E but
(z,b) € E. Since a ¢ S, there is a vertex ¢ € V such that (a,c) ¢ E. By the maximality of G, there
is a matching M; of V in G + (x,b), and a matching My of V in G + (a,c). Observe that surely
(x,b) € M; and (a,c) € Ms.

Let P be the edges of a maximal path in G that starts from ¢ with an edge from M; and whose
edges alternate between M; and Ms. How can P end? Unless we are arrive at x, a or b, which are
adjacent to edges not in G, we can always continue (recall that M; and My are perfect matchings).

Thanks to
Alberto
Boggio for
simplifying
this part of
the proof.



Let v denote the last vertex in P. If the last edge of P is in M7, then v has to be a, since otherwise
we could continue with an edge from Ms. In this case we let C be the cycle P(a,c). If the last edge
of P is in My, then surely v € {z, b} for analogous reasons, and we let C' be the cycle P(v,a)(a, c).

In each case, C'is an even cycle in G + (a, ¢) with every other edge in Ms, and whose only edge not
in £ is (a,c) € My. Note that all vertices of C (including a and ¢) are matched by M;, whereas
the remaining vertices of V' are matched by My by construction. Adding to My \ C' the edges in
C' N My, we obtain a matching of V' contained in F, a contradiction. O

The Tutte—Berge formula says that the size of a maximum matching of a graph G = (V, E)

equals

I
5 fin (\U| —o(G-U)+ \V!)

Tutte’s condition is equivalent to say that the expression inside the minimum is at least |V|. So,

e Tutte’s condition holds
e the graph has a matching of size at least |V]/2
e the graph has a perfect matching

are equivalent statements.

The first algorithm for finding maximum matchings in arbitrary graphs is the Blossom algorithm
by Jack Edmonds (1965) which runs in time O(|E||V[?). For bipartite graphs, John Hopcroft
and Richard Karp (1973) designed an improved algorithm with runnning time O(|E \\/m) The
algorithm by Silvio Micali and Vijay Vazirani (1980) achieves the same running time O(|E|\/]V])
and works on arbitrary graphs.

A consequence of Konig’s Theorem for partially ordered sets. A finite partially ordered
set (poset) is a pair (S, <) where S is a finite set and < is a reflexive, antisymmetric, and transitive
binary relation:

o s <sforall se€S (reflexivity)
e s<tandt<sifand only if s =t for all s, € S (antisymmetry)
e r <sand s <timplies r <t (transitivity)

We write s < tif s <t and s # t. We can represent a finite poset with a directed acyclic graph
(DAG) G = (V,E) where V = S and (s,t) € E if and only if s < t. The graph is acyclic because a
directed cycle would imply s < s for any s on the cycle due to transitivity.

An antichain A C S is such that for all s,t € A with s #¢, s £ t and t £ s. Note that an antichain
corresponds to an independent set in the DAG associated with the poset. A chain C' C S is such
that for all s,t € C with s #t, s <t ort < s. Note that a chain, which can be a singleton, is a
total order over a subset of S. A set of chains covers (.9, <) if their union is S.

Theorem 8 (Dilworth, 1950) In a finite poset (S, <), the cardinality of the largest antichain A
equal to the smallest number N of chains that cover the poset.

PROOF. If A is an antichain, then clearly S cannot be covered by fewer than |A| chains because
every chain intersects at most one element of the antichain, hence N > |A|. Now define a bipartite
graph G where A ={as : s € S}, B={bs : s € S}, and where (as,b;) € E if and only if s < ¢ in
S. Fix a vertex cover K and let A= {s € S : as,bs ¢ K}. Then A is an antichain (no two s,t € A



are such that s < ¢, otherwise (as,b;) € E is not covered by K). Moreover, if s is such that as or
bs are in K (possibly both), then s ¢ A. Therefore |[A| > |S| — |K].

Now choose a matching M of G and consider the elements of M as directed edges (as,bs). Every
s € S can have at most one incoming edge (if bs is matched) and one outgoing edge (if as is
matched). This means that M corresponds to a set of chains where the end of each chain corre-
sponds to an unmatched vertex in M. Then N < |S| —|M|. By Konig’s theorem, there exists a
matching M, and a vertex cover K such that |[M| = |K|. So N <|S| —|K| < |A| and the proof is
concluded. O

Other consequences of the max-flow min-cut Theorem. Any undirected graph G = (V, E)
can be viewed as a flow network between two distinct s,t € V. Let P be the set of all paths in G
between s and t, and let F' : P — R a function assigning a flow F(P) > 0 to each path P € P.
Then F' is admissible when

Z F(e) < c(e) ecE

P:ecP

and has value

VF:ZF(P)

pPeP

Theorem 9 (Max-flow min-cut, alternative version) The mazimum value of an admissible
flow F equals the minimum cost of a cut.

When all edge capacities are 1, a consequence of this fact together with the flow integrality theorem
is that any admissible flow F' corresponds to Vr edge-disjoint paths. This immediately implies the
following result.

Corollary 10 (Menger, 1927 — edge version) Let G = (V, E) be a graph and s,t € V. Then
the minimum number of edges to cut for separating s from t in G is equal to the maximum number
of edge-disjoint paths between s and t.

We now state and prove a version of Menger’s Theorem using vertices instead of edges. Although
this version can still be proved using the max-flow min-cut theorem, we provide a direct proof from
first principles.

Given G = (V,FE) and A, B C V, a AB-separator in G is a subset X C V such that every path
from a vertex in A to a vertex in B contains a vertex from X. Note that A and B are both
AB-separators. Also, if A C B, then A is an AB-separator. If there are no paths between A and
B, then the empty set is the only A B-separator. A path is an AB-path if its first vertex is in A, its
last vertex is in B, and none of its internal vertices is in A or B. Two paths are disjoint if the set
of their vertices is disjoint. An AB-connector is a set of paths between A and B that are pairwise
disjoint.

Theorem 11 (Menger, 1927 — vertex version) Let G = (V,E) be a graph a and A,B C V.
Then the size of any minimum AB-separator in G is equal to the size of any maximum number
AB-connector in G.



PrOOF. Throughout the proof, let £ > 0 be the size of a minimum AB-separator in G. Clearly,
G cannot contain a AB-connector of size larger than k. Indeed, if X C V is a AB-separator of size
k and there are more than k disjoint AB-paths, then two of them must share a vertex in X.

By induction on the number of edges in G, we now show how to construct an AB-connector of size
k. If G has no edges, then the minimum AB-separator is A N B, which is also an AB-connector
consisting of single-vertex paths. So the theorem holds in this case.

Assume now G has at least one edge e = (z,y). Let G/e = (V', E’") be the graph obtained by
replacing x, v with a vertex v, adjacent to N(z)\ {y} UN(y) \ {=}.

Case 1. G/e has a minimal AB-separator of size k. Then, by the induction hypothesis, there is
also an AB-connector of size k in G/e. Since any path that goes through v, in G/e corresponds to
a path that goes through e in G, there is an AB-connector of size k also in G.

Case 2. G/e has a minimal AB-separator S with |S| < k. Then v, € S otherwise S C V and so
S is a AB-separator in G of size less than k. Then X = (S'\ {ve}) U {x,y} is a AB-separator in G
of size k (it can not be less than k).

We now consider the graph G — e. Every AX-separator in G — e is also an AB-separator in G,
because any AB-path in G goes through X and e = (z,y) does not create AX-paths in G as
z,y € X. Since X is a minimal AB-separator in (, this other separator must contain at least
k vertices. So by induction there is a AX-connector of size k in G — e, and similarly there is a
X B-connector of size k in G — e. As X separates A from B, these two path systems do not meet
outside X, and can thus be combined to k disjoint AB-paths. ]

As a curiosity, we state without proof one of the consequences of the max-flow min-cut theorem
that are not expressed in graph-theoretic terms.

A square matrix D with real non-negative entries is doubly stochastic if the sum of the entries in
any row and any column equals 1. A permutation matrix is a doubly stochastic matrix with
entries 0 and 1, that is, a matrix with exactly one 1 in each row and in each column. A matrix A
is a convex combination of matrices Ay, ..., A, if there exist reals A1,..., A\, > 0 such that

A:zn:)\zAZ Zn:)\i:1.
=1 =1

The set of all convex combinations of permutation matrices is the Birkhoff polytope.

Theorem 12 (Birkhoff-Von Neumann) The Birkhoff polytope is exactly the set of all doubly
stochastic matrices.



