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Matchings and the max-flow min-cut theorem
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A set of edges in a graph G = (V,E) is independent if no two edges have an incident vertex in
common. Independent sets of edges are called matchings. M is a matching of U ⊆ V if every
vertex in U is incident with some edge in M . The vertices in U are then called matched (by M);
vertices not incident with any edge of M are unmatched. A perfect matching in G = (V,E) is a
matching of all vertices in V . We want to find conditions ensuring the existence of large or perfect
matchings in arbitrary graphs.

Matchings in bipartite graphs. An important special case of matching considers bipartite
graphs G = (V,E) where V = X ∪ Y and X ∩ Y = ∅. We study this special case through the lens
of the max-flow min-cut theorem. First, we transform G in a flow network G′ = (V ′, E′) where
V ′ ≡ V ∪ {s, t} and E′ = E ∪ {(s, x) : (x ∈ X} ∪ {(y, t) : y ∈ Y }, see figure below here.

s t

The max flow problem in G′ is to find an admissible flow of maximum value between s and t
under a capacity constraint c : E → R, where c(e) ≥ 0 is a nonnegative capacity assigned to each
edge.

A flow is a function f : E → R assigning f(e) ≥ 0 to each e of G′. A flow f is admissible when
the two following set of constraints are satisfied:

1. capacity constraints, f(e) ≤ c(e) for all e ∈ E.
2. flow conservation constraints, for all v ∈ V ,

f(s, x) =
∑

y∈Y : (x,y)∈E

f(x, y) x ∈ X

f(y, t) =
∑

x∈X : (x,y)∈E

f(x, y) y ∈ Y

The value of an admissible flow f is

Vf =
∑
x∈X

f(s, x) =
∑
y∈Y

f(y, t)
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A cut ofG′ is a partition S, T of V ′ such that s ∈ S and t ∈ T . The cost of a cut is c(Γ) =
∑

e∈Γ c(e),
where Γ = Γ(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T}. The min-cut problem is to find a cut of
minimum cost. The next result, which we do not prove here, is a fundamental consequence of
linear programming duality.

Theorem 1 (Max-flow min-cut) In any flow network, the maximum value of an admissible flow
equals the minimum cost of a cut.

We also use (without proof) this important fact.

Theorem 2 (Integral flow) If each edge in a flow network has integral capacity, then there exists
an integral admissible flow of maximum value.

Fact 3 Let G be a bipartite graph and let G′ be the flow network derived by G such that c(e) = 1
for all e ∈ E′. Then the value of the maximum flow equals the size of a maximum matching in E.

Proof. Due to the integral flow theorem, and recalling that c(e) = 1 for all e ∈ E′, there exists a
maximum flow f∗ such that f∗(e) ∈ {0, 1} for all e ∈ E′. Due to the flow conservation constraints, if
f∗(x, y) = 1 for some (x, y) ∈ E, then it must be f∗(x, y′) = 0 for all y′ ∈ Y \ {y} and f∗(x′, y) = 0
for all x′ ∈ X \ {x}. Hence f∗ defines a set of Vf edge-disjoint paths from s to t of the form
P = {(s, x), (x, y), (y, t)} with f(e) = 1 if and only if e ∈ P . This implies that

M = {(x, y) ∈ E : f∗(x, y) = 1}

is a matching in G of size |M | = Vf∗ . Hence the maximum matching M∗ satisfies |M∗| ≥ Vf∗ .

For the other direction, let M∗ be a maximum matching in G. Then there exists an edge-disjoint
path P = {(s, x), (x, y), (y, t)} in G′ for each (x, y) ∈ M∗. Let f be the flow such that f(e) = 1 if
and only if e belongs to one of these paths. This f is admissible and has value Vf = |M∗|. This
implies that the maximum flow f∗ satisfies Vf∗ ≥ |M∗|, and the proof is concluded. �

A vertex cover of a graph G = (V,E) is any subset U ⊆ V such that for any (x, y) ∈ E it holds
that U ∩ {x, y} 6≡ ∅. We use the max-flow min-cut theorem to prove the next result.

Theorem 4 (König, 1931) The maximum cardinality of a matching in a bipartite graph G is
equal to the minimum cardinality of a vertex cover of its edges.

Proof. Let M be a maximum matching in G. We first show that there exists a vertex cover
of size equal to |M |. Let G′∞ be the flow network derived from G with capacity c such that
c(s, x) = c(y, t) = 1 for all x ∈ X and y ∈ Y , and c(x, y) =∞ for all (x, y) ∈ E. Now, the minimum
cut S, T must be such that

Γ(S, T ) ≡ {(y, t) : y ∈ S} ∪ {(x, s) : x ∈ T}

because all edges between X and Y have infinite capacity. Therefore, c(S, T ) = |A| where A =
(X ∩ T ) ∪ (Y ∩ S). We know show that A is a vertex cover. Indeed, if there exists (x, y) ∈ E
not incident in A, then y 6∈ S and x 6∈ T , which is equivalent to x ∈ S and y ∈ T . But then
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c(S, T ) = ∞ contradicting the minimality of S, T . So A is a vertex cover of size c(S, T ). By the
max-flow min-cut theorem, this is also the value of the maximum flow, which because of Fact 3 is
equal to the size of the maximum matching.

Next, we show that no vertex cover can be smaller than |M |. Indeed, if A is a vertex cover, then
it must cover the edges in M . As each v ∈ A can cover at most one edge of M (because M is a
matching), we conclude that |A| ≥ |M |. �

The next theorem gives a characterization of bipartite graphs that contain a perfect matching. If
G = (V,E) with V = X ∪ Y is bipartite, then it can contain a perfect matching only if |X| = |Y |.
For all W ⊆ V , let N(W ) ≡

⋃
w∈W N(w).

Theorem 5 (Hall, 1935) A bipartite graph G such that |X| = |Y | contains a perfect matching of
if and only if |N(W )| ≥ |W | for all W ⊆ X.

Hall’s theorem is also known as the marriage theorem, where the vertices are viewed as individuals
in two disjoint groups and edges represent a potential relationship between two individuals.

Proof. Assume G has a perfect matching and fix any W ⊆ X. Then each w ∈ W is uniquely
matched to a y ∈ N(w). But this is impossible unless |N(W )| ≥ |W |.

Vice versa, assume |N(W )| ≥ |W | for all W ⊆ X holds and build the flow network G′∞ from G as
we did in the proof of König’s theorem. We consider two cases.

Case 1. There exists a flow f with value |X|. Then Fact 3 implies that there exists a matching of
size |X| which must then be perfect.

Case 2. Any flow f has value Vf < |X|. Then the max-flow min-cut theorem implies that the
minimum cut S, T has cost k = c(S, T ) < |X|. From the proof of König’s theorem, we also know
that ∣∣X ∩ T ∣∣+

∣∣Y ∩ S∣∣ = k < |X| =
∣∣X ∩ T ∣∣+

∣∣X ∩ S∣∣
Therefore,

∣∣Y ∩S∣∣ < ∣∣X ∩S∣∣. Now set W ≡ X ∩S and note that N(W ) ⊆ Y ∩S must hold. Other-
wise, there exists y ∈ T such that (x, y) ∈ E for some x ∈ S. But this implies c(S, T ) =∞ and we
have a contradiction. Hence, |N(W )| ≤ |Y ∩S| < |W |, which contradicts our initial assumption. �

Matching in arbitrary graphs. We move on to state and prove a generalization of Hall’s
theorem, characterizing the existence of a perfect matching in an arbitrary graph.

Theorem 6 (Tutte, 1947) A graph G = (V,E) has a perfect matching if and only if for every
subset U ⊆ V , the subgraph induced by V \ U has at most |U | connected components with an odd
number of vertices.

Note that a graph of odd order cannot clearly have a perfect matching, and this is captured by the
choice U ≡ ∅ since in this case G must have at least one odd component.

Proof. In the following, for any graph G = (V,E) and for all S ⊆ V we write G − S to denote
the subgraph induced by V \ S. Also o(G) denotes the number of components of odd order in G.
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Consider a graph G, with a perfect matching. Pick any U ⊆ V and let C be an arbitrary odd
component in G − U . Since G had a perfect matching, at least one vertex in C must be matched
to a vertex in U . Hence, each odd component has at least one vertex matched with a vertex in U .
Since each vertex in U can be in this relation with at most one connected component (because of
it being matched at most once in a perfect matching), o(G− U) ≤ |U |.

Now let G = (V,E) be a graph without a perfect matching. A bad set is a set S ⊆ V violating
Tutte’s condition o(G− S) ≤ |S|. Our task is to find a bad set.

We may assume that G is of even order (otherwise we know the empty set is a bad set) and edge-
maximal (adding any edge would create a perfect matching). Indeed, if G′ is obtained from G by
adding edges and S ⊆ V is bad for G′, then S is also bad for G: any odd component of G′ − S is
the union of components of G− S and at least one of these must be odd, so o(G′− S) ≤ o(G− S).

Claim 7 Assume G = (V,E) has even order, is edge-maximal, and has no perfect matching. Then
S ⊆ V is bad if and only if

1. G− S is a union of disjoint cliques,
2. every s ∈ S has degree |V | − 1.

Thanks to
Alberto
Boggio for
simplifying
this part of
the proof.

Proof of Claim. Assume S is a bad set and G− S has a component with a missing edge. Note
that adding this edge cannot turn S into a good set (odd components remain odd components and
|S| does not increase). Since G is edge-maximal, adding the edge creates a perfect matching. This
contradicts what we already proved, namely that bad sets prevent perfect matchings. Now assume
S has a vertex of degree smaller than |V | − 1. Just like before, adding this missing edge does
not turn S into a good set. However, since G is edge-maximal, adding the edge creates a perfect
matching and we have again a contradiction.

Conversely, if a set S ⊆ V satisfies both conditions in the claim, then S must be bad. For the
purpose of contradiction, assume S is good. If S ≡ ∅ satisfies the conditions, then the o(G) = 0 and
so G has zero odd components. So G is a set of disjoint cliques all of even order, contradicting the
hypothesis that G has no perfect matching. If S 6≡ ∅ satisfies the conditions, then o(G− S) ≤ |S|.
Hence we can fix each odd components of G − S using a vertex from S (a different vertex for
each odd component), and pair up all the remaining vertices in S because |V | is even. Again this
contradicts the hypothesis that G has no perfect matching. �

So it suffices to prove that any even-order and edge-maximal G without a perfect matching has
a set S of vertices satisfying the two conditions of Claim 7. For the purpose of contradiction, let
assume that G has no perfect matching and there is no S satisfying the two conditions. Let S
be the (possibly empty) set of vertices that are adjacent to every other vertex. If G − S is not a
union of disjoint cliques, then some component of G− S has non-adjacent vertices x, y. Let x, a, b
be the first three vertices on a shortest x–y path in this component; then (x, a), (a, b) ∈ E but
(x, b) 6∈ E. Since a 6∈ S, there is a vertex c ∈ V such that (a, c) 6∈ E. By the maximality of G, there
is a matching M1 of V in G + (x, b), and a matching M2 of V in G + (a, c). Observe that surely
(x, b) ∈M1 and (a, c) ∈M2.

Let P be the edges of a maximal path in G that starts from c with an edge from M1 and whose
edges alternate between M1 and M2. How can P end? Unless we are arrive at x, a or b, which are
adjacent to edges not in G, we can always continue (recall that M1 and M2 are perfect matchings).
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Let v denote the last vertex in P . If the last edge of P is in M1, then v has to be a, since otherwise
we could continue with an edge from M2. In this case we let C be the cycle P (a, c). If the last edge
of P is in M2, then surely v ∈ {x, b} for analogous reasons, and we let C be the cycle P (v, a)(a, c).

In each case, C is an even cycle in G+ (a, c) with every other edge in M2, and whose only edge not
in E is (a, c) ∈ M2. Note that all vertices of C (including a and c) are matched by M1, whereas
the remaining vertices of V are matched by M2 by construction. Adding to M2 \ C the edges in
C ∩M1, we obtain a matching of V contained in E, a contradiction. �

The Tutte–Berge formula says that the size of a maximum matching of a graph G = (V,E)
equals

1

2
min
U⊆V

(
|U | − o(G− U) + |V |

)
Tutte’s condition is equivalent to say that the expression inside the minimum is at least |V |. So,

• Tutte’s condition holds
• the graph has a matching of size at least |V |/2
• the graph has a perfect matching

are equivalent statements.

The first algorithm for finding maximum matchings in arbitrary graphs is the Blossom algorithm
by Jack Edmonds (1965) which runs in time O

(
|E||V |2

)
. For bipartite graphs, John Hopcroft

and Richard Karp (1973) designed an improved algorithm with runnning time O
(
|E|
√
|V |
)
. The

algorithm by Silvio Micali and Vijay Vazirani (1980) achieves the same running time O
(
|E|
√
|V |
)

and works on arbitrary graphs.

A consequence of König’s Theorem for partially ordered sets. A finite partially ordered
set (poset) is a pair (S,≤) where S is a finite set and ≤ is a reflexive, antisymmetric, and transitive
binary relation:

• s ≤ s for all s ∈ S (reflexivity)
• s ≤ t and t ≤ s if and only if s = t for all s, t ∈ S (antisymmetry)
• r ≤ s and s ≤ t implies r ≤ t (transitivity)

We write s < t if s ≤ t and s 6= t. We can represent a finite poset with a directed acyclic graph
(DAG) G = (V,E) where V ≡ S and (s, t) ∈ E if and only if s < t. The graph is acyclic because a
directed cycle would imply s < s for any s on the cycle due to transitivity.

An antichain A ⊆ S is such that for all s, t ∈ A with s 6= t, s ≮ t and t ≮ s. Note that an antichain
corresponds to an independent set in the DAG associated with the poset. A chain C ⊆ S is such
that for all s, t ∈ C with s 6= t, s < t or t < s. Note that a chain, which can be a singleton, is a
total order over a subset of S. A set of chains covers (S,≤) if their union is S.

Theorem 8 (Dilworth, 1950) In a finite poset (S,≤), the cardinality of the largest antichain A
equal to the smallest number N of chains that cover the poset.

Proof. If A is an antichain, then clearly S cannot be covered by fewer than |A| chains because
every chain intersects at most one element of the antichain, hence N ≥ |A|. Now define a bipartite
graph G where A ≡ {as : s ∈ S}, B ≡ {bs : s ∈ S}, and where (as, bt) ∈ E if and only if s < t in
S. Fix a vertex cover K and let A ≡ {s ∈ S : as, bs 6∈ K}. Then A is an antichain (no two s, t ∈ A
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are such that s < t, otherwise (as, bt) ∈ E is not covered by K). Moreover, if s is such that as or
bs are in K (possibly both), then s 6∈ A. Therefore |A| ≥ |S| − |K|.

Now choose a matching M of G and consider the elements of M as directed edges (as, bs). Every
s ∈ S can have at most one incoming edge (if bs is matched) and one outgoing edge (if as is
matched). This means that M corresponds to a set of chains where the end of each chain corre-
sponds to an unmatched vertex in M . Then N ≤ |S| − |M |. By König’s theorem, there exists a
matching M , and a vertex cover K such that |M | = |K|. So N ≤ |S| − |K| ≤ |A| and the proof is
concluded. �

Other consequences of the max-flow min-cut Theorem. Any undirected graph G = (V,E)
can be viewed as a flow network between two distinct s, t ∈ V . Let P be the set of all paths in G
between s and t, and let F : P → R a function assigning a flow F (P ) ≥ 0 to each path P ∈ P.
Then F is admissible when ∑

P : e∈P
F (e) ≤ c(e) e ∈ E

and has value
VF =

∑
P∈P

F (P )

Theorem 9 (Max-flow min-cut, alternative version) The maximum value of an admissible
flow F equals the minimum cost of a cut.

When all edge capacities are 1, a consequence of this fact together with the flow integrality theorem
is that any admissible flow F corresponds to VF edge-disjoint paths. This immediately implies the
following result.

Corollary 10 (Menger, 1927 — edge version) Let G = (V,E) be a graph and s, t ∈ V . Then
the minimum number of edges to cut for separating s from t in G is equal to the maximum number
of edge-disjoint paths between s and t.

We now state and prove a version of Menger’s Theorem using vertices instead of edges. Although
this version can still be proved using the max-flow min-cut theorem, we provide a direct proof from
first principles.

Given G = (V,E) and A,B ⊆ V , a AB-separator in G is a subset X ⊆ V such that every path
from a vertex in A to a vertex in B contains a vertex from X. Note that A and B are both
AB-separators. Also, if A ⊆ B, then A is an AB-separator. If there are no paths between A and
B, then the empty set is the only AB-separator. A path is an AB-path if its first vertex is in A, its
last vertex is in B, and none of its internal vertices is in A or B. Two paths are disjoint if the set
of their vertices is disjoint. An AB-connector is a set of paths between A and B that are pairwise
disjoint.

Theorem 11 (Menger, 1927 — vertex version) Let G = (V,E) be a graph a and A,B ⊆ V .
Then the size of any minimum AB-separator in G is equal to the size of any maximum number
AB-connector in G.
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Proof. Throughout the proof, let k ≥ 0 be the size of a minimum AB-separator in G. Clearly,
G cannot contain a AB-connector of size larger than k. Indeed, if X ⊆ V is a AB-separator of size
k and there are more than k disjoint AB-paths, then two of them must share a vertex in X.

By induction on the number of edges in G, we now show how to construct an AB-connector of size
k. If G has no edges, then the minimum AB-separator is A ∩ B, which is also an AB-connector
consisting of single-vertex paths. So the theorem holds in this case.

Assume now G has at least one edge e = (x, y). Let G/e = (V ′, E′) be the graph obtained by
replacing x, v with a vertex ve adjacent to N(x) \ {y} ∪N(y) \ {x}.

Case 1. G/e has a minimal AB-separator of size k. Then, by the induction hypothesis, there is
also an AB-connector of size k in G/e. Since any path that goes through ve in G/e corresponds to
a path that goes through e in G, there is an AB-connector of size k also in G.

Case 2. G/e has a minimal AB-separator S with |S| < k. Then ve ∈ S otherwise S ⊆ V and so
S is a AB-separator in G of size less than k. Then X = (S \ {ve}) ∪ {x, y} is a AB-separator in G
of size k (it can not be less than k).

We now consider the graph G − e. Every AX-separator in G − e is also an AB-separator in G,
because any AB-path in G goes through X and e = (x, y) does not create AX-paths in G as
x, y ∈ X. Since X is a minimal AB-separator in G, this other separator must contain at least
k vertices. So by induction there is a AX-connector of size k in G − e, and similarly there is a
XB-connector of size k in G− e. As X separates A from B, these two path systems do not meet
outside X, and can thus be combined to k disjoint AB-paths. �

As a curiosity, we state without proof one of the consequences of the max-flow min-cut theorem
that are not expressed in graph-theoretic terms.

A square matrix D with real non-negative entries is doubly stochastic if the sum of the entries in
any row and any column equals 1. A permutation matrix is a doubly stochastic matrix with
entries 0 and 1, that is, a matrix with exactly one 1 in each row and in each column. A matrix A
is a convex combination of matrices A1, . . . , An if there exist reals λ1, . . . , λn ≥ 0 such that

A =
n∑

i=1

λiAi

n∑
i=1

λi = 1 .

The set of all convex combinations of permutation matrices is the Birkhoff polytope.

Theorem 12 (Birkhoff-Von Neumann) The Birkhoff polytope is exactly the set of all doubly
stochastic matrices.
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