Machine Learning — Statistical Methods for Machine Learning
Boosting and ensemble methods

Instructor: Nicolo Cesa-Bianchi version of June 1, 2024

Ensemble methods are used to form combinations of predictors that achieve a bias-variance trade-
off better than the one achieved by the algorithm generating the predictors in the combination.
Many stochastic gradient descent algorithms, like Pegasos, can be viewed as ensemble methods
because they output a combination of all the predictors generated during the sequential run over
the training set. We now look at ensemble methods that are not based on online algorithms. As
usual, our focus is on binary classification.

Fix a training set (x1,y1),. .-, (€m, ym) for a binary classification problem with zero-one loss, and
assume an ensemble of classifiers hy,...,hp is available (later, we describe how to obtain the
ensemble). Consider the majority classifier f defined by

T
(@) = sgn (Z hz-(a:)) (1)

Clearly, f is wrong on «x if and only if at least half of the classifiers hy,...,hr are wrong on x
(assume T is odd to avoid ties). We now study the conditions under which the majority classifier
achieves a small training error. Assume

T
P(hi(zz) #yz A+ A hp(zz) #£yz) = HP(hi(wz) +yz) (2)
i=1
where Z is a random variable uniformly distributed on the set {1,...,m} of indices of training

examples. In other words, each classifier is wrong independently of the others with respect to
the uniform distribution over the training set. The indicator functions of these events define the
training error £g(h;) of each classifier h;. Indeed,

ls(h;) = %Zﬂ{hi(fpt) # yi} = P(hi(zz) # yz)
=1

The majority classifier (1) is a simple example of an ensemble method, combining the predictions
of an ensemble of classifiers in order to boost the accuracy. We now bound the training error of f.
Introduce

1 T
éave = T 2€S(hz)

Without loss of generality, we can assume that fg(h;) < % for each ¢ = 1,...,T. This implies

[a—

love < % and we can write

ls(f) =P (f(xz) #yz)

d T
=P (Z Khi(xz) #yz} > 2)

i=1

T
=P (111 ;H{hz(wZ) 7& yZ} > Eave + (; _Eave>>

Now introduce the Bernoulli random variables By, ..., By defined by B; = I{h;(xz) # yz}. Note
that these random variables are independent, due to our assumption (2). Also, E[B;] = £s(h;) and

1 T
T Z E[Bz] = Eave
=1

Let e = % — lave > 0. A slight generalization of Chernoff-Hoeffding bounds to independent random
variables with unequal expectations gives

T
1) 2T
P(T E Bi>€ave+5> <e o

i=1

By setting ~v; = % —lg(h;) > 0 we get

1 2 1 2 .
ls(f) < exp (—2T (2 - Bave)) =exp | —2T <T ;%) < e 2Ty 3)

where for the last inequality we assumed v, >~y >0 forall¢=1,...,T.

This result tells us that if we manage to obtain classifiers with independent training errors in the
sense of (2), then the training error of the majority vote classifier decreases exponentially with
respect to T2, where v measures how better than random guessing is each classifier h; on the
training set. Note that being able to reduce the training error on arbitrary datasets implies a
decrease of the bias error.

Bagging. How can we obtain classifiers with independent training errors? A popular heuristic,
known as Bagging, applies to any learning algorithm A for binary classification and to any training
set S. Let m be the size of S. Bagging builds hq,...,hr by drawing m examples uniformly at
random with replacement from S. This process is repeated T times so to obtain the resampled
training sets Si,...,Sp. Then A is run on each S; setting h; = A(S;). The idea is that the
resampling procedure helps enforce condition (2).

One may wonder how different from S any S; can be. To find that out, we take a little detour and
compute the fraction of unique data points in S;. As you see in a moment, more than one third of
the points of S are missing from S; in expectation! Let N be the number of unique points drawn,
and let X; be the indicator function of the event that (@, ;) is drawn. Then the probability that

(x¢, y¢) is not drawn is
1 m
=0 (1- 1)
m

2

So we have

E[N]:iE[Xt]:iP(thl):f:<1_(1_;>m> :m_m<1_;>m

t=1 t=1 t=1

Therefore, the fraction of unique points in S; is

1—(1—1> %1—1:0.632...
e

m
where the approximation becomes exact for m — oo.

We saw that independence of errors helps reduce the bias by driving the training error to zero.
On the other hand, subsampling of the training set helps reduce the variance. If we think of the
m training points arranged in a m x d matrix (called the data matrix), then what bagging does
is subsampling the rows of this matrix. We now briefly describe another ensemble method that
increases the protection against overfitting by also subsampling the columns of the data matrix.

Random Forest. This ensemble method works by taking a majority vote over an ensemble
hi,...,hp of tree predictors. Similarly to bagging, each tree predictor h; is obtained by running
a learning algorithm over a dataset .S; obtained by subsampling the rows of the full data matrix.
However, the algorithm for learning tree predictors does not have direct access to S;. Indeed, when
considering a leaf ¢ for splitting, instead of being given S; ¢ (the set of training examples in .S; that
are routed to), the algorithm has access to a version of S;, containing a random subset of the
original features (typically, Vd features are sampled from the original d features). This additional
sampling provides a better control on the variance at the expense of the bias. Because of its good
performance on many learning tasks, Random Forest is often used as a baseline when testing a new
learning algorithm.

Boosting. We now introduce boosting, a principled ensemble method that achieves the exponential
bound (3) on the training error without requiring the demanding condition (2). Boosting is an
incremental method to build classifiers of the form sgn(f), where

T
f= Z wih;
=1

and w = (wq, ..., wr) is a vector of real coefficients. We assume hyq, ..., hp are generated by some
learning algorithm A and belong to some family H of base classifiers.

In practice, also in order to save computational costs, base classifiers are very simple. A typical
choice for H is that of decision stumps. These are all classifiers of the form h; , : RY — {—1,1}
defined by h; -(x) = £sgn(x; — 7), where i =1,...,d and 7 € R.

The specific boosting algorithm we introduce is known as AdaBoost (adaptive boosting). Fix a
training set S with m examples (x1,y1),. .., (ZTm,ym), and a sequence hy, ..., hp of base classifiers.
We now show how to choose the coefficients w so that the training error is bounded as in (3).

AdaBoost uses the convex upper bound I{z < 0} < e™* on the zero-one loss function I{ f(x;) v < 0}.

This gives

m m

ls(f) = %Zﬂ{f(wt)yt <0} < %Z ~f@ = Ze =1 wihi(@)ye

t=1 t=1

Note that other algorithms use different convex upper bounds on the zero-one loss. For example,
SVM uses the hinge loss.

Introduce now the functions Ly, ..., Ly defined by L;(t) = h;(x:)y: . Note that L;(t) € {—1,1} and
L;(t) =1 if and only if h;(x¢) = ys. Recalling that Z is a random variable uniformly distributed in
{1,...,m}, we can view each L;(Z) as a random variable and write

T

11 e—wiLi(Z)]

i=1

If condition (2) were true, we could write the expectation of the product as a product of expecta-
tions. In order to sidestep the condition, we change the probability space and write

T

1 ""”“Z] HIE o) @

=1

E

where each Z; € {1,...,m} is distributed according to a law P; yet to be specified.

Assuming (4) holds, which we verify later, we can proceed as follows

T
ls(f) < l—I]EZ [e—wiLi(Zi)}
1,;1
= H (e Pi(Li(Z;) = 1) + e“ Py(Li(Z;) = —1))
z;l
= H (Yl -g)te ’az) (5)
i=1
where we set i
g; def P; (L (Z) = —1) = ZH{Lz(t) — _1}]P)Z(t)
t=1

Note that ¢; is the error of h; with respect to the probability IP;. Namely, ¢; is the weighted training
error of h; where the weights are determined by P;.

Before computing the P;, we show how to pick wi,...,wr in order to minimize (5). By computing
the zeros of the derivative of e=" (1 — &;) + e¥e; with respect to w, we find a single zero at

1—81'

1
=—In
2 E;

Note that the above expression is only defined for 0 < ¢; < 1. As we will see, P(¢) > 0 for all
te{l,...,m}. Hence ¢; € {0,1} implies that either h; or —h; has zero training error on S. If this

happens, than we can throw away all h; for j # ¢ and avoid using boosting altogether. Therefore,
without loss of generality we may assume 0 < ¢; < 1foralli=1,...,m.

Substituting in (5) and simplifying, we get

T
H i(1—¢g)

Note that w; = 0 if and only if 5, =3, ! meaning that the weight (according to ;) of the training
points where h; errs is exactly 1 5 Because such a h; does not affect the value of f (since ¢; = %
implies w; = 0) without loss of generality we may also assume that ; # %

Set ; def l — ¢; and note that ¢; # % implies v; # 0. Using the inequality 1 + z < e*, which holds

for all x € R, we get

T T

_9~2 _ T 2 _ 2

1_51 :HMSHe 2% — e 23 _ 2T
i=1 =1

where in the last step we assumed |%‘ > ~ > 0. This is the same bound as the one we proved in (3)
under the condition (2). Note, however, that the definition of v; = 5 — ¢; changes because £; now
is the weighted training error of h;.

||::]ﬂ

Just like (3), this bound provides a pretty strong control on the bias. Using the observation that
ls(f) =0 if and only if ¢5(f) < 1/m, we conclude that a number

Inm
T > W
of boosting rounds is sufficient to bring the training error of f down to zero.
We now move on to derive the Py, ..., Py satisfying condition (4). Setting P; =P, E; = E, and
Pyft)e)

Piy1(t) = W

fort=1,....mandi=1,...,T -1 (6)

where

By e iti2)] = 3 et

S=

—

It is easy to check that Py,. .., Py are indeed probability distributions on {1,...,m}. In particular,

For this choice of P; we can prove (4) as follows. First, we solve (6) for e=%%®) obtaining

e—wiLi(t) =, [e_wiLi(Zi)i| P]zjzt()t)

Then, we write

concluding the proof.

These probability distributions have a simple interpretation when one studies how P;;; depends
on P;. Fix P; and suppose ¢; < % Then w; > 0 and each P;;(t) is obtained multiplying P;(¢) for
the quantity e=*%() which is bigger than 1 if and only if h;(;) # y;. In other words, the weight
of each training example (x,y;) is increased when P; is updated to P;41 if and only if h; errs on
(x¢, y¢). Intuitively, the boosting process concentrates the weight on the training examples that are

misclassified by the previous classifiers. A similar argument applies to the case when ¢; > %

Input: Training set S of examples (x,y) € R? x {—1,1}.
Learning algorithm A.
Maximum number 7" of boosting rounds.
Initialize Pji(¢) < 1/mfort=1,...,m.
For:=1,...,T

1. Feed A with S weighted by P; and get h; in response
2. Compute ¢; for h;

3. If &; € {0, 3,1} then BREAK

4. Let w; < %ln 1;—?

5. Compute P;41 using (6).

If for loop exited on BREAK, then deal with the special case
Else output f = sgn(wihy + - - + wrhy).

We are now ready to introduce the pseudo-code for AdaBoost. It is convenient to view the boosting
process as sequence of rounds between the boosting algorithm and the learning algorithm A.

o i

\Pi)

In each round i, the booster B gives P; to A and gets h; in response. If A return h; such that
g = %, then the boosting process stops and the booster outputs f = sgn(wihy + -+ + wi—1hi—1).
If A return h; such that ¢; € {0,1}, then the boosting process also stops, but in this case booster
outputs f = h; or f = —h;.

