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Consistency is an asymptotic property certifying that the risk of the predictors generated by a
learning algorithm converges to the Bayes risk in expectation as the size of the training set increases.
Recall that A(Sm) is the predictor generated by a learning algorithm A on a training set Sm of
size m. A learning algorithm A is consistent with respect to a loss function ℓ if for any data
distribution D it holds that

lim
m→∞

E
[
ℓD
(
A(Sm)

)]
= ℓD(f

∗)

where the expectation is with respect to the random draw of the training set Sm of size m from the
distribution D, and ℓD(f

∗) is the Bayes risk for (D, ℓ). In some cases, we may define consistency
with respect to a restricted class of distributions D. For example, in binary classification we may
restrict to all distributions D such that η(x) = P(Y = 1 | X = x) is a Lipschitz function over X .
Formally, there exists 0 < c < ∞ such that∣∣η(x)− η(x′)

∣∣ ≤ c
∥∥x− x′∥∥ for all x,x′ ∈ X .

This is a restriction on the set of all allowed η as c < ∞ implies continuity (but the opposite is not
true).

Nonparametric algorithms. Given a learning algorithm A, let HA
m be the set of predictors

generated by A on training sets of size m: h ∈ HA
m if and only if there exists a training set Sm

of size m such that A(Sm) = h. We say that A is a nonparametric learning algorithm if A’s
approximation error vanishes as m grows to infinity. Formally: A is nonparametric if for any
data distribution D

lim
m→∞

inf
h∈HA

m

ℓD(h) = ℓD(f
∗) .

Two notable examples of nonparametric learning algorithms are k-NN and the greedy algorithm
for decision tree classifiers (i.e., the algorithm that always chooses to split a leaf that maximizes
the decrease in training error). Nonparametric algorithms are recognizable because:

• the size (memory footprint) of their predictors tends to grow with the training set size
• for all sufficiently large values of m, there are predictors in Hm with training error arbitrarily
close to zero.

Although the bias of a nonparametric algorithm vanishes as m grows to infinity, the variance may
remain bounded away from zero thus preventing consistency. For example, the standard k-NN
algorithm is nonparametric but not known to be consistent for any fixed value of k. Indeed, one
can only show that

lim
m→∞

E
[
ℓD
(
k-NN(Sm)

)]
≤ ℓD(f

∗) + 2

√
ℓD(f∗)

k
(1)
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for any odd k and any data distribution D. Yet note that this result implies that k-NN is consistent
for any odd k when ℓD(f

∗) = 0. When ℓD(f
∗) > 0, k-NN can be still made consistent by letting k

be any function k(m) of the training set size m such that limm→∞ k(m) = ∞ and k(m) = o(m).

Similarly, the greedy algorithm for building tree classifiers is consistent (for X ≡ Rd) whenever the
two following conditions are fulfilled: for any leaf ℓ, let Xℓ =

{
x ∈ Rd : x is routed to ℓ

}
and let

Nℓ be the number of training examples routed to ℓ. Then, as m → ∞, to guarantee consistency we
must have that the diameter of Xℓ goes to zero and Nℓ → ∞ for all leaves ℓ. In other words, the
tree must grow unboundedly but not too fast.

Figure 1: An example of a nonparametric algorithm that is not consistent: splits are always
made in the leftmost square. Figure from: A Probabilistic Theory of Pattern Recognition, by Luc
Devroye, László Györfi, and Gábor Lugosi. Springer, 1996.

It is possible to construct examples of nonparametric algorithms that are not consistent. We
consider one such example: the greedy algorithm for binary tree classifiers. In order to simulate
the behavior of the algorithm for an arbitrarily large training set size, instead of splitting the leaf
that causes the largest drop in the training error, we assume the algorithm is allowed to choose
the split that causes the largest drop in the risk for the zero-one loss. For any ε > 0, consider
X = [0, 1]2 ∪ [1, 2]2 with uniform distribution ε on [0, 1]2 and 1 − ε on [1, 2]. To define the Bayes
optimal classifier f∗, introduce

A1 =
[
0, 1/4

)
A2 =

[
1/4, 1/4 + 3/8

)
A3 =

[
1/4 + 3/8, 1/4 + 3/8 + 3/16

)
...

Ak =
[
1/4 + 3/8 + · · ·+ 3/2k, 1/4 + 3/8 + · · ·+ 3/2k+1

)
Now let f∗(x) = 1 if and only if x ∈ [1, 3/2]2 ∪ [3/2, 2]2 ∪

(
A2 ∪ A4 ∪ A6 · · ·

)
× [0, 1] and assume

P(Y = 1 | X = x) = f∗(x) so that the Bayes risk is zero, see Figure 1. Hence,
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Bayes risk
ℓD(h

∗)
m∗

m

E
[
ℓD
(
A(Sm)

)]

Figure 2: Typical behavior of expected risk E
[
ℓD
(
A(Sm)

)]
as a function of training set size for

a consistent algorithm (red line) and for a nonconsistent algorithm (blue line). For small training
set sizes m < m∗, the nonconsistent algorithm has a better performance. (Thanks to Edoardo
Marangoni for drawing the picture.)

P(Y = 1) = (1− ε)P
(
X ∈ [1, 3/2]2

)
+ (1− ε)P

(
X ∈ [3/2, 2]2

)
+ ε

∞∑
k=1

P
(
X ∈ A2k

)
= (1− ε)

(
1

4
+

1

4

)
+ ε

∞∑
k=1

3

22k+1

=
1− ε

2
+

3ε

2

∞∑
k=1

1

4k

=
1− ε

2
+

3ε

2
× 1

3
=

1

2

So, initially the tree has a sigle leaf with risk equal to P(Y = 1) = 1
2 . Any split along x2 does not

decrease the risk. Any split of the form x1 ≥ a with a ∈ [1, 2] does not decrease the risk. Hence
the greedy algorithm will choose the split x1 ≤ 1

4 creating a pure leaf corresponding to A1 and
decreasing the risk by ε × P(A1) =

ε
4 . The second greedy split is x1 ≤ 1

4 + 3
8 creading a pure leaf

corresponding to A2 and decreasing the risk by ε
8 . After k such greedy splits, the risk of the tree is

ε

(
1

2
−

k∑
i=1

1

2k+1

)
+

1− ε

2

Hence, after any number of splits the risk of the tree is always larger than 1−ε
2 .

In practice, a nonconsistent algorithm may be preferred over a consistent one, see Figure 2. In
general, the rate of convergence to Bayes risk can be arbitrarily slow, as shown by the following
result.
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Theorem 1 (No Free Lunch). For any sequence a1, a2, . . . of positive numbers converging to zero
and such that a0 ≥ a1 ≥ a2 ≥ · · · > 0 for some universal constant a0, and for any (not necessarily
consistent) learning algorithm A for binary classification with zero-one loss, there exists a data
distribution D such that ℓD(f

∗) = 0 and E
[
ℓD
(
A(Sm)

)]
≥ am for all m ≥ 1.

Theorem 1 does not prevent a consistent algorithm from converging fast to the Bayes risk for some
distributions D. What the theorem shows is that, for any algorithm, the rate of convergence to
Bayes risk must depend on the distribution.

Also, the fact that the risk of the ERM predictor converges to minh∈H ℓD(h) at rate
1√
m

does not

contradict the no free-lunch theorem. Indeed, the distribution D used in the proof of Theorem 1 is
such that inf

h∈H
ℓD(h) ≥ a0 for any parametric class H (which includes any finite class H).

For binary classification, we can summarize the situation as follows.

• Under no assumption on η, there is no guaranteed convergence rate to Bayes risk.
• Under Lipschitz assumptions on η, the typical convergence rate to Bayes risk is m−1/(d+1).
• Under no assumptions on η, the typical convergence rate to the risk of the best predictor in
a parametric (or finite) class H is 1√

m
, exponentially better than the nonparametric rate.

Note that the convergence rate m−1/(d+1) implies that to get ε-close to Bayes risk, we need a
training set size m of order ε−(d+1). This exponential dependence on the number of features of the
training set size is known as curse of dimensionality and refers to the difficulty of learning in a
nonparametric setting when datapoints live in a high-dimensional space.
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