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Evaluating a learning algorithm using external cross-validation. Given a learning algo-
rithm A, we focus on the problem of estimating E

[
ℓD(A(S))

]
where the expectation is over the

random draw of the training set S of size m. In other words, we want to estimate the risk of a
typical predictor A(S) generated by A on a training set S of size m.

A trivial estimate is obtained using a dataset of size m + 1: we use m examples as training set S
to obtain A(S), which we then test on the remaining example. This estimate has of course a large
variance. To have a better control on the variance, we can use a technique called K-fold (external)
cross-validation.

Let S be our entire dataset. We partition S in K subsets (also known as folds) S1, . . . , SK of
size m/K each (assume for simplicity that K divides m). The extreme case K = m provides an
estimate known as leave-one-out. Now let S−i ≡ S \ Si. We call Si the testing part of the i-th
fold while S−i is the training part.

For example, if we partition S =
{
(x1, y1), . . . , (x20, y20)

}
in K = 4 subsets

S1 =
{
(x1, y1), . . . , (x5, y5)

}
S2 =

{
(x6, y6), . . . , (x10, y10)

}
S3 =

{
(x11, y11), . . . , (x15, y15)

}
S4 =

{
(x16, y16), . . . , (x20, y20)

}
then S−2 = S1 ∪ S3 ∪ S4.

The K-fold CV estimate of A on S, denoted by ℓcvS (A), is then computed as follows: we run A on
each training part S−i of the folds i = 1, . . . ,K and obtain the predictors h1 = A

(
S−i

)
, . . . , hK =

A
(
S−K

)
. We then compute the average error on the testing part of each fold,

ℓSi(hi) =
K

m

∑
(x,y)∈Si

ℓ
(
y, hi(x)

)
Finally, we compute the CV estimate by averaging these errors

ℓcvS (A) =
1

K

K∑
i=1

ℓSi

(
hi
)

For K = m = |S|, the CV estimate is aptly called leave-one-out estimate,

ℓlooS (A) =
1

m

m∑
t=1

ℓ
(
yt, ht(xt)

)
where ht = A

(
S−t

)
It is relatively easy to prove that, for K ≥ 2, the K-fold CV estimate for A on a random sample of
size m+m/(K − 1) is an estimate of the risk of A(S) on a random sample S of size m. We prove
this for K = m+ 1.
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Theorem 1. For any m ≥ 1 and any learning algorithm A,

E
[
ℓD

(
A(S)

)]
= E

[
ℓlooS′ (A)

]
where the expectation on the left-hand side is over the random draw of a training set S of size m
and the expectation on the right-hand side is over the random draw of a training set S′ of size m+1

Proof. It is convenient to view a training set as a sequence S =
(
(X1, Y1), . . . , (Xm, Ym)

)
of m

independent random draws from D. Let A(S)(x) = h(x) for h = A(S). Let also Zt = (Xt, Yt) for
all t ≥ 1 so that S = (Z1, . . . , Zm). We still use the notation S−i for i ∈ {1, . . . , |S|}, which now
denotes the sequence (Z1, . . . , Zi−1, Zi+1, . . . , Zm). The first observation is that

ℓD
(
A(S)

)
= E

[
ℓ
(
Ym+1, A(Z1, . . . , Zm)(Xm+1)

) ∣∣∣Z1, . . . , Zm

]
= E

[
ℓ
(
Ym+1, A(S

′
−(m+1))(Xm+1)

) ∣∣∣S′
−(m+1)

]
where S′ = (Z1, . . . , Zm+1) and S′

−(m+1) = S. The second observation is that the training sequences

(Z1, . . . , Zt−1, Zm+1, Zt+1, . . . , Zm, Zt) t = 1, . . . ,m+ 1

have all the same probability because each Zt is drawn independently from D. Therefore

E
[
ℓ
(
Ym+1, A(S

′
−(m+1))(Xm+1)

)]
= E

[
ℓ
(
Yt, A(S

′
−t)(Xt)

)]
t = 1, . . . ,m

This implies

E
[
ℓD

(
A(S)

)]
= E

[
ℓ
(
Ym+1, A(S

′
−(m+1))(Xm+1)

)]
= E

[
1

m+ 1

m+1∑
t=1

ℓ
(
Yt, A(S

′
−t)(Xt)

)]
= E

[
ℓlooS′ (A)

]
concluding the proof. □

The choice of the optimal K in K-fold cross-validation depends on the problem. In general it is
safe to choose K neither too small nor too large. In practice, K = 10 is a typical choice.

Learning algorithms often have hyperparameters. These are special parameters (like k in k-NN or
the learning rate in neural networks) whose value must be determined before the training phase
can start. Crucially, setting the hyperparameters in the wrong way can lead to underfitting or
overfitting. A learning algorithm with one or more hyperparameters is not really an algorithm,
but rather a family of algorithms, one for each possible assignment of values to the hyperparame-
ters. Let {Aθ : θ ∈ Θ} be such a family of learning algorithms, where Θ is the set of all possible
hyperparameter values.

In practice, we face the problem of choosing the hyperparameters so to obtain a predictor with
small risk. This is typically done by minimizing a risk estimate computed using the training data.
As Θ may be very large, possibly infinite, the minimization is generally not over Θ, but over a
suitably chosen subset Θ0 ⊂ Θ (for example, if Θ = [0, 1], then Θ0 could by a finite grid of equally
spaced values in [0, 1]).
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Tuning hyperparameters on a given training set. Given a training set S, consider the task
of finding the predictor {Aθ(S) : θ ∈ Θ0} with smallest risk,

θopt = argmin
θ∈Θ0

ℓD
(
Aθ(S)

)
To do so, we split the training data in two subsets Strain and Sdev. The development set Sdev (also
called validation set) is used as a surrogate test set. Now our goal becomes that of finding θ∗ ∈ Θ0

such that
θ∗ = argmin

θ∈Θ0

ℓD
(
Aθ(Strain)

)
(1)

The algorithm is run on Strain once for each value of the hyperparameter in Θ0. The resulting
predictors are tested on the dev set to find the value

θ̂ = argmin
θ∈Θ0

ℓdev
(
Aθ(Strain)

)
of the hyperparameter corresponding to the predictor A

θ̂
(Strain) with smallest error ℓdev

(
Aθ(Strain)

)
on the validation set. Using Chernoff-Hoeffding bounds and the union bound, we can observe that

ℓD
(
A

θ̂
(Strain)

)
≤ ℓD

(
Aθ∗(Strain)

)
+

√
2

|Sdev|
ln

2|Θ0|
δ

with probability at least 1− δ over the random draw of Sdev. This is telling us how big Sdev must
be compared to Θ0. Although our theoretical arguments apply to θ∗, θ̂ is often used in practice as
an estimate of θopt, which amounts to using the predictor A

θ̂
(S) instead of A

θ̂
(Strain) (note that S

is larger than Strain).

Tuning parameters via nested cross-validation. What if we want to estimate the expected
value of (1) with respect to the random draw of the training set of fixed size?

E
[
min
θ∈Θ0

ℓD
(
Aθ(S)

)]
(2)

In other words, we want to estimate the performance of Aθ on a typical training set of a given size
when θ is chosen using the training set.

Given a dataset S, a cheap way of estimating (2) is to use the best CV-estimate over {Aθ : θ ∈ Θ0},

min
θ∈Θ0

ℓcvS (Aθ)

This estimate tends to underestimate (2), although in practice the difference is typically small.

A better, though more computationally intensive estimate of (2) is computed through nested CV
(Algorithm 1).

Note that in each run of internal cross-validation we optimize θ locally, on the training part S(i)

of the external cross-validation fold. Hence, the nested cross-validation estimate is computed by
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Data: Dataset S
Split S into folds S1, . . . , SK

for i = 1, . . . ,K do
Compute training part of i-th fold: S−i ≡ S \ Si

Run CV on S−i for each θ ∈ Θ0 and find θi = argmin
θ∈Θ0

ℓcvS−i
(Aθ)

Re-train Aθi on S−i: hi = Aθi

(
S−i

)
Compute error of i-th fold: εi = ℓSi(hi)

end
Output: (ε1 + · · ·+ εK)/K

Algorithm 1: K-fold nested cross-validation

averaging the performance of predictors obtained with potentially different values of their hyper-
parameters.

There are cheaper variants of nested cross-validation in which the inner cross-validation is replaced
by a dev set estimate. In other words, instead of running CV on S−i, we split S−i (of size (1 −
1/K)m) in a validation set of size m/K and in a training set of size (1 − 2/K)m. Then, we find
θi by running the same procedure used to estimate minθ∈Θ0 ℓD

(
Aθ(S−i)

)
and return hi = Aθi(S−i)

to the outer cross-validation loop.

Quantity to estimate Estimator

ℓD
(
A(S)

)
test error

min
θ

ℓD
(
Aθ(S)

)
development set

E
[
ℓD(A(S))

]
cross validation

E
[
min
θ

ℓD
(
Aθ(S)

)]
nested cross-validation

The above table collects the different risk estimators. In the first two cases, the training set S is
given. In the remaining two cases, the expectation is computed over the random draw of S of fixed
size.
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