
Machine Learning — Statistical Methods for Machine Learning

Introduction

Instructor: Nicolò Cesa-Bianchi version of January 13, 2026

Machine learning is the core technology driving the recent revolutionary advances in Artificial
Intelligence (AI). While much of this extraordinary progress relies on the paradigm of Generative
AI (GenAI), building large-scale systems—such as ChatGPT or Gemini—requires the entire toolbox
of ML techniques. Therefore, to comprehend modern AI, we must first understand the tools and
principles that underpin its foundations. Generally speaking, ML can be used to solve the following
basic tasks.

• Data clustering: Grouping data points according to their similarity (e.g., segmenting cus-
tomers based on consumer profiles).

• Data prediction: Mapping input data to output labels/targets (e.g., classifying documents
by topic or predicting numerical values).

• Planning and control: Performing a sequence of actions in an environment to maximize a
notion of utility (e.g., navigating a robot through unknown terrain).

• Data generation: Creating new data samples that resemble a training distribution (e.g.,
synthesizing text or images).

Algorithms that solve learning tasks based on annotated historical data (e.g., documents tagged
with topics or images labeled with object names) operate in a supervised learning mode. In
contrast, algorithms that leverage data without explicit semantic annotations operate in an unsu-
pervised learning mode. Finally, algorithms that learn by observing the effects of their actions
within an environment operate in a reinforcement learning mode. It is worth noting that
modern GenAI systems utilize a hybrid approach: unsupervised (or self-supervised) learning for
pre-training, supervised learning for instruction tuning, and reinforcement learning for alignment.
In this course, we focus on supervised learning and study the design of systems whose goal is
to learn predictors, i.e., functions that map data points x to their correct labels/targets y. Once
learned, these functions can be used to categorize documents, predict the future price of a stock,
diagnose a disease based on medical records, and much more.

Label sets. We use Y to denote the set of all possible labels for a data point of a given learning
problem. Note that labels can be of two different types: categorical labels, like the topics of a
document, and numerical labels, like the price of a stock or the demand for a product. Categorical
labels define classification problems, where labels sets Y are typically finite and small (such as
Y = {sport, politics,business} for document topics). Numerical labels define regression problems,
where label sets Y ⊆ R are typically infinite.

As we can always map symbols to numbers, we need to specify more precisely how regression differs
from classification. In regression, prediction mistakes are typically a function of the difference |y−ŷ|,

1

where ŷ is the prediction for y. In classification, mistakes are typically binary: either ŷ = y (no
mistake) or ŷ ̸= y (mistake). This because the label set in a classification task is an abstract set of
symbols (irrespective to whether we encode the symbols using numbers) without a natural notion
of distance between them. When |Y| = 2, for example Y = {healthy, sick}, we have a binary
classification problem, and conventionally use the numerical encoding Y = {−1, 1}.

Loss functions. In order to measure the goodness of a prediction for a prediction task we use a
nonnegative loss function ℓ, measuring the discrepancy ℓ(ŷ, y) between the predicted label ŷ and
the correct label y. In this course we always assume that ℓ(ŷ, y) = 0 when y = ŷ. The simplest loss
function for classification is the zero-one loss:

ℓ(ŷ, y) =

{
0 if y = ŷ,
1 otherwise.

In certain cases, we need more complex classification losses. Consider the problem of categorizing
spam email using the label set Y = {spam, nonspam}. We may penalize a false positive mistake
(i.e., a nonspam email wrongly classified as spam) more than a false negative mistake (i.e., a
spam email wrongly classified as nonspam). For example,

ℓ(ŷ, y) =


2 if y = nonspam and ŷ = spam,
1 if y = spam and ŷ = nonspam,
0 otherwise.

In regression, typical loss functions are the absolute loss ℓ(ŷ, y) = |y− ŷ| and the quadratic loss
ℓ(ŷ, y) = (y − ŷ)2. Note that these losses are only meaningful for numerical labels.

Probabilstic classification. In some cases, it may be convenient to choose predictions from a
set Z different from the label set Y. For example, consider the problem of assigning a probability
p̂ ∈ (0, 1) to the event y = “it will rain tomorrow” (and, consequently, assigning probability 1− p̂
to the complementary event y = “it will not rain tomorrow”). In this case, Y = {“rain”, “no rain”}
and Z = (0, 1). Denoting these two events with 1 (for rain) and 0 (for no rain), we may use a loss
function for regression, such as the absolute loss ℓ(p̂, y) = |y − ŷ| ∈ (0, 1).1 In order to extend the
range of the loss function, so to punish more harshly predictions that depart too much from reality,
we may use instead the logarithmic loss,

ℓ(ŷ, y) =

{
ln 1

ŷ if y = 1 (rain),

ln 1
1−ŷ if y = 0 (no rain).

Unlike the absolute loss, the logarithmic loss may take arbitrarily high values, see Figure 1. In
practice, this fact prevents the predictor from using predictions ŷ that are too certain, namely too
close to zero or one.

Data domain. We use X to denote the set of all possible data points for a given learning problem.
Each data point x is typically stored as a database record. In many interesting cases, data can
be encoded as vectors of real numbers. Such a vector representation is natural whenever the data
consist of a set of homogeneous quantities, such as pixels in an image or word frequencies in a

1Note: While we typically use {−1, 1}, probabilistic frameworks (like logistic regression) often use {0, 1}. We will
switch between these representations as needed.

2

Figure 1: Logarithmic loss function ℓ(ŷ, 1) = ln 1
ŷ (blue curve) and absolute loss function ℓ(ŷ, 1) =

|1− ŷ| (red line) for the case y = 1. In particular, we have lim
ŷ→0+

ℓ(ŷ, 1) = lim
ŷ→1−

ℓ(ŷ, 0) = ∞.

document. The standard Euclidean geometry then works well because all coordinates use the same
unit of measurement. In these cases we may hope that the semantic information carried by the
labels be reflected in the geometrical relationships between data points (e.g., in a classification task
data points with the same label are close to each other in terms of their Euclidean distance).

In other cases, a vector space representation may not be that natural. For example, the values
in the fields of a medical record may use different units, such as age and height, or even be
categorical, such as sex. Using rescaling and other techniques (like binary encoding) for dealing
with categorical quantities, we can provide a homogenenous vector space representation to most
types of data. However, the geometrical properties of these vectors might not be well correlated to
their labels.

In this course, we often assume that data can be represented as vectors of numbers, namely X ≡ Rd.
Irrespective of whether X ≡ Rd or X ≡ X1 × · · · × Xd for some arbitrary sets X1, . . . ,Xd, given a
data point x = (x1, . . . , xd), we say that xi is the value of the i-th feature or attribute.

A predictor is a function f : X → Y mapping data points to labels (or f : X → Z if the predictions
belong to a set Z different from Y). Informally speaking, in a prediction problem the goal is to
learn a function f that generates predictions ŷ = f(x) such that ℓ(ŷ, y) is small for most data
points x ∈ X observed in practice. In practice, the function f is represented by a certain choice of
parameters in a certain model. For examples, a certain setting of the weights of a neural network.

Examples. In supervised learning, an example is a pair (x, y) where x is a data point and y is the
“true” label associated with x. In some cases, there is a unique true label for x. This happens when
y measures some objective property of the data point; for example, y is the closing price of a stock
on a certain day. In some other cases, the label y is subjectively assigned by a human annotator;
for example, the genre of a movie. Clearly, different annotators may have different opinions about
a movie’s genre, implying that the same data point may occur with different “true” labels.

In order to estimate the predictive power of a predictor, which is what we are ultimately interested
in, we typically use a test set. This is a set2 of examples (x′

1, y
′
1), . . . , (x

′
n, y

′
n). Given a loss

2Technically, it is a multiset because some examples may occur more than once. However, treating datasets as

3

function ℓ, the test set is used to compute the test error of a predictors f ,

1

n

n∑
t=1

ℓ
(
f(x′

t), y
′
t

)
.

The test error is meant to estimate the average performance of the predictor on typical real-world
data.

A training set is a set of examples (x1, y1), . . . , (xm, ym). A learning algorithm receives a
training set as input and outputs a predictor. Training and test set are often prepared together,
through a single round of data collection and annotation. Partitioning the examples in training and
test data is done afterward, typically using a random split. Our objective is to develop a theory to
guide us in the design of learning algorithms that generate predictors with low test error. Given
a learning algorithm A and a training set S, we use A(S) to denote the predictor output by A on
input S.

Since the only input to a learning algorithm is the training set S ≡
{
(x1, y1), . . . , (xm, ym)

}
, a

natural approach to the design of learning algorithms is to assume that the training error

ℓS(f) =
1

m

m∑
t=1

ℓ
(
f(xt), y

′
t

)
of a predictor be correlated to its test error.

Empirical risk minimization. Let F be a given set of predictors and ℓ a loss function. The
empirical risk minimizer (ERM) is the learning algorithm A that outputs some predictor in F
minimizing the training error

A(S) ∈ argmin
f∈F

ℓS(f) .

The ∈ notation takes into account the fact that there could be multiple f ∈ F minimizing the
training error.

Overfitting and underfitting. ERM clearly fails when F is too small so that all predictors in
F have large training error. If the training error is large, then the test error will be also large. To
find a good predictor, we should then run ERM with a large F .

On the other hand, choosing F too large can also lead ERM to fail. To see this, assume Y ≡ {−1, 1}
and consider a toy problem with only five data points, X ≡ {x1, . . . ,x5}. Now, take some F
containing a classifier f :

{
x1, . . . ,x5} → {−1, 1} for each of the 25 = 32 possible binary labelings

of the five data points, and suppose the training set contains any three points and the test set
contains the two remaining ones. Now assume data labels y1, . . . , y5 are all assigned using some
f∗ ∈ F , yt = f∗(xt) for t = 1, . . . , 5. Clearly f∗ has zero training error and zero test error. However,
with a training set of three points, ERM always finds four classifiers in F that have zero training
error. Of these four classifiers with zero training error, only one (i.e., f∗) has also zero test error.
But the training set does not contain enough information to help ERM select this classifier.

multisets complicates the notation. For this reason, and without much loss of generality, we will mostly view datasets
as sets in the standard mathematical acception.

4

The problem in the previous example is that F is too large with respect to the training set.
Information theory tells us that we need log2 |F| = 5 bits of information to identify f∗ ∈ F .
Indeed, f∗ is determined by the five labels f∗(x1), . . . , f

∗(x5). This is telling us that the training
set should contain at least log2 |F| distinct data points. Equivalently, |F| should be smaller than
2m, where m is the training set size.

We may give specific names to these two ways of failing (i.e., returning a predictor with high test
error) for a generic learning algorithm A:

• if A fails and returns a predictor with high training error, then we say that A is underfitting,

• if A fails and returns a predictor with low training error, then we say that A is overfitting.

When A is ERM and the training set size m is fixed, our information-theoretic argument says that
we should expect overfitting when log2 |F| ≫ m. Vice versa, when |F| is too small, we should
expect underfitting as soon as the training set satisfies m ≫ log2 |F|.

Noisy labels. In practice labels are noisy, meaning that they are not deterministically associated
with data points x (like in our previous example where yt = f∗(xt)). Noise may occur for at least
three (not mutually exclusive) reasons.

1. Human uncertainty: The labels are assigned by a human annotator who decides the “true”
label for each data point. In this case, different annotators may have different opinions.

2. Epistemic uncertainty: Each data point is represented by a feature vector x that does not
contain enough information to uniquely determine the label. For example, suppose x encodes
measurements such as today’s temperature, pressure, humidity, whereas y ∈ {−1, 1} denotes
whether tomorrow rains or not. It is quite possible that the same observed values lead to rain
in some cases and to sun in other cases.

3. Aleatoric uncertainty: The feature vector x representing a data point is obtained through
noisy measurements. The label associated with a given x is then stochastic because the same
x could have been generated by different data points.

Noisy labels can cause overfitting because they may mislead the algorithm with regard to what is
the “true” label for a given data point.

5

