Machine Learning — Statistical Methods for Machine Learning
The Nearest Neighbor algorithm

Instructor: Nicolo Cesa-Bianchi version of January 13, 2026

We now introduce a concrete learning algorithm: the nearest neighbor algorithm (NN) for binary
classification tasks with numerical features (X = R? and) = {—1,1}). NN is a non-parametric
learning algorithm: Unlike ERM, searching for a predictor within a fixed class F, NN allows the
class to scale with the data size. Given a training set, the classifier generated by NN is based on
the following simple rule: predict every point in the training set with its own label, and predict
any other point with the label of the point in the training set which is closest to it.

More formally, given a training set S = {(931, Y1)y -y (Tm, ym)}, the nearest neighbour algorithm
Axn with input S generates a classifier Axy : R? — {—1,1} defined by:

han () = label y; of the point @; € S closest to @.

If there is more than one point in S with smallest distance to @, then the algorithm predicts with
the majority of the labels of these closest points. If there is an equal number of closest points with
positive and negative labels, then the algorithm predicts a default value in {—1,1} (for instance,
the most frequent label in the training set).

Note that hxn(x:) = y¢ for every training example (x, y¢). The distance between & = (x1,...,24)
and @; = (T11,...,%t4), denoted by ||@ — @], is computed using the Euclidean distance,!

Figure 1: Voronoi diagram for a training set in R2.

"When the numerical features are non-homogeneous and have different scales, it is standard practice to normalize
data (e.g., to zero mean and unit variance) before applying NN, ensuring all features contribute equally to the distance
metric.

It is important to realize that any binary classifier f : R — {—1,1} induces a partition of R?
in two regions: {x € R : f(x) =1} and {x € R? : f(x) = —1}. The classifier hxy = Axn(S)
induces a partition of R% in two regions formed by unions of Voronoi cells. where each training
instance @; in S is the center of a cell, and the border between two cells is the set of points in R?
that have equal distance from the two cell centers (see Figure 1). All the points @ in the interior
of a cell with center x; are such that hxn(x) = y;.

As NN typically stores the entire training set, the algorithm does not scale well with the number
|S| = m of training points. Moreover, given any test point @, computing Ann(x) is costly, as it
requires computing the distance between x and every point of the training set, which in R? takes
time ©(dm) (shorter running times are possible when distances are approximated rather than being
computed exactly). Finally, note that NN always generates a classifier hxy such that £g(hAny) = 0.
This is not surprising because, as we already said, NN stores the entire training set.

0 ‘ ST TTTTTT T k=1

2 o o & 0 0 o ¢ e o 0 0 °

n |

< L e e = L e e e e e e e e m i — - -

<

<]

<

S et ‘ ITT T T T k=3
|

> e & & 0 0 & ¢ & —0— 000

= U

-g !

<

o

S| | k=5

© e o 6 0 06 & ¢ —o—0 0 0 @

L ____o_____

Figure 2: Plot of the hj_nN classifier for £ = 1, 3,5 on a 1-dimensional training set. As k increases,
the classifier becomes simpler and the number of mistaken points in the training set increases.

Starting from NN, we can obtain a family of algorithms denoted by k-NN for £ = 1, 3,5, ..., where
k cannot be taken larger than the size of the training set. These algorithms are defined as follows:
given a training set S = {(@1,1),..., (@m,Ym)}, k-NN generates a classifier hj_nxn such that
hi_nN(x) is the label y; € {—1,1} appearing in the majority of the k points x; € S which are
closest to .2 Hence, in order to compute hj_nn(x), we perform the following operations:

1. Find the £ training points x;,, ..., ®;, closest to . Let y;,,. ..,y be their labels.
2. If the majority of the labels y,,...,y, is +1, then hr_nn(x) = +1; if the majority is —1,
then hk_NN(m) = —1.

Note that, for each £ > 1 and for each x; in the training set, x; is always included in the k points
that are closest to a;.

It is important to note that, unlike 1-NN, in general we have that fg(hr_nN) > 0. Moreover, in
Figure 2 we see that, as k grows, the classifiers generated by k-NN become simpler. In particular,

2Ties in distance are resolved arbitrarily (e.g., by index).

when k£ is equal to the size of the training set, hp_nn becomes a constant classifier that always
predicts the most common label in the training set.

The geometry of the k-NN classifiers is still a partition of R? in Voronoi cells. However, whereas in
1-NN a Voronoi cell contains all the points which have the same closest point in the training set,
in k-NN (for £ > 1) the Voronoi cells contain all the points that have the same & closest neighbors
in the training set. For any k > 1, the Voronoi cells of k-NN are defined by the intersection of a
finite number of halfspaces.

0.08 \/J\/_v/_/_/_\/—/
0,06 4
5
= 0.04 4
002 4
—— Test error
0.00 4 Training error
0 10 20 30 0 50

The figure above shows the typical trend of training error (orange curve) and test error (blue
curve) of the k-NN classifier for increasing values of the parameter k on a real dataset (Breast
Cancer Wisconsin) for binary classification with zero-one loss. Note that the minimum of the test
error is attained at a value corresponding to a hy_nn classifier with training error generally bigger
than zero. The learning algorithm suffers from high test error for small values of k (overfitting)
and for large values of k (underfitting). Unlike ERM, where the trade-off between overfitting and
underfitting is determined by the size of the training set relative to the size of F, in this case the
trade-off is determined by how the complexity of the k-NN predictor (controlled by k) scales with
the training set size.

In addition to binary classification, k-NN can be used to solve multiclass classification problems
(where) contains more than two symbols) and also regression problems (where) = R). In the first
case, we operate like in the binary case and predict using the label corresponding to the majority
of the labels of the k closest training points. In the second case, the prediction is the average of
the labels of the k closest training points.

For regression, using a simple average can be sensitive to outliers. A common variant is distance-
weighted k-NN, where neighbors contribute to the prediction proportional to the reciprocal of their
distance. This aligns with the statistical intuition that closer points provide more information than
faraway points.

