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Linear predictors

Instructor: Nicolò Cesa-Bianchi version of May 28, 2024

A linear predictor for X = Rd is a function h : Rd → R such that h(x) = f(w⊤x) for some w ∈ Rd,
where f : R → R is sometimes called the activation function. In linear regression tasks, f is the
identity function and so h(x) = w⊤x. In linear classification tasks, h(x) = sgn(w⊤x− c) for some
c ∈ R, where sgn(z) = 1 if z > 0 and −1 otherwise. We mostly focus on classification and return
to regression only at the end.

Hyperplanes. Recall that a hyperplane with coefficients (w, c) is defined by
{
x ∈ Rd : w⊤x = c

}
,

where w⊤x = ∥w∥ ∥x∥ cos θ and θ is the angle between w and x and ∥x∥ cos θ is the length of the
projection of x onto w. Hence, the hyperplane defined by (w, c) is orthogonal to w and intersects
it at distance c/ ∥w∥ from the origin.

The halfspaces H+ e H− defined by the hyperplane
{
x ∈ Rd : w⊤x = c

}
are

H+ ≡
{
x : w⊤x > c

}
and H− ≡

{
x′ : w⊤x′ ≤ c

}
That is, all points x whose projection onto w has length strictly bigger than c/ ∥w∥, and all points
x′ whose projection onto w has length not larger than c/ ∥w∥. Geometrically, a linear classifier is
thus defined by

h(x) =

{
+1 if x ∈ H+

−1 if x ∈ H−

Hyperplanes of the form
{
x ∈ Rd : w⊤x = 0

}
pass through the origin and are called homoge-

neous. Any non-homogeneous hyperplane
{
x ∈ Rd : w⊤x = c

}
, with c ̸= 0, is equivalent to the

homogeneous hyperplane
{
x ∈ Rd+1 : v⊤x = 0

}
with v = (w1, . . . , wd,−c) in the following sense:

w⊤x−c = v⊤x′ for all x ∈ Rd and x′ = (x1, . . . , xd, 1) ∈ Rd+1. For this reason, without any loss of
generality we only deal with algorithms that learn linear predictors corresponding to homogeneous
hyperplanes. This amounts to saying that we automatically add an extra feature with value 1 to
all of our data points.

Training linear classifiers. Recall that a linear classifier is a predictor h such that h(x) =
sgn(w⊤x). Clearly, sgn(w⊤x) = sgn

(
∥w∥ ∥x∥ cos θ

)
= sgn(cos θ). As the classification is only

determined by the angle θ between w and x, the value of ∥w∥ is immaterial and we may take ∥w∥ =
1. Note that the zero-one loss I{h(xt) ̸= yt} can be equivalently1 rewritten as I{ytw⊤xt ≤ 0}.

Let Hd be the family of linear classifiers h(x) = sgn(w⊤x) for w ∈ Rd such that ∥w∥ = 1.
Consider the ERM algorithm for zero-one loss that, given a training set S containing examples

1Note that ytw
⊤xt = 0 if and only if w⊤xt = 0. In this case, sgn

(
w⊤xt

)
= −1 and so the classification is

actually correct when yt = −1. Hence, using I{ytw⊤xt ≤ 0} to count mistakes we overcount only when w⊤xt = 0
and yt = −1.
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(x1, y1), . . . , (xm, ym) ∈ Rd × {−1, 1}, outputs

hS = argmin
h∈Hd

1

m

m∑
t=1

I{h(xt) ̸= yt} = argmin
w∈Rd : ∥w∥=1

1

m

m∑
t=1

I{ytw⊤xt ≤ 0} . (1)

Unfortunately, it is unlikely to find an efficient implementation of ERM for linear classifiers with
zero-one loss. In fact, the decision problem associated with finding hS is NP-complete even when
xt ∈ {0, 1}d for t = 1, . . . ,m. More precisely, introduce the following decision problem.

MinDisagreement
Instance: Pairs (x1, y1), . . . , (xm, ym) ∈ {0, 1}d × {−1, 1}. Integer k.
Question: Is there w ∈ Qd such that ytw

⊤xt ≤ 0 for at most k indices t = 1, . . . ,m?

The following result can be shown.

Theorem 1. MinDisagreement is NP-complete.

In addition to that, the following stronger hardness-of-approximation result can be also shown.

MinDisOpt
Instance: Pairs (x1, y1), . . . , (xm, ym) ∈ {0, 1}d × {−1, 1}.
Solution: A point w ∈ Qd minimizing the number of indices t = 1, . . . ,m such that
ytw

⊤xt ≤ 0.

Given an instance S (i.e., a training set) of MinDisOpt, let Opt(S) the number of examples in S
that are misclassified by the ERM classifier hS . In other words, Opt(S)/m = ℓS(hS).

Theorem 2. If P ̸= NP , then for all C > 0 there are no polynomial time algorithms that approx-
imately solve every instance S of MinDisOpt with a number of misclassified examples bounded by
C ×Opt(S).

This implies that, unless P = NP (which is believed unlikely), there are no efficient algorithms that
approximate the solution of (1) to within any constant factor. Here efficient means with running
time polynomial in the input size md.

The ERM problem (1) becomes easier when the training set is linearly separable. A training set
(x1, y1), . . . , (xm, ym) is linearly separable where there exists a linear classifier with zero training
error. In other words, there exists a separating hyperplane u ∈ Rd such that

γ(u)
def
= min

t=1,...,m
yt u

⊤xt > 0

The quantity γ(u) is known as the margin of u on the training set. The scaled margin γ(u)/ ∥u∥
measures the distance between the separating hyperplane and the closest training example.

Now observe that the ERM problem (1) can be expressed as a system of linear inequalities,

ytw
⊤xt > 0 t = 1, . . . ,m .

2



When the training set is linearly separable, the system has at least a solution. This solution can
be found in polynomial time using an algorithm for linear programming.

We now introduce a very simple algorithm for learning linear classifiers that can be used to solve
the ERM problem in the linearly separable case. The Perceptron algorithm finds a homogeneous
separating hyperplane by runnning through the training examples one after the other. The current
linear classifier is tested on each training example and, in case of misclassification, the associated
hyperplane is adjusted. Note that if the algorithm terminates, then w is a separating hyperplane.

Data: Training set (x1, y1), . . . , (xm, ym)
w = (0, . . . , 0)
while true do

for t = 1, . . . ,m do (epoch)
if ytw

⊤xt ≤ 0 then
w ← w + yt xt (update)

end
if no update in last epoch then break

end
Output: w

Algorithm 1: The Perceptron algorithm (for the linearly separable case)

The update w ← w + yt xt when ytw
⊤xt ≤ 0 makes ytw

⊤xt bigger. Indeed,

yt
(
w + yt xt

)⊤
xt = ytw

⊤xt + ∥xt∥2 > ytw
⊤xt

Geometrically, each update moves w towards xt if yt = 1 and moves w away from xt if yt = −1.

We now prove that Perceptron always terminates on linearly separable training sets.

Theorem 3 (Convergence of Perceptron). Let (x1, y1), . . . , (xm, ym) be a linearly separable training
set. Then the Perceptron algorithm terminates after a number of updates not bigger than(

min
u : γ(u)≥1

∥u∥2
)(

max
t=1,...,m

∥xt∥2
)

(2)

The apparently stonger margin constraint γ(u) ≥ 1 is actually achievable by any separating hy-
perplane u. Indeed, if γ(u) > 0, then ytu

⊤xt ≥ γ(u) is equivalent to ytv
⊤xt ≥ 1 for v = u/γ(u).

Hence, γ(u) ≥ 1 can be achieved simply by rescaling u.

Proof. Let w0 = (0, . . . , 0) be the initial predictor. Let wM be the hyperplane after M updates
and let tM ∈ {1, . . . ,m} be the index of the training example (xtM , ytM ) that caused the M -th
update wM = wM−1 + ytMxtM . We prove an upper bound on M by deriving upper and lower
bounds on ∥wM∥ ∥u∥. We start by observing that

∥wM∥2 = ∥wM−1 + ytMxtM ∥
2 = ∥wM−1∥2 + ∥xtM ∥

2 + 2 ytMw⊤
M−1xtM ≤ ∥wM−1∥2 + ∥xtM ∥

2
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because ytMw⊤
M−1xtM ≤ 0 due to the update wM = wM−1 + ytMxtM . Iterating this argument M

times, and recalling that w0 = (0, . . . , 0), we obtain

∥wM∥2 ≤ ∥w0∥2 +
M∑
i=1

∥xti∥
2 ≤M

(
max

t=1,...,m
∥xt∥2

)
.

Hence

∥wM∥ ∥u∥ ≤ ∥u∥
(

max
t=1,...,m

∥xt∥
)√

M .

To prove the lower bound, fix any separating hyperplane u with γ(u) ≥ 1 and let θ be the angle
between u and wM . We have

∥wM∥ ∥u∥ ≥ ∥wM∥ ∥u∥ cos(θ) (since −1 ≤ cos(θ) ≤ 1)

= w⊤
Mu (by definition of inner product)

= (wM−1 + ytMxtM )⊤ u

= w⊤
M−1u+ ytMu⊤xtM

≥ w⊤
M−1u+ 1

where the last inequality holds because 1 ≤ γ(u) ≤ ytu
⊤xt for all t = 1, . . . ,m. Iterating M times

we get
∥wM∥ ∥u∥ ≥ w⊤

0 u+M = M

Where we used w⊤
0 u = 0 since w0 = (0, . . . , 0). Combining upper and lower bound we obtain

M ≤ ∥u∥
(

max
t=1,...,M

∥xt∥
)√

M .

Solving for M , and recalling the choice of u, we obtain (2). Hence, the update count M cannot
grow larger than (2). Since the algorithm stops when no more updates are possible, we conclude
that the Perceptron terminates after a bounded number of updates. □

Note that the Perceptron convergence theorem does not imply that the Perceptron algorithm ter-
minates in polynomial time on any linearly separable training set. Indeed, it can be shown that
the bound (2) is tight in any fixed dimension d ≥ 2. Hence, although each update takes constant
time Θ(d), the number of updates can still be exponential in md whenever γ(u) ≥ 1 only for those
u whose length ∥u∥ is very big. Or, equivalently, when the margin γ(u) is very small for any linear
separator u such that ∥u∥ = 1.

Linear regression. In linear regression our predictors are linear functions h : Rd → R each
parameterized by a vector w ∈ Rd of real coefficients. That is, h(x) = w⊤x.

Given a training set (x1, y1), . . . , (xm, ym) ∈ Rd × R, the linear regression predictor is the ERM
with respect to the square loss,

wS = argmin
w∈Rd

m∑
t=1

(
w⊤xt − yt

)2
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Now let v =
(
w⊤x1, . . . ,w

⊤xm

)
and y = (y1, . . . , ym). Then

m∑
t=1

(
w⊤xt − yt

)2
= ∥v − y∥2 .

View all vectors as column vectors. Since v = Sw, where S is the m× d design matrix such that
S⊤ = [x1, . . . ,xm], we may also write

wS = argmin
w∈Rd

∥Sw − y∥2 .

Since F (w) = ∥Sw − y∥2 is a convex function, the minimizer satisfies the condition ∇F (w) = 0.

Using matrix calculus, we have that ∇∥Sw − y∥2 = 2S⊤(Sw − y). Hence, ∇∥Sw − y∥2 = 0 for

w =
(
S⊤S

)−1
S⊤y provided S⊤S is nonsingular (i.e., invertible)—which is equivalent to x1, . . . ,xm

spanning Rd. When this happens, we have that the ERM with respect to the square loss is
wS =

(
S⊤S

)−1
S⊤y.

Ridge Regression. When S⊤S is nearly singular, wS is highly sensitive to perturbations of the
training set. This instability increases the estimation error (or variance). A more stable predictor
is obtained by introducing a regularizer in the ERM functional which increases the approximation
error (or bias) and reduces the variance with a beneficial effect on the risk.

In other words, instead of defining wS by

wS = argmin
w∈Rd

∥Sw − y∥2

we use the regularized form, also known as Ridge Regression,

wS,α = argmin
w∈Rd

∥Sw − y∥2 + α ∥w∥2

where α > 0 is the regularization parameter. When α→ 0 we recover the standard linear regression
solution. When α→∞, the solution wS,α becomes the zero vector. This shows that α can be used
to control the bias of the algorithm.

Similarly to before, we have that

∇
(
∥Sw − y∥2 + α ∥w∥2

)
= 2S⊤(Sw − y) + 2αw .

Hence, the gradient vanishes for w = wS,α =
(
αI + S⊤S

)−1
S⊤y. Note that we do not have to

worry anymore about the singularity of S⊤S. Indeed, if λ1 ≥ · · · ≥ λd ≥ 0 are the eigenvalues of
S⊤S, the eigenvalues of αI + S⊤S are simply α + λ1 ≥ · · · ≥ α + λd > 0. Hence, αI + S⊤S is
invertible for all α > 0.
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