

Machine Learning — Statistical Methods for Machine Learning
Risk Analysis for Nearest-Neighbor

Instructor: *Nicolò Cesa-Bianchi*

version of May 28, 2024

We investigate the problem of bounding the zero-one loss risk of the 1-NN binary classifier averaged with respect to the random draw of the training set. Under some assumptions on the data distribution \mathcal{D} , we prove a bound of the form

$$\mathbb{E}[\ell_{\mathcal{D}}(A(S_m))] \leq 2\ell_{\mathcal{D}}(f^*) + \varepsilon_m \quad (1)$$

where A denotes the 1-NN algorithm, S_m the training set of size m , $\ell_{\mathcal{D}}(f^*)$ is the Bayes risk, and ε_m is a quantity that vanishes for $m \rightarrow \infty$. Note that we are able to compare $\mathbb{E}[\ell_{\mathcal{D}}(A(S_m))]$ directly to the Bayes risk, showing that 1-NN is—in some sense—a powerful learning algorithm.

Recall that in binary classification we denote the joint distribution of (\mathbf{X}, Y) with the pair (\mathcal{D}_X, η) , where \mathcal{D}_X is the marginal of \mathcal{D} on \mathbf{X} and $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 \mid \mathbf{X} = \mathbf{x})$. Fix m and let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ be a training set of size m . We define the map $\pi(S, \cdot) : \mathbb{R}^d \rightarrow \{1, \dots, m\}$ by

$$\pi(S, \mathbf{x}) = \operatorname{argmin}_{t=1, \dots, m} \|\mathbf{x} - \mathbf{x}_t\|.$$

If there is more than one point \mathbf{x}_t achieving the minimum in the above expression, then $\pi(S, \mathbf{x})$ selects one of them using any deterministic tie-breaking rule; our analysis does not depend on the specific rule being used. The 1-NN classifier $h_S = A(S)$ is defined by $h_S(\mathbf{x}) = y_{\pi(S, \mathbf{x})}$.

From now on, the training set S is a sample $\{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_m, Y_m)\}$ drawn i.i.d. from \mathcal{D} . The expected risk is defined by

$$\mathbb{E}[\ell_{\mathcal{D}}(A(S))] = \mathbb{P}(Y_{\pi(S, \mathbf{X})} \neq Y)$$

Where probabilities and expectations are understood with respect to the random draw of training set S and of the example (\mathbf{X}, Y) with respect to which the risk of $A(S)$ is computed.

We now state a crucial lemma.

Lemma 1. *The expected risk of the 1-NN classifier can be written as follows*

$$\mathbb{E}[\ell_{\mathcal{D}}(h_S)] = \mathbb{E}[\eta(\mathbf{X}_{\pi(S, \mathbf{X})}) (1 - \eta(\mathbf{X}))] + \mathbb{E}[(1 - \eta(\mathbf{X}_{\pi(S, \mathbf{X})})) \eta(\mathbf{X})]$$

To proceed with the analysis, we now need some assumptions on D_X and η . First, all data points \mathbf{X} drawn from D_X satisfy $\max_i |X_i| \leq 1$ with probability one. In other words, $\mathbf{X} \in [-1, 1]^d$ with probability 1. Let $\mathcal{X} \equiv [-1, 1]^d$ the subsets of data points with this property. Second we assume that η is Lipschitz on \mathcal{X} with constant $c > 0$. We can thus write

$$\eta(\mathbf{x}') \leq \eta(\mathbf{x}) + c \|\mathbf{x} - \mathbf{x}'\| \quad (2)$$

$$1 - \eta(\mathbf{x}') \leq 1 - \eta(\mathbf{x}) + c \|\mathbf{x} - \mathbf{x}'\| \quad (3)$$

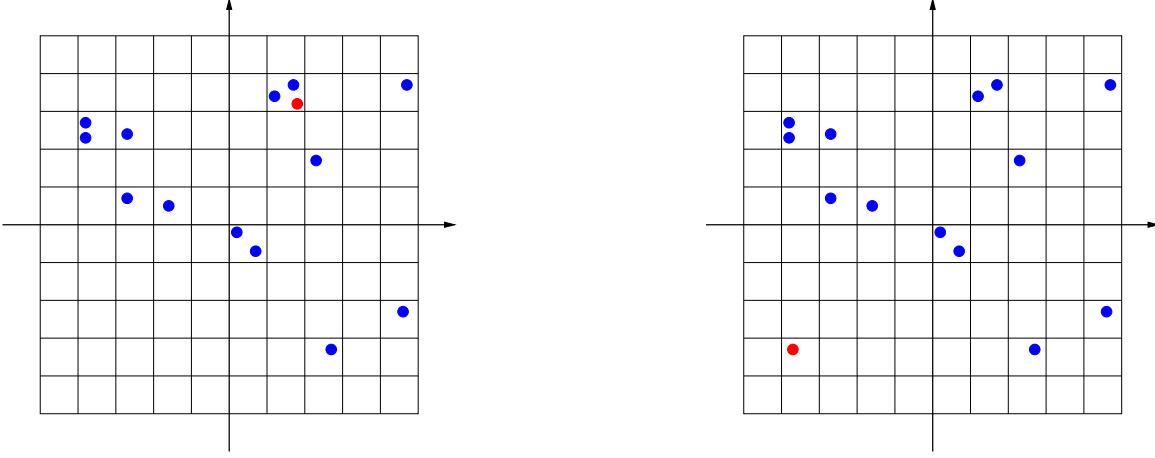


Figure 1: Bidimensional example of the construction used in the analysis of 1-NN. Left pane: \mathbf{X} (the red point) is in the same square C_i as its closest training point $\mathbf{X}_{\pi(S, \mathbf{X})}$. Hence, $\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|$ is bounded by the length of the diagonal of this square. Right pane: here there are no training points in the square where \mathbf{X} lies. Hence, $\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|$ can only be bounded by the length of the entire data space (the large square).

Using (2) and (3), for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ we have

$$\begin{aligned}
& \eta(\mathbf{x})(1 - \eta(\mathbf{x}')) + (1 - \eta(\mathbf{x}))\eta(\mathbf{x}') \\
& \leq \eta(\mathbf{x})(1 - \eta(\mathbf{x})) + \eta(\mathbf{x})c\|\mathbf{x} - \mathbf{x}'\| + (1 - \eta(\mathbf{x}))\eta(\mathbf{x}) + (1 - \eta(\mathbf{x}))c\|\mathbf{x} - \mathbf{x}'\| \\
& = 2\eta(\mathbf{x})(1 - \eta(\mathbf{x})) + c\|\mathbf{x} - \mathbf{x}'\| \\
& \leq 2\min\{\eta(\mathbf{x}), 1 - \eta(\mathbf{x})\} + c\|\mathbf{x} - \mathbf{x}'\|
\end{aligned}$$

where the last inequality holds because $z(1 - z) \leq \min\{z, 1 - z\}$ for all $z \in [0, 1]$. Therefore

$$\mathbb{E}[\ell_{\mathcal{D}}(h_S)] \leq 2\mathbb{E}\left[\min\{\eta(\mathbf{X}), 1 - \eta(\mathbf{X})\}\right] + c\mathbb{E}\left[\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|\right].$$

Recalling that the Bayes risk for the zero-one loss is $\ell_{\mathcal{D}}(f^*) = \mathbb{E}\left[\min\{\eta(\mathbf{X}), 1 - \eta(\mathbf{X})\}\right]$ we have

$$\mathbb{E}[\ell_{\mathcal{D}}(h_S)] \leq 2\ell_{\mathcal{D}}(f^*) + c\mathbb{E}\left[\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|\right].$$

In order to bound the term containing the expected value of $\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|$ we partition the data space \mathcal{X} in d -dimensional hypercubes with side $\varepsilon > 0$, see Figure 1 for a bidimensional example. Let C_1, \dots, C_r the resulting hypercubes. We can now bound $\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|$ using a case analysis. Assume first that \mathbf{X} belongs to a C_i in which there is at least a training point \mathbf{X}_t . Then $\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|$ is at most the length of the diagonal of the hypercube, which is $\varepsilon\sqrt{d}$, see the left pane in Figure 1. Now assume that \mathbf{X} belongs to a C_i in which there are no training points. Then $\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|$ is only bounded by the length of the diagonal of \mathcal{X} , which is $2\sqrt{d}$, see the

right pane in Figure 1. Hence, we may write

$$\begin{aligned}\mathbb{E}\left[\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|\right] &\leq \mathbb{E}\left[\varepsilon\sqrt{d}\sum_{i=1}^r \mathbb{I}\{C_i \cap S \neq \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\} + 2\sqrt{d}\sum_{i=1}^r \mathbb{I}\{C_i \cap S = \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\}\right] \\ &= \varepsilon\sqrt{d}\mathbb{E}\left[\sum_{i=1}^r \mathbb{I}\{C_i \cap S \neq \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\}\right] + 2\sqrt{d}\sum_{i=1}^r \mathbb{E}[\mathbb{I}\{C_i \cap S = \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\}]\end{aligned}$$

where in the last step we used linearity of the expected value. Now observe that, for all S and \mathbf{X} ,

$$\sum_{i=1}^r \mathbb{I}\{C_i \cap S \neq \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\} \in \{0, 1\}$$

because $\mathbf{X} \in C_i$ for only one $i = 1, \dots, d$. Therefore,

$$\mathbb{E}\left[\sum_{i=1}^r \mathbb{I}\{C_i \cap S \neq \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\}\right] \leq 1.$$

To bound the remaining term, we use the independence between \mathbf{X} and the training set S ,

$$\mathbb{E}[\mathbb{I}\{C_i \cap S = \emptyset\}\mathbb{I}\{\mathbf{X} \in C_i\}] = \mathbb{E}[\mathbb{I}\{C_i \cap S = \emptyset\}]\mathbb{E}[\mathbb{I}\{\mathbf{X} \in C_i\}] = \mathbb{P}(C_i \cap S = \emptyset)\mathbb{P}(\mathbf{X} \in C_i).$$

Since S contains m data points independently drawn, for a generic data point \mathbf{X}' we have that

$$\mathbb{P}(C_i \cap S = \emptyset) = (1 - \mathbb{P}(\mathbf{X}' \in C_i))^m \leq \exp(-m\mathbb{P}(\mathbf{X}' \in C_i))$$

where in the last step we used the inequality $(1 - p)^m \leq e^{-pm}$. Setting $p_i = \mathbb{P}(\mathbf{X}' \in C_i)$ we have

$$\begin{aligned}\mathbb{E}\left[\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|\right] &\leq \varepsilon\sqrt{d} + (2\sqrt{d})\sum_{i=1}^r e^{-p_i m} p_i \\ &\leq \varepsilon\sqrt{d} + (2\sqrt{d})\sum_{i=1}^r \max_{0 \leq p \leq 1} e^{-pm} p \\ &= \varepsilon\sqrt{d} + (2\sqrt{d})r \max_{0 \leq p \leq 1} e^{-pm} p.\end{aligned}$$

The concave function $g(p) = e^{-pm}p$ is maximized for $p = \frac{1}{m}$. Therefore,

$$\mathbb{E}\left[\|\mathbf{X} - \mathbf{X}_{\pi(S, \mathbf{X})}\|\right] \leq \varepsilon\sqrt{d} + (2\sqrt{d})\frac{r}{em} = \sqrt{d}\left(\varepsilon + \frac{2}{em}\left(\frac{2}{\varepsilon}\right)^d\right)$$

where we used the fact that the number r of hypercubes is equal to $\left(\frac{2}{\varepsilon}\right)^d$. Putting everything together we find that

$$\mathbb{E}[\ell_{\mathcal{D}}(h_S)] \leq 2\ell_{\mathcal{D}}(f^*) + c\sqrt{d}\left(\varepsilon + \frac{2}{em}\left(\frac{2}{\varepsilon}\right)^d\right)$$

Since this holds for all $0 < \varepsilon < 1$, we can set $\varepsilon = 2m^{-1/(d+1)}$. This gives

$$\varepsilon + \frac{2}{em}\left(\frac{2}{\varepsilon}\right)^d = 2m^{-1/(d+1)} + \frac{2^{d+1}2^{-d}m^{d/(d+1)}}{em} = 2m^{-1/(d+1)}\left(1 + \frac{1}{e}\right) \leq 4m^{-1/(d+1)}. \quad (4)$$

Substituting this bound in (4), we finally obtain

$$\mathbb{E}[\ell_{\mathcal{D}}(h_S)] \leq 2\ell_{\mathcal{D}}(f^*) + c4m^{-1/(d+1)}\sqrt{d}.$$

Note that for $m \rightarrow \infty$, $\ell_{\mathcal{D}}(f^*) \leq \mathbb{E}[\ell_{\mathcal{D}}(h_S)] \leq 2\ell_{\mathcal{D}}(f^*)$. Namely, the asymptotic risk of 1-NN lies between the Bayes risk and twice the Bayes risk.