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We investigate the problem of bounding the zero-one loss risk of the 1-NN binary classifier aver-
aged with respect to the random draw of the training set. Under some assumptions on the data
distribution D, we prove a bound of the form

E[¢p(A(Sm))] < 26p(f*) +em (1)

where A denotes the 1-NN algorithm, S;,, the training set of size m, ¢p(f*) is the Bayes risk, and &,
is a quantity that vanishes for m — oco. Note that we are able to compare E[Ep (A(Sm))} directly
to the Bayes risk, showing that 1-NN is—in some sense—a powerful learning algorithm.

Recall that in binary classification we denote the joint distribution of (X,Y") with the pair (Dx,n),
where Dx is the marginal of D on X and n(x) = P(Y =1 | X = x). Fix m and let S =
{(z1,41), ..., (®m,ym)} be a training set of size m. We define the map 7(S,) : R — {1,...,m}
by

(S, x) = argmin ||z — x| .

t=1,....m

If there is more than one point @; achieving the minimum in the above expression, then 7(S,x)
selects one of them using any deterministic tie-breaking rule; our analysis does not depend on the
specific rule being used. The 1-NN classifier hg = A(S) is defined by hs(T) = yr(5,z)-

From now on, the training set S is a sample {(Xl,Yl), cee, (Xm,Ym)} drawn i.i.d. from D. The
expected risk is defined by

E[(p(A(9))] = P<Yn(S,X) # Y)

Where probabilities and expectations are understood with respect to the random draw of training
set S and of the example (X,Y’) with respect to which the risk of A(S) is computed.

We now state a crucial lemma.

Lemma 1. The expected risk of the 1-NN classifier can be written as follows

E[lp(hs)] = E[W(XW(S,X)) (1- TI(X))} +E [(1 - n(Xﬂ(S,X))>n(X)]

To proceed with the analysis, we now need some assumptions on Dx and 7. First, all data points
X drawn from Dy satisfy max; |X;| < 1 with probability one. In other words, X € [~1,1]¢ with
probability 1. Let X = [—1,1]? the subsets of data points with this property. Second we assume
that 7 is Lipschitz on X with constant ¢ > 0. We can thus write

n(x') <n(x) +cllz—a|| (2)
1—n(a) <1-n@)+clz - (3)



Figure 1: Bidimensional example of the construction used in the analysis of 1-NN. Left pane: X
(the red point) is in the same square C; as its closest training point X (g x). Hence, HX — X1 (5,x) H
is bounded by the length of the diagonal of this square. Right pane: here there are no training
points in the square where X lies. 7(S,X) H can only be bounded by the length of
the entire data space (the large square).

Using (2) and (3), for all , 2’ € X we have

n(x) (1 —n(x)) + (1 77(96))77(30')
< (@) (1 —n(x)) +n(@)c |z —2'[| + (1 - n(@))n@) + (1 - n(x))c ||z — |
= 2n(z )(1—77( ) +cllz |
< 2min {n(x),1-n(x)} +cljz - 2|

where the last inequality holds because z(1 — z) < min{z,1 — z} for all z € [0, 1]. Therefore
E[tp(hs)] < 2| min {n(X), 1= n(X)}| + cE[[|X - Xrsx]] -

Recalling that the Bayes risk for the zero-one loss is {p(f*) =E {min{n(X), 1- n(X)}] we have

E[tp(hs)] < 20p(f) + B[ X = Xais x)|l] -

In order to bound the term containing the expected value of HX = X, X)H we partition the
data space X in d-dimensional hypercubes with side € > 0, see Figure 1 for a bidimensional
example. Let C',...,C, the resulting hypercubes. We can now bound HX — X,,(Syx)H using a
case analysis. Assume first that X belongs to a C; in which there is at least a training point X;.
Then HX — Xa(5,X) H is at most the length of the diagonal of the hypercube, which is ev/d, see the
left pane in Figure 1. Now assume that X belongs to a C; in which there are no training points.
Then HX — X (s, X)H is only bounded by the length of the diagonal of X, which is 2v/d, see the



right pane in Figure 1. Hence, we may write

E[[|X — Xxs0l] <E

€ di]l{Ci ns # @}]I{X € Ci} + QV&iH{CZ‘ ns= @}H{X € CZ}
=1

i=1

i zﬁiE [{C; NS = BH{X € C;}]

=1

iﬂ{ci NS #0{X € C;}

=1

= eVdE

where in the last step we used linearity of the expected value. Now observe that, for all S and X,

T

> H{CinS # MI{X € Ci} € {0,1}

=1

because X € C; for only one i = 1,...,d. Therefore,

E ZT:]I{CZ‘ NS # @}H{X S Ci}

=1

To bound the remaining term, we use the independence between X and the training set S,
E{C;NS=0{X e} =E[{C;NS=0}E[{X € C;}|=P(C;NnS=0)P(X € () .
Since S contains m data points independently drawn, for a generic data point X’ we have that
P(CiNnS=0)=(1-P(X' € C;))" <exp(-mP(X' € ;))

where in the last step we used the inequality (1 — p)™ < e P™. Setting p; = P(X’ € C;) we have

E[HX - Xw(S,X)N <eVd+ ( 2v/d Ze—plm

é

ggx/&+<2

0<p<1

max e ’p
0<p<1

)
) max e ’p
=eVd+ <2\/&)

The concave function g(p) = e P™p is maximized for p = % Therefore,

EU\X = X,r(s,x)ﬂ <evd+ (2\/@ % =Vd <€+ % (2>d>

3

where we used the fact that the number r of hypercubes is equal to (%)d. Putting evertything
together we find that
2 (2\*
E[fp(hs)] < 26p(f") + eV <g +2(2) )
em \ €

Since this holds for all 0 < £ < 1, we can set £ = 2m~/@+D This gives

d d+19—d,,,d/(d+1
et 2 <2> _ oy l/an) | 2T 27Tm [y = 2m~1/(d+1) (1 + 1) <4m VO o (g)
e

em \ € em




Substituting this bound in (4), we finally obtain
E[¢p(hs)] < 2¢p(f*) + cdm™ V@D Vq |

Note that for m — oo, ¢p(f*) < E[lp(hs)] < 2Lp(f*). Namely, the asymptotic risk of 1-NN lies
between the Bayes risk and twice the Bayes risk.



