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We investigate the problem of bounding the zero-one loss risk of the 1-NN binary classifier aver-
aged with respect to the random draw of the training set. Under some assumptions on the data
distribution D, we prove a bound of the form

E
[
ℓD
(
A(Sm)

)]
≤ 2 ℓD(f

∗) + εm (1)

where A denotes the 1-NN algorithm, Sm the training set of size m, ℓD(f
∗) is the Bayes risk, and εm

is a quantity that vanishes for m → ∞. Note that we are able to compare E
[
ℓD
(
A(Sm)

)]
directly

to the Bayes risk, showing that 1-NN is—in some sense—a powerful learning algorithm.

Recall that in binary classification we denote the joint distribution of (X, Y ) with the pair (DX , η),
where DX is the marginal of D on X and η(x) = P(Y = 1 | X = x). Fix m and let S ={
(x1, y1), . . . , (xm, ym)

}
be a training set of size m. We define the map π(S, ·) : Rd → {1, . . . ,m}

by
π(S,x) = argmin

t=1,...,m
∥x− xt∥ .

If there is more than one point xt achieving the minimum in the above expression, then π(S,x)
selects one of them using any deterministic tie-breaking rule; our analysis does not depend on the
specific rule being used. The 1-NN classifier hS = A(S) is defined by hS(x) = yπ(S,x).

From now on, the training set S is a sample
{
(X1, Y1), . . . , (Xm, Ym)

}
drawn i.i.d. from D. The

expected risk is defined by

E
[
ℓD
(
A(S)

)]
= P

(
Yπ(S,X) ̸= Y

)
Where probabilities and expectations are understood with respect to the random draw of training
set S and of the example (X, Y ) with respect to which the risk of A(S) is computed.

We now state a crucial lemma.

Lemma 1. The expected risk of the 1-NN classifier can be written as follows

E
[
ℓD(hS)

]
= E

[
η
(
Xπ(S,X)

) (
1− η(X)

)]
+ E

[(
1− η

(
Xπ(S,X)

))
η(X)

]
To proceed with the analysis, we now need some assumptions on DX and η. First, all data points
X drawn from DX satisfy maxi |Xi| ≤ 1 with probability one. In other words, X ∈ [−1, 1]d with
probability 1. Let X ≡ [−1, 1]d the subsets of data points with this property. Second we assume
that η is Lipschitz on X with constant c > 0. We can thus write

η(x′) ≤ η(x) + c
∥∥x− x′∥∥ (2)

1− η(x′) ≤ 1− η(x) + c
∥∥x− x′∥∥ (3)

1



Figure 1: Bidimensional example of the construction used in the analysis of 1-NN. Left pane: X
(the red point) is in the same square Ci as its closest training pointXπ(S,X). Hence,

∥∥X −Xπ(S,X)

∥∥
is bounded by the length of the diagonal of this square. Right pane: here there are no training
points in the square where X lies. Hence,

∥∥X −Xπ(S,X)

∥∥ can only be bounded by the length of
the entire data space (the large square).

Using (2) and (3), for all x,x′ ∈ X we have

η(x)
(
1− η(x′)

)
+
(
1− η(x)

)
η(x′)

≤ η(x)
(
1− η(x)

)
+ η(x)c

∥∥x− x′∥∥+ (1− η(x)
)
η(x) +

(
1− η(x)

)
c
∥∥x− x′∥∥

= 2η(x)
(
1− η(x)

)
+ c

∥∥x− x′∥∥
≤ 2min

{
η(x), 1− η(x)

}
+ c

∥∥x− x′∥∥
where the last inequality holds because z(1− z) ≤ min{z, 1− z} for all z ∈ [0, 1]. Therefore

E
[
ℓD(hS)

]
≤ 2E

[
min

{
η(X), 1− η(X)

}]
+ cE

[ ∥∥X −Xπ(S,X)

∥∥ ] .
Recalling that the Bayes risk for the zero-one loss is ℓD(f

∗) = E
[
min

{
η(X), 1− η(X)

}]
we have

E
[
ℓD(hS)

]
≤ 2 ℓD(f

∗) + cE
[∥∥X −Xπ(S,X)

∥∥] .
In order to bound the term containing the expected value of

∥∥X −Xπ(S,X)

∥∥ we partition the
data space X in d-dimensional hypercubes with side ε > 0, see Figure 1 for a bidimensional
example. Let C1, . . . , Cr the resulting hypercubes. We can now bound

∥∥X −Xπ(S,X)

∥∥ using a
case analysis. Assume first that X belongs to a Ci in which there is at least a training point Xt.
Then

∥∥X −Xπ(S,X)

∥∥ is at most the length of the diagonal of the hypercube, which is ε
√
d, see the

left pane in Figure 1. Now assume that X belongs to a Ci in which there are no training points.
Then

∥∥X −Xπ(S,X)

∥∥ is only bounded by the length of the diagonal of X , which is 2
√
d, see the
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right pane in Figure 1. Hence, we may write

E
[∥∥X −Xπ(S,X)

∥∥] ≤ E

[
ε
√
d

r∑
i=1

I{Ci ∩ S ̸= ∅}I{X ∈ Ci}+ 2
√
d

r∑
i=1

I{Ci ∩ S = ∅}I{X ∈ Ci}

]

= ε
√
dE

[
r∑

i=1

I{Ci ∩ S ̸= ∅}I{X ∈ Ci}

]
+ 2

√
d

r∑
i=1

E [I{Ci ∩ S = ∅}I{X ∈ Ci}]

where in the last step we used linearity of the expected value. Now observe that, for all S and X,

r∑
i=1

I{Ci ∩ S ̸= ∅}I{X ∈ Ci} ∈ {0, 1}

because X ∈ Ci for only one i = 1, . . . , d. Therefore,

E

[
r∑

i=1

I{Ci ∩ S ̸= ∅}I{X ∈ Ci}

]
≤ 1 .

To bound the remaining term, we use the independence between X and the training set S,

E [I{Ci ∩ S = ∅}I{X ∈ Ci}] = E [I{Ci ∩ S = ∅}]E [I{X ∈ Ci}] = P (Ci ∩ S = ∅)P (X ∈ Ci) .

Since S contains m data points independently drawn, for a generic data point X ′ we have that

P(Ci ∩ S = ∅) =
(
1− P(X ′ ∈ Ci)

)m ≤ exp
(
−mP(X ′ ∈ Ci)

)
where in the last step we used the inequality (1− p)m ≤ e−pm. Setting pi = P(X ′ ∈ Ci) we have

E
[∥∥X −Xπ(S,X)

∥∥] ≤ ε
√
d+

(
2
√
d
) r∑

i=1

e−pimpi

≤ ε
√
d+

(
2
√
d
) r∑

i=1

max
0≤p≤1

e−pmp

= ε
√
d+

(
2
√
d
)
r max
0≤p≤1

e−pmp .

The concave function g(p) = e−pmp is maximized for p = 1
m . Therefore,

E
[∥∥X −Xπ(S,X)

∥∥] ≤ ε
√
d+

(
2
√
d
) r

em
=

√
d

(
ε+

2

em

(
2

ε

)d
)

where we used the fact that the number r of hypercubes is equal to
(
2
ε

)d
. Putting evertything

together we find that

E
[
ℓD(hS)

]
≤ 2 ℓD(f

∗) + c
√
d

(
ε+

2

em

(
2

ε

)d
)

Since this holds for all 0 < ε < 1, we can set ε = 2m−1/(d+1). This gives

ε+
2

em

(
2

ε

)d

= 2m−1/(d+1) +
2d+12−dmd/(d+1)

em
= 2m−1/(d+1)

(
1 +

1

e

)
≤ 4m−1/(d+1) . (4)
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Substituting this bound in (4), we finally obtain

E
[
ℓD(hS)

]
≤ 2 ℓD(f

∗) + c 4m−1/(d+1)
√
d .

Note that for m → ∞, ℓD(f
∗) ≤ E

[
ℓD(hS)

]
≤ 2 ℓD(f

∗). Namely, the asymptotic risk of 1-NN lies
between the Bayes risk and twice the Bayes risk.
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