Machine Learning — Statistical Methods for Machine Learning
Online Gradient Descent

Instructor: Nicolo Cesa-Bianchi version of April 18, 2025

The Perceptron algorithm accesses training data in a sequential fashion, processing each training
example in time ©(d) where d is the number of features. This fact, and the observation that a linear
model w can be stored in space ©(d), make the Perceptron very competitive on large training sets,
when we cannot afford a training time growing faster than linear in the number of data points.

Algorithms that learn sequentially, like the Perceptron, are also very good at dealing with scenarios
in which new training data are generated at all times. For example: sensor data, financial data,
user interaction data, and so on. In these cases, the traditional learning protocol, where predictors
are generated by feeding a fixed-size training set to a learning algorithm, becomes inefficient. This
happens because everytime new train data are available we would have to run again the algorithm
from scratch.

This sequential learning protocol, which we call online learning, can be summarized as follows.

Parameters: Class H of predictors, loss function /.

The algorithm outputs a default initial predictor h; € H
Fort=1,2,...

1. The next example (¢, y;) is observed

2. The loss f(ht(xt), yt) of the current predictor h; is computed

3. The online learner updates h; generating a new predictor hyy1 € H

A characterizing feature of online learning is that the model update hy — hyy1 is typically local.
That is, it only involves the current predictor h; and the current example (x4, y¢).

A mistake bound for the Perceptron algorithm. A prototypical example of online learning
algorithm is the Perceptron. By adapting the proof of the Perceptron convergence theorem, we
can derive an upper bound on the number of prediction mistakes made by the Perceptron on any
arbitrary stream of examples.

Let (z1,1), (x2,92), ... € R¥x {—1,1} be a stream of data points with binary labels and let M be
the number of prediction mistakes made by the Perceptron in the first 7" examples of the stream. Let
w)y be the Perceptron hyperplane after these M prediction mistakes and let 3y € {1,...,T} be the
index of the example (x¢,,, yt,,) in the stream that caused the M-th mistake wys = wyr—14ye,, Tty -
Now fix any w € R? This u is not necessarily a separator, because we are not making any
assumption on the stream. The first part of the proof of the Perceptron convergence theorem does
not use any special property of w. Therefore, proceeding in exactly the same way, we have that

ax ||:1:t||> VM .
reeym

fewaell]l < Jlul (

1

In order to prove a lower bound on ||wj/|| ||| and finish the proof, we proceed as follows

T
lwa | [lu]] > wyu

= ('wM—l + thth)T u

T T

=WH U+ Y, U Ty,

= 'wJT/[_lu +1—-1+ thuT:ctM

> w;l\—/[—lu +1- [1 - thuthM]

+
where [z]; = max{0, z}. Iterating M times we get
M
lwar|lul = M+ [1 - yru@],
i=1
Where we used w] u = 0 since wg = (0,...,0). Let X = max; ||z;|. Combining upper and lower
bound we obtain u
M <>t —puT], + llul XVAT 1)
i=1

The function h¢(u) = [1 — ytuthLr is a loss function called hinge loss. Since I{sgn(z) # y} <
[l —yz]4+ for all z € R and y € {—1,1}, the hinge loss is a convex upper bound on the zero-one
loss. Because {t1,...,ta} C{1,..., T},

T

M
D hy < Y hu(u)
i=1

t=1
we can rewrite (1) as

T
M <Y hy(u) + ul X VM
t=1

Solving with respect to M and overapproximating, we get

T
Z hi(w) for all u € RY
t=1

T
M <> hy(w) + (Jull X)? + [luf X

This shows a bound on the number of mistakes made by the Perceptron on any data sequence of
arbitrary length 7', including those sequences that are not linearly separable. When the sequence
is linearly separable, then there exists u € R% such that y,w'ax; > 1 for all ¢, which in turn
implies hi(u) = 0 for all t. Hence, the bound reduces to the one already proved in the Perceptron
convergence theorem, My < (||ul X)2.

Sequential risk and regret. Note that an online learner A generates a sequence hy, ho,... € H
of predictors. We evaluate the performance of A through the notion of sequential risk,

L T
T Z C(he(e), yt)
=1

measuring, as a function of T', the average loss of the predictor sequence over the first 7" examples.
The sequential risks is the online learning counterpart of the notion of statistical risk in statistical
learning.

In what follows, we use the notation ¢;(h) = K(h(xt), yt) when the sequence (1, 1), (T2,y2),... is
understood from the context. This defines a sequence #1, /s, ... of loss functions.

In keeping with the analogy between online and statistical learning, we also define the regret

1 o 1 o
T th(ht) - }}él;ilf ;et(h)

t=1

which measures the difference between the sequential risk of hq, ..., hp—generated by some online
algorithm A—and the sequential risk of the best predictor in the class H for the loss functions
l1,...,0p. Regret can be viewed as the sequential counterpart of variance (estimation error) in
statistical learning.

The need for regularization. A reasonable principle that works well in statistical learning is
ERM. In online learning, ERM is generally too expensive because we would have to remember all
the past examples in the stream (or, equivalently, the sum of all the past losses). However, if losses
are linear, ERM becomes efficient in the online model. Consider linear predictors h(z) = w " for
w,x; € R? and linear losses /;(w) = a/ w for a; € R%. Then ERM is

¢ t
Wiy = argminz&(w) — argminw (Z a5>
s=1

weW T wew

which is efficiently computable when W has a concise representation. But one can easily show that
ERM can fail miserably in the online model. Consider for example the one-dimensional class of
linear predictors W = [—1, 1] and the stream of linear losses

w if tis odd
—w otherwise

and f(w) = {

Then, for any ¢t > 1,

Zﬁs(w) _ { w/2 if tis odd

—w/2 otherwise

and

t
Wil = argminz&(w) =

{ —1 iftisodd
weW

- 1 otherwise
s=

This implies that, assuming w; = 0,

T

T
> b(w)=T-1 while > £(0)=0
t=1

t=1

In other words, ERM suffers linear regret on this sequence of linear losses.

Note that (2) shows that ERM is unstable in this case. Similarly to what we did for square losses,
we can stabilize ERM by adding a regularization term:

¢
. o
w1 = argmin <Z ls(w) + 5 H’LUH2>

wew s—1

Now we are left with the problem of computing the minimizer of the above expression. We first
linearize each loss ¢; by taking a first-order approximation around wy,

Et(’lU) ~ Et(wt) + Vft('wt)T(w — wt)

Substituting the linearized loss in the expression for ERM we obtain

weW s=1 s=1

t t
Wy = argmin (Z ls(ws) + Z Vis(ws) " (w — w,) + % Hw\|2>

Note that the expression in the argmin is a convex function of w. Hence, computing the gradient
with respect to w we get

v (Z Co(ws) + Y Vies(ws) " (w — wy) + % Hw\l2> = Vi(w,) +ow
s=1 s=1

s=1

Setting the gradient to 0, we arrive at

¢
1
Wi = —— Z Vis(ws) = wy — Vi (wy)

s=1
where the recurrence is obtained by assuming w; = 0 and setting n = 1/a.

The update w1 = wy — V4 (wy) is the online version of gradient descent, online gradient descent
(OGD). Gradient descent is the workhorse of convex optimization. Given a convex and differentiable
function f : R — R which we want to minimize, gradient descent works by iterating w;.; =
w; —nV f(wy) starting from some initial point w; in the domain of f, where n > 0 is a parameter.
If the current point w; is not a minimum of f, then Vf(w;) # 0 and w11 — wy points in the
direction opposite to V f(w;), which is—by definition of gradient—the direction where f decreases
the most when moving away from w;. In order to analyze OGD, we must understand the behavior
of gradient descent when the function to minimize changes at every step.

We focus on OGD applied to predictors that are parameterized by w € W C R? and losses
l : W — Ry that are convex and everywhere differentiable. Although we require that losses be
convex in the predictor’s parameters, the predictors need not be linear functions of the data. Yet,
in applications predictors are often linear. For example, {;(w) = (wTa:t — yt)2 for regression and
U (w) = [1 — yt'wTa:t]Jr for binary classification.! Below, we give the pseudo-code of Projected

OGD, the version of OGD we analyze.

!The hinge loss [1 — z]4 is not differentiable at z = 0. However, we can still run OGD using the notion of
subgradient instead of gradient.

Projected OGD
Parameters: n >0, U >0
Initialization: w; = 0
Fort=1,2,...

1. w;H = W¢ — £ Vét(wt)

Vit

2. wiypy = argmin Hw —w§+1H
w:||w||<U

In step 2, we project w},; in an Euclidean sphere of radius U. If ||w}, || < U, then w4 = wj ;.
Let ny =n / Vt, where 1 > 0 will be determined by the analysis.

Our goal is to control the regret

T T
Z Z i (uT) where wp = argmin — Z l(u
t=1 =

w:|ul<v T

'ﬂ \

Note that w7} is the predictor in the ball of radius U with smallest average loss over the first T'

steps. In what follows, we use the notation Rr(u) = Z?:l (¢:(wy) — £¢(u)). The analysis of OGD
is based on the following well-known result.

Lemma 1 (Taylor’s formula for multivariate functions). Let f : R? — R be a twice differentiable
function. Then, for all w,u € RY,

f(u) = f(w) +Vf(w) (u—w)+ %(u —w) V(&) (u — w)

where V2 f(€) is the Hessian matriz of f evaluated at a point & on the segment joining w and w.

If f is convex, then V2 is positive semidefinite, and so z' V2f(£)z > 0 for all z,£& € R%. This in
turn implies

fw) = f(u) < Vf(w) (w—u). (3)

This actually holds for any convex and differentiable f (i.e., f need not be twice differentiable).
Now fix T', let w = w7, and note that, for each t =1,2,...,

l(wy) = L(w) < Ve (wy) ' (wr — w) (4)
1
== (W — wy) " (w; — u) (5)
1 /1 1 2
= o (G =l = =+ 5 ot = we]) ©
Tt
1 /1 2
<o \gllwe= ul|” —*me—UH +3 me wi[”) - (7)

Inequality (4) is due to (3). Equality (5) uses wj,; — w; = —n:V{i(w;). Equality (6) is an easily
verified algebraic identity. Finally, inequality (7) holds because u belong to the sphere of radius

U centered at the origin. Hence, by projecting wj_, onto this sphere, the distance to w can not
increase.

We now add and subtract the same term 2m+1 |lwis1 — w|* to the last formula in the above chain

of inequalities. Then, we regroup terms as indicated below here

o o=l = ey — w5 e — w4 o e — w4l —wl
t— — 5 w1 — —5 Wi — o [Wi41 — t
21y Myr o 21 g,
Summing over t = 1,...,T we observe that the first pair of terms forms a telescoping sum, while

the terms in the second pair have a common factor,

1 1
Rﬂws§*Wm—uW—5——wWﬂ—uw

1\ 11 >
+5 ZH’th*UH (>+2Zm”’w;+1’th . (8)

Nt
Next, we make use of the following facts:

w1 =0 by construction
w1 —ul|* <4U? since both w;,; and u belong to a sphere of radius U

|lwiyy — thQ = n? |Vl (wy)||* by construction.

Substituting these relations in (8), and choosing G so that ||Vl (w;)|| < G for all t < T, we obtain

U? 1
R —_— = — —
r(u) < ST HwT+1 ul?
T-1 T
1 1 1 G?
+ 2U° (—>+ wri —u||” — — ||wr41 —u —i—— .
Z M1 T M H + H ” + ” Zm

We proceed by simplifying the telescoping sum, deleting terms with opposite signs, and dropping
the term —5— H’wTH —ul?,

Ut 2?2 2U? GP WAT Gy~ 1 20T
Rp(u) < — 4+ — -+ = < -
7(u) 2m nr m 2 ;nt n 2 tzz

where we used the upper bound

Explicit values for G may be obtained under specific assumptions. For example, in case of regression

with square loss {;(w) = (w 'z, —yt)Q, assuming ||z¢|| < X and |y;| < UX for all ¢ we can compute

IVee(we) || < 2w’ @ — gl [l2ol] < 2([Jwill [Jae]l + lyel) 2| < 4UX? .

Substituting this value for GG in the previous upper bound we get

1 & 1 & 2
—N < in —Y / X))/ = .
T; i) _u:I\E\IHSUTZ () + 8UX Y 7

t=1

OGD with strongly convex losses. The upper bound (9) holds for any sequence ¢1,¢a, ... of
convex and differentiable loss functions, including linear functions such as f;(w) = ‘yt — met‘ for
x; € R? and y; € R. It can be shown that (9) can not be significantly improved if the loss functions
are all linear. But what if all loss functions are convex and never flat? To formalize this scenario,
we use the notion of strong convexity. A differentiable function ¢ is o-strongly convex for o > 0 if,
for all w,u € R?,

Uw) = (u) < Vi(w) T (w —u) = 7 Jlu—w|* . (10)

If 7 is also twice-differentiable, then (10) is equivalent to saying that the Hessian matrix of ¢ has
full rank, that is, all of its eigenvalues are positive. A simple example of strongly convex function

is {(w) = 3 |wl|[?. Indeed,
1
I Tw =) = 5 [lw - ul”

1 1, .
5 llwl” =Sl =w
2 2

Hence, this function is strongly convex for o = 1.

As we see later, OGD with strongly convex functions can be applied to a vast and important class
of learning algorithms, including Support Vector Machines, corresponding to regularized forms of
ERM.

When run on a sequence of strongly convex function, OGD does not need the projection step.

The OGD algorithm for o-strongly convex functions
Initialization: w; = 0
Fort=1,2,...

1. W1 = Wt — é Vﬁt(wt)

In order to prove a regret bound, we apply (6) to the analysis of OGD under the assumption that
£1,4s, ... are all o-strongly convex functions. Setting n; = % we get

b(wr) = t(u) < Ve(w) " (w; = w) = 3 [Ju—w,

1 o
= —— (w41 — wt)T(wt —u)— = ||u— th2
N 2

(3 2= P+l 1) -3 I”
= — | z|lw —u||” = z lwig1 —u =~ |wi1 —w — —Jlu —w||” .
o IIWt g IIWi+1 o 1wt t 5 t

Proceeding just like we did in the proof of OGD with projection, while exploiting the additional
terms —F [ju — w;||?, we obtain

1 1 1
Rr(u) < (- o—) P T
771 277T+1

+3 ZH (- n o)+ B L)
Wiyl — U 7—*—0 wr4+1 — U - Y Uz
i Nt * nr+1 N7 2 =

where, similarly to before, G > max; || V4 (w;)||.

Dropping the negative term —277% |wry1 — w|/?, simplifying the term ﬁ |wry1 — w|[* which
occurs with opposite signs, using the choice n; = %, and making some further cancellations leads
us to

2 T 2
RT(u)<G 1 G

_% t_2 (1+lnT)

3~

where we used a simple logarithmic upper bound to the harmonic sum 1 + % + % ot

This gives the final result

T
02 1+InT
) < — O (_—
; T Z ! T
Note the improved dependence h%T compared to % obtained in (9) for convex (as opposed to

strongly convex) loss functions.

