
Machine Learning — Statistical Methods for Machine Learning

Support Vector Machines

Instructor: Nicolò Cesa-Bianchi version of June 6, 2024

The Support Vector Machine (SVM) is an algorithm for learning linear classifiers. Given a linearly
separable training set (x1, y1), . . . , (xm, ym) ∈ Rd × {−1, 1}, SVM outputs the linear classifier
corresponding to the unique solution w∗ ∈ Rd of the following convex optimization problem with
linear constraints

min
w∈Rd

1
2 ∥w∥2

s.t. ytw
⊤xt ≥ 1 t = 1, . . . ,m.

(1)

Geometrically, w∗ corresponds to the maximum margin separating hyperplane. For every
linearly separable set (x1, y1), . . . , (xm, ym) ∈ Rd × {−1, 1}, the maximum margin is defined by

γ∗ = max
u : ∥u∥=1

min
t=1,...,m

yt u
⊤xt

and the vector u∗ achieving the maximum margin is the maximum margin separator.

Theorem 1. For every linearly separable set (x1, y1), . . . , (xm, ym) ∈ Rd × {−1, 1}, the maximum
margin separator u∗ satisfies u∗ = γ∗w∗, where w∗ is the unique solution of (1).

Proof. Note that u∗ is the solution of the following optimization problem

max
u∈Rd, γ>0

γ2

s.t. ∥u∥2 = 1
yt u

⊤xt ≥ γ t = 1, . . . ,m.

Indeed, u maximizing the margin γ is the same u maximizing γ2 because the function f(γ) = γ2,
is monotone for γ > 0. Dividing by γ > 0 both sides of each constraint yt u

⊤xt ≥ γ, we obtain
the equivalent constraint yt

(
u⊤xt

)/
γ ≥ 1. Introducing w = u/γ, and noting that ∥w∥2 = 1/γ2

because of the constraint ∥u∥2 = 1, we obtain the equivalent problem

min
w∈Rd, γ>0

∥w∥2

s.t. γ2 ∥w∥2 = 1
ytw

⊤xt ≥ 1 t = 1, . . . ,m.

Now observe that the constraint γ2 ∥w∥2 = 1 is redundant and can be eliminated. Indeed, for all
w ∈ Rd we can find γ > 0 such that the constraint is satisfied. Multiplying the objective function
by 1

2 , we obtain

min
w∈Rd

1
2 ∥w∥2

s.t. ytw
⊤xt ≥ 1 t = 1, . . . ,m

concluding the proof. □

1



We have thus shown the equivalence between the problem of maximizing the margin of u while
keeping the norm ∥u∥ constant, and the problem of minimizing the norm ∥w∥ while keeping the
margin of w constant.

The following result helps us compute the form of the optimal solution w∗.

Lemma 2 (Fritz John optimality condition). Consider the problem

min
w∈Rd

f(w)

s.t. gt(w) ≤ 0 t = 1, . . . ,m

where the functions f, g1, . . . , gm are all differentiable. If w0 is an optimal solution, then there
exists a nonnegative vector α ∈ Rm such that

∇f(w0) +
∑
t∈I

αt∇gt(w0) = 0

where I = {1 ≤ t ≤ m : gt(w0) = 0}.

By applying the Fritz John optimality condition to the SVM objective with f(w) = 1
2 ∥w∥2 and

gt(w) = 1− ytw
⊤xt we obtain

w∗ −
∑
t∈I

αtyt xt = 0 .

Hence, the optimal solution has form

w∗ =
∑
t∈I

αtyt xt

where I denotes the set of training examples (xt, yt) such that yt(w
∗)⊤xt = 1. These xt are called

support vectors, and are all those training points for which the margin of w∗ is exactly 1. If we
removed all training examples except for the support vectors, the SVM solution would not change.

We now move on to consider the case of a training set that is not linearly separable. How should
we change the SVM objective? Conside the following formulation

min
(w,ξ)∈Rd+m

λ

2
∥w∥2 + 1

m

m∑
t=1

ξt

s.t. ytw
⊤xt ≥ 1− ξt t = 1, . . . ,m

ξt ≥ 0 t = 1, . . . ,m.

The components of ξ = (ξ1, . . . , ξm) are called slack variables and measure how much each margin
constraint is violated by a potential solution w. The average of these violations is then added to
the objective function. Finally, a regularization parameter λ > 0 is introduced to balance the two
terms.

We now consider the constraints involving the slack variables ξt. That is, ξt ≥ 1 − ytw
⊤xt and

ξt ≥ 0. In order to minimize each ξt, we can set

ξt =

{
1− ytw

⊤xt if ytw
⊤xt < 1

0 otherwise.

2



To see this, fix w ∈ Rd. If the constraint ytw
⊤xt ≥ 1 is satisfied by w, then ξt can be set to zero.

Otherwise, if the constraint is not satisfied by w, then we set ξt to the smallest value such that
the constraint becomes satisfied, namely 1− ytw

⊤xt. Summarizing, ξt =
[
1− ytw

⊤xt

]
+
, which is

exactly the hinge loss ht(w) of w.

The SVM problem can then be re-formulated as min
w∈Rd

F (w), where

F (w) =
1

m

m∑
t=1

ht(w) +
λ

2
∥w∥2 .

We now show that, even when the training set is not linearly separable, the solution w∗ belongs to
the subspace defined by linear combinations of training points multiplied by their labels.

Theorem 3. The minimizer w∗ of F can be written as a linear combination of y1x1, . . . , ymxm.

Proof. By contradiction, assume

w∗ =

m∑
t=1

αt yt xt + u (2)

where u ∈ Rd is the component ofw∗ orthogonal to the subspace spanned by x1, . . . ,xm. Therefore,

ytu
⊤xt = 0 t = 1, . . . ,m. (3)

Now, let v = w∗ −u. First, ∥v∥2 ≤ ∥w∗∥2 because in (2) we wrote w∗ as a sum of two orthogonal
components and we removed one of them, and so its length decreased. Second,

ht(v) =
[
1− ytv

⊤xt

]
+
=
[
1− yt

(
w∗ − u

)⊤
xt

]
+
=
[
1− yt(w

∗)⊤xt + ytu
⊤xt

]
+
= ht(w

∗)

using (3). Therefore F (v) ≤ F (w∗), contradicting the optimality of w∗. Hence u = 0 and the
proof is concluded. □

Note that, as in the linearly separable case, w∗ generally depends on a subset of support vectors.
However, unlike the linearly separable case, these support vectors also include the training points
associated with positive slack variables.

We proceed by showing how F can be minimized using Online Gradient Descent (OGD). First,
observe that

F (w) =
1

m

m∑
t=1

ℓt(w)

where ℓt(w) = ht(w) + λ
2 ∥w∥2 is a strongly convex function. Indeed, λ

2 ∥w∥2 is λ-strongly convex,
and ht is convex (and also piecewise linear). This implies that their sum is λ-strongly convex. We
can then apply the OGD algorithm for strongly convex functions to the set of losses ℓ1, . . . , ℓm.
This instance of OGD, which is known as Pegasos, can be described as follows.

3



Parameters: number T of rounds, regularization coefficient λ > 0
Input: Training set (x1, y1), . . . , (xm, ym) ∈ Rd × {−1, 1}
Set w1 = 0

For t = 1, . . . , T

1. Draw uniformly at random an element (xZt , yZt) from the training set

2. Set wt+1 = wt − ηt∇ℓZt(wt)

Output: w = 1
T

(
w1 + · · ·+wT

)
.

Pegasos is an example of a class of algorithms known as stochastic gradient descent. These are
OGD-like algorithms that are run over a sequence of examples randomly drawn from the training
set.

We now move on to analyze Pegasos. Let (xZ1 , yZ1), . . . , (xZT
, yZT

) the sequence of training set ex-
amples that were drawn at random in step 1 of the algorithm, and let ℓZ1 , . . . , ℓZT

the corresponding
sequence of loss functions. Namely, ℓZt(w) = hZt(w) + λ

2 ∥w∥2 where hZt(w) =
[
1− yZt w

⊤xZt

]
+
.

Let w∗ be the optimal SVM solution,

w∗ = argmin
w∈Rd

(
1

m

m∑
t=1

ht(w) +
λ

2
∥w∥2

)
. (4)

For every realization s1, . . . , sT of the random variables Z1, . . . , ZT , OGD analysis for strongly
convex losses immediately gives

1

T

T∑
t=1

ℓst(wt) ≤
1

T

T∑
t=1

ℓst(w
∗) +

G2

2λT
(lnT + 1) (5)

where G = max
t=1,...,T

∥∇ℓst(wt)∥ is also a random variable.

In order to show how this result can be used to bound F (w), we use the following fact

E
[
ℓZt(wt) | Z1, . . . , Zt−1

]
=

1

m

m∑
s=1

ℓs(wt) = F (wt) . (6)

In other words, conditioned on the first t − 1 random draws (which determine wt), the expected
value of ℓZt(wt) is equal to F (wt). We also use the fact that for every pair of random variables

4



X,Y the following holds E[X] = E
[
E[X | Y ]

]
. Hence, we can write

E
[
F (w)

]
= E

[
F

(
1

T

T∑
t=1

wt

)]

≤ E

[
1

T

T∑
t=1

F (wt)

]
using Jensen inequality, since F is convex

= E

[
1

T

T∑
t=1

E
[
ℓZt(wt) | Z1, . . . , Zt−1

]]
using (6)

= E

[
1

T

T∑
t=1

ℓZt(wt)

]
using E[X] = E

[
E[X | Y ]

]
≤ E

[
1

T

T∑
t=1

ℓZt(w
∗)

]
+

E
[
G2
]

2λT

(
lnT + 1

)
using (5)

= E

[
1

T

T∑
t=1

E
[
ℓZt(w

∗) | Z1, . . . , Zt−1

]]
+

E
[
G2
]

2λT

(
lnT + 1

)
using E[X] = E

[
E[X | Y ]

]
= F (w∗) +

E
[
G2
]

2λT
(lnT + 1) using (6).

We thus obtained

E
[
F (w)

]
≤ F (w∗) +

E
[
G2
]

2λT

(
lnT + 1

)
. (7)

Therefore, if E
[
G2
]
can be upper bounded by a constant, the average w of the vectors generated by

OGD converges (in expectation with respect to the random draw of the elements from the training
set) to w∗ with rate lnT

T . With a bit more work, one can show that w converges to w∗ not only in
expectation but also in probability.

We now bound G for every realization s1, . . . , sT of the random variables Z1, . . . , ZT . We have
∇ℓst(wt) = −yst xst I{hst(wt) > 0} + λwt. Let vt = yst xst I{hst(wt) > 0}. Because ηt = 1/(λt),
the update rule for wt takes the following simple form,

wt+1 = wt − ηt∇ℓt(wt) = wt + ηtvt − ηtλwt =

(
1− 1

t

)
wt +

1

λt
vt .

Let X = maxs=1,...,m ∥xs∥. Since ∥∇ℓst(wt)∥ ≤ ∥vt∥+ λ ∥wt∥ ≤ X + λ ∥wt∥, we are left with the
task of computing an upper bound for ∥wt∥. In order to do so, we look at the recurrence

wt+1 =

(
1− 1

t

)
wt +

1

λt
vt .

As one can easily show by induction, wt+1 can be written as a linear combination of v1, . . . ,vt.
In order to determine the coefficients of this linear combination, we fix s ≤ t and observe that vs

is added to the sum with coefficient 1/(λs). When wt+1, is computed, the coefficient of vs has
become

1

λs

t∏
r=s+1

(
1− 1

r

)
=

1

λs

t∏
r=s+1

r − 1

r
=

1

λt
.

5



We thus obtain a simple expression for wt+1,

wt+1 =
1

λt

t∑
s=1

vs . (8)

Because wt+1 is an average of vs divided by λ, we finally have ∥wt+1∥ ≤ 1
λ maxs ∥vs∥ ≤ 1

λX. This
allows us to conclude that ∥∇ℓt(wt)∥ ≤ X + λ ∥wt∥ ≤ 2X. Substituting this bound for G in (7)
we get

E
[
F (w)

]
≤ F (w∗) +

2X2

λT
(lnT + 1) .

Theorem 3 states that the solution w∗ to the SVM problem can be written as

w∗ =
∑
s∈S

ysαsxs

where αs > 0 and S ≡ {t = 1, . . . ,m : ht(w
∗) > 0}. An important consequence of this result is

that we can solve the problem (4) in a RKHS HK , where the objective function F becomes

FK(g) =
1

m

m∑
t=1

ht(g) +
λ

2
∥g∥2K g ∈ HK

with ht(g) =
[
1− ytg(xt)

]
+
. In HK , the SVM solution can therefore be written as∑

s∈S
ysαsK(xs, ·)

which is clearly an element of the RKHS

HK ≡

{
N∑
i=1

αiK(xi, ·) : x1, . . . ,xN ∈ Rd, α1, . . . , αN ∈ R, N ∈ N

}

As we did for the Perceptron, we can run Pegasos in the RKHS HK . The gradient update in kernel
Pegasos on some training example (xst , yst) can be written as

gt+1 =

(
1− 1

t

)
gt +

yst
λt

I{hst(gt) > 0}K(xst , ·)

where hst(gt) =
[
1− ystgt(xst)

]
+
.

6


