Machine Learning — Statistical Methods for Machine Learning
Support Vector Machines

Instructor: Nicolo Cesa-Bianchi version of June 6, 2024

The Support Vector Machine (SVM) is an algorithm for learning linear classifiers. Given a linearly
separable training set (x1,v1),...,(Tm,ym) € R? x {=1,1}, SVM outputs the linear classifier
corresponding to the unique solution w* € R? of the following convex optimization problem with
linear constraints

weRd (1)
s.t. ythcct >1 t=1,...,m.
Geometrically, w* corresponds to the maximum margin separating hyperplane. For every
linearly separable set (x1,41), ..., (Tm,ym) € R? x {~1,1}, the maximum margin is defined by
v*= max min yu'x

u:flul|=1t=L...m
and the vector u* achieving the maximum margin is the maximum margin separator.
Theorem 1. For every linearly separable set (x1,v1), ..., (Tm,ym) € R? x {=1,1}, the mazimum

margin separator u* satisfies u* = y*w*, where w* is the unique solution of (1).

PROOF. Note that u* is the solution of the following optimization problem

2

max ol
ucR4, v>0
st Jul*=1
ytuTmt >y t=1,...,m.

Indeed, uw maximizing the margin v is the same w maximizing v because the function f(vy) = +2,
is monotone for v > 0. Dividing by v > 0 both sides of each constraint y; u'x; > 7, we obtain
the equivalent constraint y;(u'®;)/y > 1. Introducing w = u/7, and noting that w]® = 1/42
because of the constraint ||u||> = 1, we obtain the equivalent problem

min ~ [Jw|?
weR y>0
2
s.t. P wl|* =1
ythmt >1 t=1,...,m.

Now observe that the constraint 72 ||w|* = 1 is redundant and can be eliminated. Indeed, for all
w € R? we can find v > 0 such that the constraint is satisfied. Multiplying the objective function
by %, we obtain
: 1 2
min 5 ||w
min, [
s.t. ythwt >1 t=1,....m

concluding the proof. O



We have thus shown the equivalence between the problem of maximizing the margin of v while
keeping the norm ||u|| constant, and the problem of minimizing the norm ||w|| while keeping the
margin of w constant.

The following result helps us compute the form of the optimal solution w*.
Lemma 2 (Fritz John optimality condition). Consider the problem

min w
Din - f(w)
st. g(w)<0 t=1,...,m

where the functions f,g1,...,9m are all differentiable. If wqy is an optimal solution, then there
exists a nonnegative vector a € R™ such that

Vf(wo) + > a;Vgi(wo) =0

tel

where I ={1 <t <m : g(wy) = 0}.

By applying the Fritz John optimality condition to the SVM objective with f(w) = % ||w|* and

2
gi(w) =1 — y; w'x; we obtain

w* — E atyt:ct:0.
tel

Hence, the optimal solution has form
w" = Z QY Tt
tel

where I denotes the set of training examples (2, y;) such that yt(w*)th = 1. These x; are called
support vectors, and are all those training points for which the margin of w* is exactly 1. If we
removed all training examples except for the support vectors, the SVM solution would not change.

We now move on to consider the case of a training set that is not linearly separable. How should
we change the SVM objective? Conside the following formulation

A 1 —
: 2
min 5 |lw]|” + - ;&

(w,§)eRITm
s.t. ytha:tzl—ft t=1,...,m
§&=>0 t=1,...,m.
The components of £ = ({1, . ..,&y,) are called slack variables and measure how much each margin

constraint is violated by a potential solution w. The average of these violations is then added to
the objective function. Finally, a regularization parameter A > 0 is introduced to balance the two
terms.

We now consider the constraints involving the slack variables &. That is, & > 1 — y; w ' z; and
& > 0. In order to minimize each &;, we can set

f . 1—yth$t ifyt'wTa:t< 1
t= 0 otherwise.



To see this, fix w € RY. If the constraint y; w 'x; > 1 is satisfied by w, then & can be set to zero.
Otherwise, if the constraint is not satisfied by w, then we set & to the smallest value such that
the constraint becomes satisfied, namely 1 — y; w ' ;. Summarizing, & = [1 — Yt 'wTazt] o which is
exactly the hinge loss hi(w) of w.

The SVM problem can then be re-formulated as min F(w), where
weRd

1 m
w) = Y hw 5 lw)?

We now show that, even when the training set is not linearly separable, the solution w* belongs to
the subspace defined by linear combinations of training points multiplied by their labels.

Theorem 3. The minimizer w* of F' can be written as a linear combination of y1@1, ..., Ym@Tm.

ProOF. By contradiction, assume

m
:Zatytwt-i-u (2)
t=1
where u € R? is the component of w* orthogonal to the subspace spanned by 1, . .., &,,. Therefore,
T, — _
yu =0 t=1,...,m. (3)

Now, let v = w* — u. First, ||v]®> < |w*||* because in (2) we wrote w* as a sum of two orthogonal
components and we removed one of them, and so its length decreased. Second,

hi(v) = [1—yro o] | = [1—ye(w” - U)Txt]+ = [1—w(w*) @+ yu' @], = hy(w)

using (3). Therefore F(v) < F(w®), contradicting the optimality of w*. Hence u = 0 and the
proof is concluded. O

Note that, as in the linearly separable case, w* generally depends on a subset of support vectors.
However, unlike the linearly separable case, these support vectors also include the training points
associated with positive slack variables.

We proceed by showing how F' can be minimized using Online Gradient Descent (OGD). First,
observe that
1 m
St
m
t=1

where £;(w) = hy(w) + 3 |wl|? is a strongly convex function. Indeed, 2 |w]||? is A-strongly convex,
and h; is convex (and also piecewise linear). This implies that their sum is A-strongly convex. We
can then apply the OGD algorithm for strongly convex functions to the set of losses ¢y, ..., ¢n,.
This instance of OGD, which is known as Pegasos, can be described as follows.



Parameters: number 7' of rounds, regularization coefficient A > 0
Input: Training set (z1,y1), ..., (Tm,Ym) € R x {~1,1}

Set w; =0

Fort=1,...,T

1. Draw uniformly at random an element (xz,,yz,) from the training set

2. Set w1 = wy — i Vig, (wy)

Output: w = %(w1+---+wT).

Pegasos is an example of a class of algorithms known as stochastic gradient descent. These are
OGD-like algorithms that are run over a sequence of examples randomly drawn from the training

set.
We now move on to analyze Pegasos. Let (xz,,vz,), ..., (®z,,yz,) the sequence of training set ex-
amples that were drawn at random in step 1 of the algorithm, and let £, ..., ¢z, the corresponding

sequence of loss functions. Namely, £z, (w) = hz,(w) + 3 |wl|* where hz, (w) = [1—yz, wTa:Zt]+.

Let w* be the optimal SVM solution,

1 & A
w* = argmin (m ;ht(w) +5 Hw”2> : (4)

weRd

For every realization si,...,s7 of the random variables Z1,...,Z7, OGD analysis for strongly
convex losses immediately gives

1 & 1 & G?
TZMW) <= e (wh) + ST +1) (5)

t=1 t=1

N

where G =  max |V¥s, (wy)] is also a random variable.

=1,...,

In order to show how this result can be used to bound F(w), we use the following fact

m

E[tz(we) | Z1,..., Zoos] = %Zﬁs(wt) — Flw,) . (6)

s=1

In other words, conditioned on the first ¢ — 1 random draws (which determine w;), the expected
value of £z, (w;) is equal to F(w;). We also use the fact that for every pair of random variables



X,Y the following holds E[X] = E[E[X | Y]]. Hence, we can write
SR
E[F(w)] =E |F (T ;wtﬂ

T
<E T;F(wt)

using Jensen inequality, since F' is convex

T
1 .
=B T;E[Ezt (we) | 21,5 Zi] using (6)

B T
—E %Zezt (wt)] using E[X] = E[E[X | Y]]

E[G?] ,
+ N (InT +1) wusing (5)

_1 T
<E TtZZ;eZt(w*)

d 2
—F ; ;E[Zzt (W) | Z1,...\ Zeea] | + E;fT] (InT +1) using E[X] = E[E[X | Y]]
2
= F(w") + EQ[ST] (InT +1) using (6).
We thus obtained E[GQ}
E[F(w)] < F(w") + 5 (InT+1) . )

Therefore, if E [GQ] can be upper bounded by a constant, the average w of the vectors generated by
OGD converges (in expectation with respect to the random draw of the elements from the training
set) to w* with rate h‘TT With a bit more work, one can show that w converges to w* not only in

expectation but also in probability.

We now bound G for every realization si,...,s7r of the random variables Zi,...,Zp. We have
Vi, (we) = —ys, s, W hs, (wy) > 0} + Awy. Let vy = ys, s, I{hs, (wy) > 0}. Because n; = 1/(\t),
the update rule for w; takes the following simple form,

1

1
wi1 = wy — N Ve (wy) = wy + nvp — qpAwg = <1 - t) wy¢ + Evt .

Let X = maxg—1,m ||€s]|. Since ||Vi, (wy)|| < |lve]| + Awe]] < X + X ||we||, we are left with the
task of computing an upper bound for ||w;||. In order to do so, we look at the recurrence

1 1
Wil = 1-; wt+ﬁ’vt-

As one can easily show by induction, w;;1 can be written as a linear combination of vy,..., v;.
In order to determine the coefficients of this linear combination, we fix s < t and observe that v,
is added to the sum with coefficient 1/(As). When wy41, is computed, the coefficient of v, has

become . .
1 1 1 r—1 1
_— 1 _ = — = — .,
AS H < 7“) AS H r At
r=s+1 r=s+1

5




We thus obtain a simple expression for w;1,

t
1
Wiyl = At;vs . (8)

Because w41 is an average of v, divided by A, we finally have [|w;11] < § max, [|vs]| < $+X. This
allows us to conclude that |V (w:)| < X + A |lwe|| < 2X. Substituting this bound for G in (7)
we get

_ o 2X2
E[F(w)] < F(w )+ﬁ(lnT+1) :

Theorem 3 states that the solution w* to the SVM problem can be written as

*
w :E YsOls s

seS
where as > 0 and S = {t=1,...,m : hy(w*) > 0}. An important consequence of this result is
that we can solve the problem (4) in a RKHS H g, where the objective function F' becomes
1 «— )\ 9
= — = €EH
m Z: 2 19l g K

with ht(g) = [1 — yeg(ay)] - In Mg, the SVM solution can therefore be written as
Z ysas :Bs, ’
ses

which is clearly an element of the RKHS

HK—{Z% () - 1...,wNERd,al,...,aNER,NGN}

As we did for the Perceptron, we can run Pegasos in the RKHS H . The gradient update in kernel
Pegasos on some training example (xs,,ys,) can be written as

1

Jt+1 = <1 B t) gt + ySt ]I{hst (gt) > O}K(wstv )

where h,(g:) = [1 — yStgt(mst)]+'



