Machine Learning — Statistical Methods for Machine Learning
Tree Predictors

Instructor: Nicolo Cesa-Bianchi version of January 18, 2026

While certain types of data (like images and textual data) have a natural representation as vectors
x € R? others (like medical records and other structured data) do not. For example, consider a
problem of medical diagnosis, where data consist of medical records containing the following fields

age € {12,...,90}

smoker € {yes, no,ex}

weight € [10, 120]

sex € {M, F}

therapy € {antibiotics, cortisone, none}

Even if we compute rescaled numerical representations for the features (including the categorical
fields smoker and sex), algorithms based on Euclidean distance like k&-NN may not work well.

In order to learn data whose features vary in heterogeneous sets X1, ..., Xy (i.e., sets with incom-
parable ranges, including ranges corresponding to categorical variables), we introduce a new family
of predictors: the tree predictors (also known as decision trees). Unlike k-NN, tree predictors are
invariant to monotonic transformations of the feature values (e.g., taking the log). This makes
them robust to differences in feature scales without requiring explicit normalization.

LSVDYIAO

Ay 7()%
YE‘,S
ot

E
=

Figure 1: A classical example of a tree classifier for a binary classification task. The features are:
OUTLOOK € {SUNNY, OVERCAST, RAIN}, HUMIDITY € [0,100] and WINDY € {YES, NO}.

A tree predictor has the structure of an ordered and rooted tree where each node is either a leaf (if
it has zero children) or an internal node (if it has at least two children). Recall that an ordered tree
is one where the children of any internal node are numbered consecutively. Hence, if the internal

node v has k > 2 children, we can access the first child, the second child, and so on until the k-th
child.

Fix X = Xy x - - - x Xy, where X; is the range of the i-th attribute z;. A tree predictor hy : X — Y
is a predictor defined by a tree 7" whose internal nodes are tagged with tests and whose leaves are
tagged with labels in). A test on attribute i for an internal node with & children is a function
f:X —{1,...,k}. The function f maps each element of X; to the node’s children. For example,
if X; ={a,b,c,d} and k = 3, then f could be defined by

1 ifx; =c,
3 if x; € {a,b}.

An example with X; = R and k = 3 is the following

1 if x; € (—o0,ql,
flz) =< 2 ifa; € (B,+00),
3 ifz; € (a,f]

where o < 8 are arbitrary values. See Figure 1 for an example.
The prediction hr(x) is computed as follows. Start by assigning v < r, where r is the root of T

1. if v is a leaf ¢, then stop and let hp(x) be the label y € Y associated with ¢;

2. otherwise, if f : A; — {1,...,k} is the test associated with v, then assign v < v; where
J = f(x;) and vj denotes the j-th child of v;

3. go to step 1.

If the computation of hr(x) terminates in leaf ¢, we say that the example @ is routed to ¢. Hence
hr(x) is always the label of the leaf to which @ is routed.

How do we build a tree predictor given a training set S? For simplicity, we focus on the case of
binary classification) = {—1,1} and we only consider complete binary trees, i.e., all internal nodes
have exactly two children. The idea is to grow the tree classifier starting from a single-node tree
(which must be a leaf) that corresponds to the classifier assigning to any data point the label that
occurs most frequently in the training set. The tree is grown by picking a leaf (at the beginning
there is only a leaf to pick) and replacing it with an internal node and two new leaves.

Suppose we have grown a tree T" up to a certain point, and the resulting classifier is hy. We start by
computing the contributions of each leaf to the training error £g(hr) (recall that each x is classified
by some leaf, the leaf which @ is routed to). For each leaf ¢, define

Sy = {(x¢,yr) € S : xy is routed to £}

That is, Sy is the subset of training examples that are routed to £. Define further two subsets of
Se, namely S = {(x,y:) € Se = ye = +1} and S, = {(@,y:) € Se = ye = —1}.

For each leaf 7, let N; = }Slﬂ, N, = ‘Sﬂ and Ny = ‘Sg' =N, + Nj. In order to minimize the
training error £g(hr), the label associated with ¢ must be
[41 NS >N,
Y6= 1 =1 otherwise.

Thus, £ errs on exactly min{N . N j } training examples in Sy. Therefore, we can write the training
error as a sum of contributions due to all leaves

1 . [N, NS 1 NS
es(hT)—m;mln{M,M}N[—m;f(b(w Ng

where we introduced the misclassification rate ¢)(a) = min{a,1—a} defined on [0, 1]—recall that
(NZr + N[)/Ng =1, so the argument of v is a number between zero and one.

o| |t

Figure 2: A step in the growth of a tree classifier: a leaf ¢ is replaced by an internal node v and
be two new leaves ¢/ and ¢”.

Suppose we replace a leaf £ in T with an internal node, its associated test, and two new leaves ¢’ and
¢"—see Figure 2. Can the training error of the new tree be larger than the training error of 77 To
answer this question is sufficient to observe that 1 is a concave function (just like the logarithm).
We can then apply Jensen’s inequality, stating that ¢(aa +(1- a)b) > a(a) + (1 — a)y(b), for
all a,b € R and all a € [0, 1].

Hence, via Jensen’s inequality, we can study how the training error changes when £ is replaced by
two new leaves ¢/ and ¢”,

N,F NN, N} N NI\ Ny N5\ Now

Vi Y Y2 0 Y2 V Y4 o Y4
LN, = Ny, > N, N,

w(m) ¢ w(Ng/ N, TN Ng) “—¢<Ny> N, E+¢<N@,> N,

o (MY o (N
Ny Nyn

contribution of ¢

vV v
contribution of #/ contribution of £

meaning that a split never increases the training error.

A leaf ¢ such that IV, ; € {0, Ng} is called pure because it does not contribute to the training error.
Note that £s(hr) > 0 unless all leaves are pure.

We now describe a generic method to construct a binary tree given a training set S.

1. Initialization: Create T with only the root ¢ and let Sy = S. Let the label associated with
the root be the most frequent label in Sy.

2. Main loop: pick a leaf £ and replace it with an internal node v creating two children ¢ (first
child) and ¢” (second child). Pick an attribute 7 and a test f : X; — {1,2}. Associate the

test f with v and partition Sy in the two subsets

Se={(@e,9r) € Se = flwg) =1} and Spr = {(@,4) € Se = f(wr4) =2}

Let the labels associated with ¢ and ¢’ be, respectively, the most frequent labels in Sy and
Sg//.

Just like the k-NN algorithm, algorithms that build tree predictors may also suffer from overfitting.
In this case, one of the parameters used to control overfitting is the number of tree nodes. If the
number of tree nodes grows too much compared to the cardinality of the training set, then the
tree may overfit the training data. For this reason, the choice of the leaf to expand should at least
approximately guarantee the largest decrease in the training error. Additional techniques used
to prevent overfitting include stopping the growth of the tree by limiting the maximum depth or
requiring a minimum number of samples per leaf.

In practice, functions different from the misclassification rate are used to select a leaf to expand.
While ¢ is the metric we ultimately want to minimize, it lacks curvature (has zero derivative
almost everywhere). This prevents the algorithm from choosing splits that are good in general
although they do not immediately change the majority class of any leaf. To solve this, we optimize
convex surrogate functions (known as impurity measures) that are strictly concave. These functions
reward splits that make the resulting nodes “purer”, even if the classification error does not drop
immediately.

: s N} N N},
For example, consider splitting a leaf where p = Tle =038, q = Ni/ = 0.6, r = Ni// = 1 and
o=]]\\[f; = 0.5. In this case, when 1(p) = min{p, 1 — p} we have that

b(p) - (a@b(q) +(1- a)¢(r)) =02-(0.5x04405x0)=0.

As this split leaves the training error unchanged, it would be not be considered when growing the
tree, and the algorithm might even get stuck if no split can be found to decrease the training error.
On the other hand, the test in the new internal node is correctly classifying half of the examples
in Sy, and all these correctly classified examples are routed to leaf ¢ which is pure. Hence, half of
the data in Sy is “explained” by the split.

Different impurity measures ¢ are used in practice. These functions are similar to min because they
are symmetric around % and satisfy ¢(0) = ¢(1) = 0. However, unlike min, they have a nonzero
curvature (i.e., strictly negative second derivative)—see Figure 3. The curvature helps in cases like
the one described in the example above, that is when ¢, and p = aq + (1 — «)r are all on the
same side with respect to 3. In this case, 1(p) — (at)(q) + (1 — a)¥(r)) = 0 because between 0 and
1 the function t(a) = min{a,1 — a} is a straight line.

Some examples of functions ¢ used in practice are
e Gini function: ¢3(p) = 2p(1 — p).

p
5 logy (1 — p).

1
e Scaled entropy: ps3(p) = iH(p) = —g log,(p) —
* »u(p) = Vp(1—p).

The following inequalities hold: min{p,1 — p} < p2(p) < ¢3(p) < wa(p).

0.8

0.6

0.4

0.2

Figure 3: Plots of the misclassification rate min{p, 1 —p} (green line) and of the impurity measures
P2, ¥P3, P4.

Note that tree predictors can be naturally used also to solve multiclass classification or regression
tasks. In the first case, the label associated with a leaf is, once more, the most frequent label among
all training examples routed to that leaf. In the regression case, where) = R, the label associated
to a leaf is the mean of the labels of all training examples that are routed to that leaf. The impurity
of a node is typically measured by the variance of the labels in that node.

Interpretability. An interesting feature of tree predictors for binary classification is that they
can be represented with a formula of propositional logic in disjunctive normal form (DNF). This
representation is obtained by considering the clauses (conjunctions of predicates) that result from
the tests on each path that leads from the root to a leaf associated with label +1. For example,
the classifier corresponding to the tree of Figure 1 is represented by the formula

(outlook = sunny) A (humidity < 70%) V (outlook = overcast)
V (outlook = rainy) A (windy = false) .

This “rule-based” representation of the tree classifier is very intuitive, and lends itself to being
manipulated using the tools of propositional logic; for example, to obtain more compact repre-
sentations of the same classifier. More importantly, this representation provides an interpretable
description of the knowledge the learning algorithm extracted from the training set.

Although typical tree predictors partition the data domain using axis-parallel halfspaces, which
is good when features are heterogeneous, one may also consider partitions based on arbitrary
halfspaces. The resulting tree predictors are sometimes called BSP-trees (binary space partitions
trees) or oblique trees. Note that the partitions defined by BSP-trees and k-NN can be both
expressed as intersections of halfspaces.

