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Abstract—We investigate the problem of bandits with expert
advice when the experts are fixed and known distributions
over the actions. Improving on previous analyses, we show that
the regret in this setting is controlled by information-theoretic
quantities that measure the similarity between experts. In some
natural special cases, this allows us to obtain the first regret
bound for EXP4 that can get arbitrarily close to zero if the
experts are similar enough. While for a different algorithm, we
provide another bound that describes the similarity between the
experts in terms of the KL-divergence, and we show that this
bound can be smaller than the one of EXP4 in some cases.
Additionally, we provide lower bounds for certain classes of
experts showing that the algorithms we analyzed are nearly
optimal in some cases.

I. INTRODUCTION

Bandits with expert advice (see, e.g., [1]) is a well-known
variant of the non-stochastic bandits problem in which, at the
beginning of each round, N experts each make a recommen-
dation to the learner in the form of a distribution over the K
available actions. The algorithm EXP4 [2] solves this problem
with a regret against the best expert bounded by

√
2TK logN ,

where T is the horizon. When N ≫ K, this bound shows
the ability of EXP4 to leverage the structure of the problem,
as opposed to running a bandit algorithm over the N experts
achieving a bound of

√
TN . An almost matching lower bound

of order
√
TK logN/ logK was proved in [3] (for determin-

istic experts). In this work, we study a variant of bandits with
expert advice in which the distributions recommended by the
experts are fixed and known. In the following, we will use
the term policies to denote these fixed experts. Our goal is
to determine the best possible dependence of the regret on
the structure of the policy set Θ irrespective of the assigned
sequence of losses.

This problem is closely related to linear bandits [4] (with
finite decision sets), where the structure of the decision/policy
set can be provably leveraged. Our problem can also be
viewed as a non-stochastic version of bandits with mediator
feedback [5], where the learner’s access to actions is mediated
by the fixed policy set. When losses are stochastic rather
than being adversarial, regret bounds were proved in [5]
that scale with the largest pair-wise exponentiated 2-Rényi
divergence1 between the policies in the context of policy-based
reinforcement learning. Comparable bounds were also proved

1This divergence is related to the chi-squared divergence. Note that pair-
wise, these divergences can be infinite in non-trivial cases, see Example 2.

in [6] in the setting of contextual bandits. In our setting, where
losses are adversarially generated, the best known bound
is

√
2TS(Θ) logN from [7], where S(Θ) ≤ min{K,N}

is a notion describing the similarity between policies, see
Section III-A for its definition and a new information-theoretic
interpretation. Since S(Θ) ≥ 1 for all Θ, this bound cannot
get arbitrarily small no matter how similar the policies are,
and becomes vacuous when the policies are identical.

Our first contribution (Theorem 1) is a new regret bound for
EXP4 of the form

√
2TS∗(Θ) logN , where S∗(Θ) is a new

index of similarity between policies that is never larger than
S(Θ) and reduces to twice the total variation distance when
N = |Θ| = 2. In particular, we show that S∗(Θ) can indeed
become arbitrarily small, depending on the policy set. Note
that such guarantees cannot be obtained only as a consequence
of the reduced range of the losses caused by the similarity of
the policies, see [8]. Additionally, we show in Theorem 2 an
algorithm whose regret is bounded by

√
2TKD∗(Θ), where

D∗(Θ) is a notion of the “width” of Θ in terms of the
KL-divergence that reduces to the information radius when
Θ is symmetric. This bound is never worse than the EXP4
bound

√
2TK logN . Moreover, we construct sets Θ where

KD∗(Θ) < S∗(Θ) logN . Finally, we prove lower bounds for
a number of policy set structures and contrast them with the
upper bounds we derived. We illustrate, in particular, some
examples where the bounds are nearly matching.

II. PROBLEM FORMULATION

We consider a non-stochastic multi-armed bandits problem
with a finite action set A = [K] containing K actions, and
a (fixed) policy set Θ ∈ ∆K−1 consisting of N probability
distributions over the actions. Here ∆K−1 denotes the prob-
ability simplex in RK and, for a policy θ ∈ Θ and j ∈ [K],
θ(j) is the probability with which policy θ picks action j. We
additionally assume that each arm is in the support of at least
one policy. With a time horizon of T rounds, an instance of
the problem is characterized by an unknown sequence of loss
vectors (ℓt)

T
t=1, where ℓt(j) ∈ [0, 1], for j ∈ [K], denotes the

loss assigned to action j at round t ∈ [T ]. A decision maker
interacts with the environment as follows: at each round t, the
decision maker selects a policy θt ∈ Θ; an action At ∈ [K]
is then sampled from θt; the decision maker subsequently
suffers the loss ℓt(At) and observes the pair

(
At, ℓt(At)

)
.

With a slight abuse of notation we denote by ℓt(θ) the expected
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Algorithm 1 EXP4 With Fixed Expert Advice
1: Input: K, Θ, η
2: Initialize: ∀θ ∈ Θ, ℓ̂0(θ) = 0
3: for t = 1, . . . , T do
4: Draw θt ∼ Pt, where Pt(θ) =

exp(−η
∑t−1

s=0 ℓ̂s(θ))∑
ξ∈Θ exp(−η

∑t−1
s=0 ℓ̂s(ξ))

5: Draw At ∼ θt, and observe loss ℓt(At)
6: ∀θ ∈ Θ, set ℓ̂t(θ) =

θ(At)∑
ξ∈Θ Pt(ξ)ξ(At)

ℓt(At)

loss (at round t) given that policy θ was selected; that is,
ℓt(θ) =

∑K
j=1 θ(j)ℓt(j). The objective is to minimize the

regret, which we define as follows:

RT = E
T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ
∗),

where θ∗ ∈ argminθ∈Θ

∑T
t=1 ℓt(θ) and the expectation is

over the internal randomization of the player.

III. EXP4 REGRET ANALYSIS

It is possible to show2 that the EXP4 algorithm with a
suitable tuning of the learning rate satisfies a similar regret
bound to the one proven for the algorithm developed in
[7]. In our setting, this bound is

√
2TS(Θ) logN , where

S(Θ) =
∑K
j=1 maxθ∈Θ θ(j) is a notion of similarity for the

policy set. It is easy to see that S(Θ) ≤ min{K,N}, and thus,
it can be interpreted as the effective “number” of policies.

A. An Information-Theoretic Interpretation of S(Θ)

An alternative characterization of the policy set similarity
can be derived by observing that S(Θ) = 1 + T V(Θ), where
for any ordering of the policies (θi)

N
i=1 we define:

T V(Θ) =

N∑
i=2

∑
j:θi(j)>θ[i−1](j)

(θi(j)− θ[i−1](j)), (1)

where θ[i−1](j) = maxθ∈{θ1,··· ,θi−1} θ(j), and the second sum
is the upper variation of the signed measure θi−θ[i−1]. T V(Θ)
can be seen as a generalization of the total variation distance
to describe the overall divergence of the policy set. Indeed, it
is easy to see that when Θ = {θ1, θ2}, T V(Θ) reduces to the
total variation between the two policies:

DTV(θ1, θ2) =
∑

j:θ2(j)>θ1(j)

(θ2(j)− θ1(j)) .

Moreover, an upper bound on T V(Θ) can be derived by noting
that for any τ ∈ ∆K−1 we have:

T V(Θ) = S(Θ)− 1 =
∑
θ∈Θ

∑
j∈B(θ)

(θ(j)− τ(j)),

where (B(θ))θ∈Θ is any partition of [K] such that for j ∈
B(θ) we have θ ∈ argmaxθ′∈Θ θ

′(j). Then, it follows that:

T V(Θ) ≤ min
τ∈∆K−1

∑
θ∈Θ

DTV(θ, τ). (2)

2See also Theorem 18.3 in [1].

It should be noted that this bound can be loose. For instance,
if the policy set is partitioned into clusters of similar policies,
then it is not hard to see that the right-hand side of (2) will be
wasteful compared to (1). It is also noteworthy that quantities
related to S(Θ) are used when studying the minimax risk in
statistical estimation problems. In particular, Theorem II.1 in
[9] can be used to derive upper bounds similar to (2) in terms
of any f -divergence, though often in implicit form.

B. An Improved Bound

Nevertheless, the stated regret bound scales with S(Θ),
not with T V(Θ). The main limitation is that S(Θ) ≥ 1,
no matter how close T V(Θ) is to zero. Thus, the bound√
2TS(Θ) logN is never smaller than

√
2T logN regardless

of the structure. One might wonder if this is necessary. The
following theorem provides the first regret bound for EXP4
that can get arbitrarily close to zero if the policies are similar
enough. Our bound depends on the key quantity:

S∗(Θ) =
K∑
j=1

(
max
θ∈Θ

θ(j)− min
θ′∈Θ

θ′(j)

)
,

that is easily seen to satisfy T V(Θ) ≤ S∗(Θ) ≤ S(Θ).

Theorem 1. Algorithm 1 run with η =
√

2 logN
TS∗(Θ) satisfies

RT ≤
√
2TS∗(Θ) logN.

Proof. For a policy θ, we define a modified version of the
loss at time t as ζt(θ) =

∑K
j=1(θ(j) − q(j))ℓt(j), where

q(j) = minθ′∈Θ θ
′(j). Notice that for any two policies θi

and θj , ζt(θi)− ζt(θj) = ℓt(θi)− ℓt(θj). An estimate for this
modified loss can be constructed in a standard manner: ζ̂t(θ) =
(θ(At)−q(At)) ℓt(At)

ψt(At)
, where ψt(j) =

∑
θ′∈Θ Pt(θ

′)θ′(At) is
the probability of playing arm j at time t given Pt. Let Et−1 be
the expectation conditioned on the events up to round t − 1,
it can be verified3 that (for any θ) Et−1ζ̂t(θ) = ζt(θ) and
Et−1ζt(θt) = Et−1

∑
θ∈Θ Pt(θ)ζ̂t(θ). Hence, we have that

RT = E
[∑

t
ζt(θt)−

∑
t
ζt(θ

∗)
]

= E
[∑

t

∑
θ∈Θ

Pt(θ)ζ̂t(θ)−
∑

t
ζ̂t(θ

∗)
]
. (3)

Notice that:
∑t−1
s=1 ℓ̂s(θ) =

∑t−1
s=1 ζ̂s(θ)+

∑t−1
s=1 q(As)

ℓs(As)
ψs(As)

.
And since the second sum does not depend on θ, we can
rewrite4 Pt as follows:

Pt(θ) =
exp(−η

∑t−1
s=0 ζ̂s(θ))∑

θ′∈Θ exp(−η
∑t−1
s=0 ζ̂s(θ

′))
.

One can then bound (3) using a standard manipulation (see,
for example, Theorem 1.5 in [11]) to yield that:5

RT ≤ η

2
E
∑

t

∑
θ∈Θ

Pt(θ)ζ̂
2
t (θ) +

logN

η
. (4)

3See the proof of Theorem 4.2 in [10] for similar arguments.
4Like ℓ̂0(θ), we initialize ζ̂0(θ) as zero.
5This requires that ζ̂t(θ) is non-negative, which is indeed the case.
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Define s(j) = maxθ∈Θ θ(j), we now bound the second
moment term at step t:

Et−1

∑
θ∈Θ

Pt(θ)ζ̂
2
t (θ)

= Et−1

∑
θ∈Θ

Pt(θ)(θ(At)− q(At))
2 ℓ

2
t (At)

ψ2
t (At)

≤ Et−1(s(At)− q(At))
ℓ2t (At)

ψt(At)

∑
θ∈Θ Pt(θ)(θ(At)− q(At))∑

θ∈Θ Pt(θ)θ(At)

≤ Et−1(s(At)− q(At))
ℓ2t (At)

ψt(At)

=
∑

j
(s(j)− q(j))ℓ2t (j) ≤ S∗(Θ).

Combining this with (4) and the specified choice of η con-
cludes the proof.

In general, S∗(Θ) is not guaranteed to be strictly smaller
S(Θ); they can be equal in some cases regardless of how
small T V(Θ) is. In other cases, however, there can be an
improvement. To see this, note that for any τ ∈ ∆K−1,

S∗(Θ) =
∑
θ∈Θ

∑
j∈B(θ)

(θ(j)− τ(j)) +
∑

j∈B′(θ)

(τ(j)− θ(j)),

where (B′(θ))θ∈Θ is a partition of [K] such that for every
j ∈ B′(θ) we have θ ∈ argminθ′∈Θ θ

′(j). Then, analogously
to (2), we have that:

S∗(Θ) ≤ 2 min
τ∈∆K−1

∑
θ∈Θ

DTV(θ, τ).

Like (2), this bound can be loose, but it serves to indicate that
if minτ∈∆K−1

∑
θ∈ΘDTV(θ, τ) is small (it can get arbitrarily

so), S∗(Θ) is guaranteed to be of at most the same order.

C. Examples

In the following, we compare the quantities S(Θ), S∗(Θ),
and T V(Θ) for a selection of policy set structures.

Example 1 (Two Policies). As we have seen before, for the
two policies case, i.e., Θ = {θ1, θ2}, S(Θ) = 1+DTV (θ1, θ2).
Whereas S∗(Θ) =

∑K
j=1 |θ1(j)− θ2(j)| = 2DTV (θ1, θ2).

The next two examples concern the case in which each
policy is a uniform distribution over a support of M ≤ K
arms. In this scenario, we get that6 S(Θ) = K

M , while S∗(Θ)
depends on the number of arms common to all policies.

Example 2 (Radially Symmetric Uniform Policies). Consider
a structure where the intersection of the supports of any pair
of policies is the same.7 Let V ≤ M be the number of arms
common to all policies, we have that S(Θ) = N(M−V )+V

M ,
that is bounded from below by 1, while S∗(Θ) = N M−V

M
and T V(Θ) = (N − 1)M−V

M are not.8

Example 3 (Failure of S∗). On the other hand, if K =M+1,
and the policy set contains all possible M -supported uniform

6Recall that we assume that an arm is in the support of at least one policy.
7This means that any arm is either in the support of all policies or

exclusively in the support of a single one.
8Note that M−V

M
is the total variation distance between any two policies.

policies, then S(Θ) = M+1
M which approaches 1 as M

increases, thus T V(Θ) = 1
M approaches 0. However, S∗(Θ) is

always equal to S(Θ) since for each arm j, minθ′∈Θ θ
′(j) = 0.

Example 4 (ϵ-Uniform Policies). If N = K and each policy
θ is associated (one-to-one) with an arm aθ so that, for an arm
j, θ(j) = 1−ϵ

K + ϵI{j = aθ}, where 0 ≤ ϵ ≤ 1. Then, S(Θ) =
ϵK + 1− ϵ, while S∗(Θ) = ϵK and T V(Θ) = ϵ(K − 1).

IV. AN ALTERNATIVE APPROACH

Since we can randomize our policy choice at each round,
we can interpret our setting as a bandits problem in which
the player has to randomize over the actions choosing a
distribution from (and also competing with) the convex hull
co(Θ) of the available policies. A simple approach, outlined
in Algorithm 2, is to adapt the Online Stochastic Mirror
Descent (OSMD) interpretation of EXP3 [2] to our setting.
The main distinction is that we need to project onto co(Θ)
at each step. Denote by D(P,Q) the KL-divergence between
distributions P and Q, and for τ ∈ ∆K−1, define D(Θ||τ) =
maxθ∈ΘD(θ, τ). The following regret bound for Algorithm 2
uses a notion of the “width” of Θ in terms of the KL-
divergence defined by:9

D∗(Θ) = min
τ∈∆K−1

D(Θ||τ) .

Theorem 2. Algorithm 2 run with

τ∗ ∈ argmin
τ∈∆K−1

D(Θ||τ) and η =

√
2D∗(Θ)

TK

satisfies RT ≤
√
2TD∗(Θ)K.

Proof. Noting that ℓ̂t is unbiased given xt, we get that RT =

E
∑
t⟨xt − θ∗, ℓ̂t⟩. This expression is the regret of OMD on

the estimated losses with a decision set co(Θ) and the negative
entropy function ψ(x) =

∑
j x(j) log x(j) as the regularizer.

Using Lemma 6.14 in [13],10 we get that:

RT ≤ D(θ∗, τ∗)

η
+
η

2
E
∑

t

∑
j
xt(j)ℓ̂

2
t (j), (5)

Similar to the last step of the proof of Theorem 1, we can show
that E

∑
j xt(j)ℓ̂

2
t (j) ≤ K. The proof concludes by bounding

D(θ∗, τ∗) with D∗(Θ) and plugging in the value of η.

It can be shown that D∗(Θ) ≤ logN . Moreover, if the
policy set is symmetric, in the sense that the KL-divergence
between any policy and the uniform mixture is the same, then
D∗(Θ) (attained at the uniform mixture) coincides with the
Jensen-Shannon divergence [14] (or the information radius)
of the policy set.

Algorithm 1 can also be seen as an instance of OSMD
with the negative entropy regularizer. The main difference
is that the decision space is the entire probability simplex
over the policies. Hence, the regularization in Algorithm 1

9Note that the minimum value can only be attained in co(Θ); see Theorem
11.6.1 in [12].

10See also, still in [13], the discussion leading up to Theorem 10.2
concerning the negative entropy regularizer.
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Algorithm 2 OSMD on the Convex Hull of Policies
1: Input: K, Θ, η, τ ∈ co(Θ) : τ(j) > 0 ∀j ∈ [K]
2: Initialize: x1 = τ
3: for t = 1, . . . , T do
4: Pick distribution Pt on Θ such that

∑
θ∈Θ Pt(θ)θ = xt

5: Draw θt ∼ Pt, then At ∼ θt, and observe loss ℓt(At)
6: ∀j ∈ [K], set ℓ̂t(j) =

I{j=At}
xt(j)

ℓt(At)

7: Update xt+1 = argminx∈co(Θ) η⟨x, ℓ̂t⟩+D(x, xt)

favors exploring uniformly over the policies, whereas it favors
exploring uniformly over actions in Algorithm 2. Analysis-
wise (compare in particular (4) and (5)), Algorithm 1 takes
advantage of the similarity between policies to reduce the
variance of their loss estimates (compared to K), whereas
Algorithm 2 takes advantage of the (possibly) limited size of
co(Θ) to reduce the bias term (compared to logN ).

Consider the ϵ-uniform structure of Example 4. D∗(Θ) in
this case is given by

K − 1

K
(1− ϵ) log(1− ϵ) +

1 + ϵ(K − 1)

K
log(1 + ϵ(K − 1)).

If we now compare KD∗(Θ) and ϵK logK, we see that both
are equal when ϵ ∈ {0, 1}. However, the former is strictly
convex for ϵ ∈ (0, 1), while the latter is linear. Thus, in
this case, the bound of Theorem 2 is better than that of
Theorem 1. However, if we consider the structure of Example
2, we have that D∗(Θ) = M−V

M logN . Thus, the bound of

Theorem 2 becomes
√
2T M−V

M K logN which is worse than

the
√
2T M−V

M N logN bound of Theorem 1 since K ≥ N .

V. LOWER BOUNDS

In this section, we prove minimax lower bounds for specific
classes of policy sets and contrast them with the regret bounds
discussed thus far. More precisely, with a fixed policy set
Θ, we prove lower bounds on infπ sup(ℓt)Tt=1

RT , where π
is the player’s strategy. To this end, we will consider a
class of stochastic environments, each identified by the vector
µ ∈ [0, 1]K such that, for j ∈ [K] and any t, ℓt(j) is
drawn from a Bernoulli distribution with mean µ(j). For
any t ≤ T , let Ht = (θ1, A1, ℓ1(A1), . . . , θt, At, ℓt(At)) be
the interaction history up to round T . Each environment µ
(together with strategy π) induces a probability distribution
Pµ on HT . Define:

RT (µ) = max
θ∗∈Θ

Eµ
T∑
t=1

K∑
j=1

(θt(j)− θ∗(j))µ(j),

where the subscript in Eµ emphasizes the dependence on Pµ.
In the following, we will prove lower bounds on supµRT (µ)
that hold for any algorithm. We will rely on the following
lemma, which is an immediate extension of a standard result
(see Lemma 15.1 in [1]) to our setting.

Lemma 3. Fix a strategy π, a policy set Θ, and a horizon T ;
and let µ and µ′ be two environments. Then,

D(Pµ, Pµ′) =
∑

θ∈Θ
Nµ(θ;T )

∑
j
θ(j)d(µ(j), µ′(j)),

where Nµ(θ;T ) = Eµ
∑T
t=1 I{θt = θ}, and d(a, b) is the KL-

divergence between two Bernoulli distributions with means a
and b.

A. Radially Symmetric Uniform Policies

The first lower bound concerns the case discussed in Ex-
ample 2. The construction of the lower bound (which is an
adaptation of the standard approach in [2]) leverages the fact
that the policies are uniform and equidistant.

Theorem 4. If Θ conforms to the structure of Example
2 such that M > V . Then for any algorithm and T ≥

NM
4 log(4/3)(M−V ) , there exists a sequence of losses such that

RT ≥ 1
18

√
N M−V

M T .

Since S∗(Θ) = N M−V
M , it follows that the bound of

Theorem 1 is optimal in this case, up to a logarithmic factor.

Proof. We denote by U(θ) ⊆ [K] the support of θ and C =⋂
θ∈Θ U(θ). We consider N environments {µθ}θ∈Θ such that

for µθ and arm j, µθ(j) = 1
2 − ∆I{j ∈ U(θ)\C}, where

0 < ∆ < 1
2 is to be tuned later. Let µ0 be an environment

such that µ0(j) =
1
2 for any arm j. Note that θ is the optimal

policy in µθ, and for θ′ ∈ Θ\{θ}, we have that:

K∑
j=1

(θ′(j)−θ(j))µ(j) = ∆
∑

j∈U(θ)\C

(
1

M
− 0

)
= ∆

M − V

M
.

And thus,

RT (µθ) = ∆
M − V

M
(T −Nµθ

(θ;T ))

≥ ∆
M − V

M

(
T −Nµ0(θ;T )− T

√
1

2
D(Pµ0 , Pµθ

)

)
,

where the inequality follows from the fact that11 Nµθ
(θ;T )−

Nµ0
(θ;T ) ≤ TDTV(Pµ0

, Pµθ
) and by Pinsker’s inequality.

Starting from Lemma 3, we have that:

D(Pµ0
, Pµθ

) =
∑
θ′∈Θ

Nµ0
(θ′;T )

K∑
j=1

θ′(j)d(µ0(j), µθ(j))

= Nµ0
(θ;T )

∑
j∈U(θ)\C

1

M
d

(
1

2
,
1

2
−∆

)

=
M − V

M
Nµ0(θ;T )

(
−1

2
log(1− 4∆2)

)
≤ M − V

M
Nµ0(θ;T )c∆

2,

11See Exercise 14.4 in [1] for a general version of this inequality.
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where the second equality holds since the only arms whose
means have changed between the two environments lie exclu-
sively in the support of θ, and the inequality holds for ∆ ≤ 1

4
with c = 8 log 4

3 . Hence:

sup
µ
RT (µ) ≥

1

N

∑
θ∈Θ

RT (µθ)

≥ ∆
M − V

M

(
T − T

N
− T

√
1

2

M − V

M

T

N
c∆2

)
≥ ∆

M − V

M
T

(
1

2
−∆

√
1

2

M − V

M

T

N
c

)
,

where the second inequality holds by the concavity of the
square root, and the third since N ≥ 2. The theorem then
follows by setting ∆ = 1

4

√
2MN

c(M−V )T and verifying that the

condition on T ensures that ∆ ≤ 1
4 .

B. ϵ-Uniform Policies

The next bound concerns the ϵ-Uniform structure of Exam-
ple 4. While all policies are still equidistant, this case does
not enjoy the peculiar discrete structure of Example 2.

Theorem 5. If Θ conforms to the ϵ-uniform structure of
Example 4. Then for T ≥ K

4 log(4/3) and any algorithm, there
exists a sequence of losses such that RT ≥ 1

18ϵ
√
KT.

The proof, see Appendix A of the extended version [15],
is similar to that of Theorem 4 apart from the fact that all
policies contribute to the KL-divergence between any two
environments (see Lemma 3) since all policies have full
support. Notice that the bound is of order

√
ϵ2KT instead

of
√
ϵKT =

√
S∗(Θ)T , which would have nearly matched

the bound of Theorem 1. This was expected since we have
shown that Algorithm 2 enjoys a better regret bound in this
case. It is interesting to see if a matching lower bound could
be proved.

C. The Two Policies Case

For the two policies case, we can prove a lower bound of
order

√
H2(θ1, θ2)T as asserted by the following theorem,

where H2(θ1, θ2) =
1
2

∑
j(
√
θ1(j)−

√
θ2(j))

2 is the squared
Hellinger distance. Relative to the total variation, we have that
in general: 1

2D
2
TV (θ1, θ2) ≤ H2(θ1, θ2) ≤ DTV (θ1, θ2).

Theorem 6. Assume that Θ = {θ1, θ2} and H2(θ1, θ2) >
0. Then for any algorithm and T ≥ 1

8 log(4/3)H2(θ1,θ2)
, there

exists a sequence of losses such that RT ≥ 1
13

√
H2(θ1, θ2)T .

The proof, see [15, Appendix B], follows a similar scheme
as before, so we only sketch the main distinctions. For an

arm j, we define z1(j) =

√
θ1(j)−

√
θ2(j)√

θ1(j)+
√
θ2(j)

, and z2(j) =

−z1(j). We use two environments µ1 and µ2, where µ1(j) =
1/2−∆z1(j), with µ2(j) defined analogously. Subsequently,
focusing on µ1 and θ1, we can bound RT (µ1) from below by

2∆H2(θ1, θ2)

(
T −Nµ0

(θ;T )− T

√
1

2
D(Pµ0 , Pµ1)

)
,

whereas we can show that D(Pµ0
, Pµ1

) ≤ 2c∆2H2(θ1, θ2)T .
To see the latter, it suffices to start from Lemma 3 and to use
that d(µ0(j), µ1(j)) ≤ c∆2z1(j)

2 for sufficiently small ∆,
and that

∑
j θ1(j)z1(j)

2 ≤ 2H2(θ1, θ2).

The squared Hellinger distance can be related to other mea-
sures of divergence. For instance, it is of the same order as the
Jensen-Shannon divergence and the triangular discrimination
[16], [17]. Thus, the bound of Theorem 6 can be stated, up to
small constants, in terms of these measures as well.

D. A Matching Lower Bound for a Class of Policy Sets

Lastly, we provide a lower bound that almost matches
both Theorems 1 and 2 for a certain class of policy sets
that we discuss shortly. This bound is analogous to the√
KT logN/ logK lower bound proved in [3]. However,

unlike [3], we rely on fixed sets of stochastic policies.

Theorem 7. For any integer q ≥ 2, there exists a problem
structure where K ≥ 2, S∗(Θ) = q, and S∗(Θ) logN =
KD∗(Θ); such that any algorithm, for sufficiently large T ,
suffers Ω

(√
S∗(Θ)T logN

logS∗(Θ)

)
regret.

In the type of structure referred to in the theorem, the
arms are divided into M sections (where K

M = q) and each
policy is a uniform distributions supported over M arms
such that its support contains an arm from each section.
When the policy set contains all such policies ((KM )M in
total), this problem becomes equivalent to playing M bandit
problems simultaneously with the choice of policy at each
round dictating an arm choice at each game. The distinction
is that only the loss of one such arm is observed, while the
player aims to minimize the average regret of the M games.
This type of structure (albeit with a different type of feedback)
is commonly used to prove lower bounds for combinatorial
bandits, see [18] for example. An adaptation of the proof of
Theorem 5 in [18] to our case (see [15, Appendix C]) leads to
a lower bound of Ω(

√
KT ), from which the theorem follows

by using that S∗(Θ) = S(Θ) = K
M and that N = (KM )M .

For what concerns the bound of Theorem 2, we have that
D∗(Θ) = log(KM ). Thus, Theorems 1 and 2 provide the same
bound since S∗(Θ) logN = KD∗(Θ).

VI. CONCLUSION

We analyzed two algorithms providing regret bounds that
depend on information-theoretic quantities describing the pol-
icy set. We proved lower bounds for certain classes of policy
sets highlighting instances where our regret bounds are nearly
matched. Nevertheless, it remains to be seen if better guaran-
tees can be proved in cases like Example 3 where S∗(Θ) ≥ 1
even if T V(Θ) can be smaller. It is also interesting to see what
are the optimal rates for cases like Example 4 where the bound
of Theorem 1 is suboptimal, as we learned in Section IV, even
if S∗(Θ) is of the same order as T V(Θ). Another direction
is to investigate the possibility of adapting to the policy set
structure if the distributions are not known beforehand.
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