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On Bayes Methods for On-Line Boolean Prediction1

N. Cesa-Bianchi,2 D. P. Helmbold,3 and S. Panizza2

Abstract. We examine a general Bayesian framework for constructing on-line prediction algorithms in
the experts setting. These algorithms predict the bits of an unknown Boolean sequence using the advice of a
finite set of experts. In this framework we use probabilistic assumptions on the unknown sequence to motivate
prediction strategies. However, the relative bounds that we prove on the number of prediction mistakes made
by these strategies hold for any sequence. The Bayesian framework provides a unified derivation and analysis
of previously known prediction strategies, such as the Weighted Majority and Binomial Weighting algorithms.
Furthermore, it provides a principled way of automatically adapting the parameters of Weighted Majority to
the sequence, in contrast to previous ad hoc doubling techniques. Finally, we discuss the generalization of our
methods to algorithms making randomized predictions.
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1. Introduction. A fundamental problem in learning theory is to predict the bits of an
unknown Boolean sequence. The problem is uninteresting when the algorithm is required
to minimize its worst-case number of mistakes over all sequences, as no algorithm can
do better than random guessing. A richer problem results if the algorithm is given a
(finite) set of models and the sequence is reasonably close to that generated by one
of the models. Now interesting “relative” mistake bounds that depend on the distance
between the unknown Boolean sequence and the closest model can be proven. This
is sometimes referred to as the “experts” setting, since the models can be viewed as
“experts” providing “advice” to the algorithm. Variants and extensions of this experts
setting have been extensively studied by Littlestone and Warmuth [10], Vovk [12], Cesa-
Bianchi et al. [2], [3], Haussler et al. [6], and others in the area of computational learning
theory. Here we use a Bayesian approach to derive prediction algorithms with good
performance in the experts settings. A crucial aspect of this work is that although the
algorithms are derived by making probabilistic assumptions about the generation of the
sequence to be predicted, they are analyzed in the adversarial experts setting.

In this experts setting, a “master algorithm” attempts to predict, one by one, the bits
of an unknown sequence. Before predicting each bit, the master is allowed to listen
to the “advice” provided by a pool ofN experts. After each bit is revealed, the master
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incurs alossmeasuring the discrepancy between its prediction and the corresponding bit.
Similarly, each of the experts incurs a loss based on its advice. For Boolean predictions we
measure the performance of the experts and of the algorithm with the 0-1 loss ordiscrete
loss, which simply counts the number of prediction mistakes. Instead, when the master’s
predictions range in the continuous interval [0,1] we use theabsoluteloss|y− ŷ|, where
ŷ is the master’s prediction for bity. Our goal is to design master algorithms whose total
loss onarbitrary sequences is within a constant factor to that of the best expert. Thus the
bounds proven arerelativeloss bounds, since they typically depend on both the number
of experts and the loss of the best expert on the sequence observed. Although the bounds
hold for all sequences, the value of the bound can change as the loss of the best expert
increases.

Several algorithms with good relative loss bounds associate a weight with each expert
and predict with a weighted combination of the experts’ advice. After each bit is revealed,
these algorithms slash the weights of those experts giving bad advice by a multiplicative
update factor. We call these algorithms “multiplicative” since they use multiplicative
factors to update the weights of the experts. The essential property of these multiplicative
algorithms is that experts making many mistakes get their weights rapidly slashed, thus
reducing their influence on the voting.

Most multiplicative algorithms use a parameter estimating the loss of the best expert on
the sequence to tune their update factors. When tuned optimally, multiplicative algorithms
have asymptotically optimal relative loss bounds for some 0-1 loss [3], [10] and absolute
loss [2], [7] settings. Vovk [13] shows that multiplicative algorithms are optimal in a
different way. He shows that if any master algorithm can achieve the relative loss bound
aL + b log N (whereL is the loss of the best expert,N is the number of experts, anda
andb are constants), then a properly tuned multiplicative algorithm has the same relative
loss bound.

In the simplest case where all predictions and outcomes are Boolean, two main mul-
tiplicative algorithms for combining the predictions of the experts have been proposed:
the basic Weighted Majority (WM) algorithm [10], and the Binomial Weighting (BW)
algorithm [3]. Although both algorithms use the weights in a similar way, their different
update factors makes the form of their weights quite different. WM uses a fixed update
factor which leads to weights that are in exponential form. In contrast, BW uses a variable
update factor which depends on the current mistake count of the expert as well as on the
current mistake count of the master. This update method leads to weights that are sums
of binomial tails rather than exponentials.

Another difference between the WM and BW algorithms is that BW does not update
the weights of the experts when it predicts correctly. Algorithms which only update the
weights when they predict incorrectly are calledconservative. The bounds for WM apply
whether or not the algorithm is run conservatively.

Cesa-Bianchi et al. [3] have compared the relative bounds of the WM and BW algo-
rithms. They showed that if both algorithms are properly tuned, then the BW algorithm
has the better 0-1 relative loss bound in the experts setting. Thus, under the 0-1 loss,
binomial weighting schemes seem to encode more useful information about the experts
than exponential weighting schemes. In many situations (see [3]) this enables the BW
algorithm to follow more quickly the predictions of the best expert and thus reduce its
additional loss over the loss of the best expert.
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Although both the WM and the BW algorithms are tuned through a parameter estimat-
ing the loss of the best expert, the BW algorithm relies more heavily on this information.
One can easily obtain bounds on the performance of the WM algorithm, even when it is
poorly tuned. In contrast, the BW algorithm is not robust: it can fail if the best expert has
loss exceeding the given estimate. Thus a desirable goal is to develop on-line multiplica-
tive algorithms that retain, at least asymptotically, the optimality properties of binomial
weights while gaining the robustness of exponential weights. The purpose of this paper
is to show the existence of such on-line learning algorithms and to provide more insight
about the properties shared by binomial and exponential weighting schemes.

The first step in unifying the binomial and exponential weighting schemes is to
consider an on-line prediction problem where explicit probabilistic assumptions are made
about the sequence to be predicted. In particular, we assume that the unknown sequence
is generated by first selecting an expert at random according to some prior distribution
over the experts set and then by corrupting the selected expert’s predictions with a
noise process.4 Different Bayes optimal prediction algorithms result from different noise
assumptions, and a simple condition on the noise process guarantees that the resulting
Bayes optimal algorithm is equivalent to a weighting scheme on the experts. It is then
straightforward to convert these Bayesian learning algorithms into the corresponding
multiplicative algorithms. The multiplicative algorithms derived in this way are then
analyzed within the adversarial framework of the experts setting. This procedure enables
us to obtain new algorithms as well as previously known multiplicative algorithms such
as WM and BW, providing more insight into various weighting schemes.

For example, when the noise process is i.i.d. with a known rateη (i.e., each bit in
the unknown sequence differs from that predicted by the selected expert with fixed
probability η) the Bayes optimal algorithm for the 0-1 loss reduces to the WM [10]
algorithm. When the sequence to be predicted is of known length and is equally likely to
be any of the sequences within Hamming distanceK of the selected expert’s predictions,
then we obtain the BW algorithm.

If the noise process is i.i.d. with an unknown rate selected according to a beta dis-
tribution, then we obtain another family of Bayesian prediction algorithms using mean
posterior estimates and the corresponding new family of multiplicative algorithms. We
call this new family of multiplicative algorithms Bayesian Binomial Weighting (BBW)
algorithms. Like the BW algorithm, this new family updates its weights using an update
factor that depends not only on the current mistake count of the experts, but also on the
current mistake count of the master algorithm. This leads to weights that are also in bino-
mial form. Although the original Bayesian algorithms assume aprior distribution on the
noise rate, the derived BBW algorithms are robust, and their performance in the experts
setting can be bounded even when this prior grossly misestimates the true behavior of
the experts on the bit sequence.

Like the BW algorithm, we can prove better bounds for this new family of algorithms
when they are run conservatively, i.e., they ignore those trials where they predict correctly
and only update the experts’ weights when an incorrect prediction is made.

We have also derived an adversarial technique that enables us to study in more detail

4 Littlestone [8] has recently used a similar technique in a different setting to obtain an algorithm for predicting
linearly separable boolean sequence (see the discussion in Section 4.2).
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Table 1.Summary of notation used in the paper.

Notation Description

Ei (yt−1) Prediction of expertEi at timet given the sequenceyt−1

Mi (yt ) Number of prediction mistakes made by expertEi on the sequenceyt

Mbest(yt ) Number of prediction mistakes made by the best expert on the sequenceyt

M̂i (yt ) Number of prediction mistakes made by expertEi on those bits ofyt that are also
incorrectly predicted by the master

M̂best(yt ) The minimum (over the experts) of thêMi (yt ) values
η Noise rate (used in Section 3)
η(·, ·) Noise model (used in Section 4)

the performance of the BBW algorithms under the absolute loss. Despite the fact that
we derive our technique for a special family of algorithms, we believe that this style
of analysis can give insight into the performance of other algorithms as well. Although
the performance bounds for this new family improve when the absolute loss measure
(instead of the 0-1 loss) is used, we have been unable to show the factor of1

2 improvement
that the exponential update algorithms exhibit (see [2]).

The paper is organized as follows. Section 2 describes the experts setting. The
Bayesian framework and some families of Bayes optimal algorithms are discussed in
Section 3. These algorithms are turned into (conservative) algorithms for the on-line
prediction model in Section 4, where we also compare their mistake bounds. Finally, in
Section 5 we study the performance of these on-line prediction algorithms with respect
to the absolute loss.

Notation. Throughout, log and ln denote the binary and natural logarithms, respectively,
andN denotes the nonnegative integers. Let{0,1}∗ be the set of all Boolean sequences
of finite (including zero) length and let{0,1}∞ be the set of all Boolean sequences of
infinite length. We usey to denote a Boolean sequence of finite unspecified length and
y` to denote a Boolean sequence of length`. Wheny is set by the surrounding context,
yt denotes the lengtht prefix of y andyt denotes thet th bit of y. The empty sequence of
length 0 is denoted byy0. An on-line (Boolean) predictor is any function from{0,1}∗
to {0,1}. For an on-line predictorA we define

MA(y`) = |{t : A(yt−1) 6= yt ,1≤ t ≤ `}|

as the number of prediction mistakes made byA on the sequencey`. Table 1 contains a
summary of some other notation introduced later in the paper.

2. An Overview of the Experts Setting. In the on-line prediction framework of
Littlestone and Warmuth [10] there areN experts{E1, . . . , EN}, each of which is an on-
line predictorEi : {0,1}∗ → {0,1}. At each time stept , the “master predictor” combines
the experts’advice, E1(yt−1), . . . , EN(yt−1), to produce its own prediction̂yt for bit yt .
Note that the advice of each expert can depend on the previously seen bits ofy (but
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not on the “future” ones). Two examples of experts allowed by the above definition are
the one that always predicts the previous bit ofy, and the expert that predicts with the
exclusive-or of the previously seen bits. Furthermore, the master algorithm does not get
the structure or definition of the various experts, but only their advice on the current (and
previous) bit(s) ofy.

In the simple case where the master’s predictions are boolean, i.e.,ŷt ∈ {0,1}, the
performance of the master algorithm is measured by the number of mistakes it makes
when both the sequence of bits and the predictions of the experts are chosen by an
adversary. Thus the goal is to prove mistake bounds on the master algorithms which
hold for all sequences. Clearly, some sequences (such as when all the experts predict
perfectly) are much easier on the algorithm than others (such as when the experts’ advice
is not correlated with the bits to be predicted). One obvious way to measure the difficulty
of a sequence is with the number of mistakes made by the best expert on the sequence.
Thus meaningful mistake bounds in the experts setting depend on bothN, the number of
experts, and the number of mistakes made by the best expert on the actual sequence of
bits observed. Although the setting is adversarial, it is inappropriate to call the analysis
worst case, since the resulting bounds depend on the particular sequence observed. We
use the termrelative bounds(as advocated by Yoav Freund) for this style of analysis
since the value of the algorithm’s mistake bound is relative to the “difficulty” of the
sequence being predicted.

Different algorithms for the on-line prediction model with experts have recently been
proposed [2], [7], [10], [12], both for the simple setting in which all the predictions
are Boolean and for the more general setting in which the experts’ advice and/or the
master’s predictions are chosen in the interval [0,1]. All these algorithms share the same
general multiplicative weighting scheme which we mentioned in the Introduction. For
each expertEi and for each time stept a weightwi (t) is maintained. These weights are
used to combine the advice of theN experts on bityt in order to produce the master
algorithm’s own prediction. After receiving the actual value ofyt , the master algorithm
may adjust the voting weight of each expertEi , multiplying it by a suitable update factor.

As outlined above, the two main ingredients in designing master algorithms are the
weighting scheme, used to weight the advice of the experts, and theprediction func-
tion, used by the master algorithm to convert the weighted average of experts’ advice
into a prediction. Bayes theory provides a clear and theoretically sound basis to de-
rive master algorithms whose weighting schemes and prediction functions meet certain
requirements.

3. The Bayesian Framework. Following the work of Haussler and Barron [5], in this
section we present a general Bayesian framework for sequentially predicting Boolean
sequences by combining the advice of a finite set of experts. Throughout the section we
assume that a “noise model” is associated with each expert and that the sequencey` is
generated by first selecting an expert at random (according to some prior distribution
Q over the set{E1, . . . , EN}) and then by corrupting that expert’s predictions using
its associated noise model. In other words, each bit of the unknown sequencey` =
y1, . . . , y` differs from that predicted by the selected expert with a probability that
depends on the assumed noise model for that expert.
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The Bayes decision rule is an optimal prediction strategy (i.e., it minimizes the prob-
ability of an incorrect prediction or the expected total number of mistakes) in this prob-
abilistic setting. On each roundt , this rule simply outputs the label with the highest
posterior probability (having seenyt−1), i.e.,

ŷt = arg max
y∈{0,1}

P(y | yt−1),(1)

whereP is a probability distribution over{0,1}∞ (equipped with the naturalσ -algebra)
that is determined by the experts’ predictions and by the noise model. WhenP is a
distribution over{0,1}∞, we useP(yt ) to denote the measure of the set of all infinite
sequences with prefixyt .

Rule (1) is especially easy to compute when we express the probabilityP(y | yt−1)

as a sum over the expert set{E1, . . . , EN},

P(y | yt−1) =
N∑

i=1

P(y | yt−1, Ei )P(Ei | yt−1).

To simplify our notation we abbreviateP(yt | Ei ) by Pi (yt ), so

P(y | yt−1) =
N∑

i=1

Pi (y | yt−1)P(Ei | yt−1).

The first factor in each summand,Pi (y | yt−1), is simply the probability, under expert
Ei , that thet th bit of the sequence will bey given that the previoust − 1 bits were
y1, . . . , yt−1. In particular, ify = Ei (yt−1), whereEi (yt−1) is the prediction of expert
Ei at time t , then we can view the probabilityPi (y | yt−1) as measuring the chance
(under the assumed noise model for expertEi ) that the bityt is notcorrupted. Similarly,
Pi (1− y | yt−1) is the chance that the bityt is corrupted by the noise model associated
with expertEi . The second factor,P(Ei | yt−1), represents the posterior probability
that expertEi was selected given that we have observed the prefixyt−1. Thus each term
in the sum

∑N
i=1 Pi (y | yt−1)P(Ei | yt−1) represents the contribution of one expert,

weighted according to its posterior probability, to the chance that the next outcome will
be y ∈ {0,1}. By applying the Bayes rule, we can compute the posterior probability
P(Ei | yt−1) in terms of the prior over the experts,Q(Ei ), and the likelihoodPi (yt−1)

of yt−1 underEi ,

P(Ei | yt−1) = Pi (yt−1)Q(Ei )∑
j∈{1,...,N} Pj (yt−1)Q(Ej )

,(2)

wherePi (y0) is defined to be 1. Although the following trivially generalizes to nonuni-
form priors, the presence of the prior complicates the notation and obscures the points we
wish to make. Therefore we now assume that the priorQ(·) is uniform, soQ(Ei ) = 1/N
for i = 1, . . . , N. Since the uniform prior makes the factor multiplyingPi (yt−1) in (2) the
same for alli , the Bayes optimal prediction̂yt can be written in the following equivalent
form:

ŷt = arg max
y∈{0,1}

N∑
i=1

Pi (y | yt−1)Pi (yt−1).(3)
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On-Line Predictor GBP

Input: A setE1, . . . , EN of experts and a noise model defining distributions
P1, . . . , PN over{0,1}∞.

For t = 1,2 . . .
1. If

∑N
i=1 Pi (1 | yt−1)Pi (yt−1) ≥∑N

i=1 Pi (0 | yt−1)Pi (yt−1), then pre-
dict 1 for bit yt ; otherwise predict 0.

2. Observe bityt .

Fig. 1.The general Bayesian predictorGBP.

As shown by (3), the Bayesian predictor uses the distributions{Pi }Ni=1 to determine
the conditional probabilities of each label, and predicts with the most likely one. The
“general Bayesian predictor” orGBP which is derived from schema (3) is summarized
in Figure 1. Observe that the predictionŷt chosen byGBPminimizes the “mistake prob-
ability” according to the current mixture{P(Ei | yt−1)}Ni=1. That is,

P(yt 6= ŷt | yt−1) = min{P(yt 6= 0 | yt−1), P(yt 6= 1 | yt−1)}.(4)

Although the predictor’s goal in a Bayesian framework is to minimize the mistake
probability or the expected total number of mistakes, Bayesian algorithms can also
be analyzed in an adversarial setting. The following well-known result (see, e.g., [5])
bounds the performance of the Bayesian predictorGBP within the adversarial experts
setting. This result shows that the number of prediction mistakes made byGBP on any
sequencey is bounded by the log-likelihood ofy under the best model. Precisely, we
have the following:

LEMMA 3.1. For any positive integer N, let {P1, . . . , PN} be a set of N probability
distributions over{0,1}∞. Then, for any sequencey` ∈ {0,1}`, ` ∈ N, the total number
of prediction mistakes made byGBPon y` is at most

MGBP(y
`) ≤ log N + min

1≤i≤N
log

1

Pi (y`)
.(5)

PROOF. Note thatP(yt ) ≤ P(yt−1) holds for all 1≤ t ≤ ` and that (4) implies
P(yt ) ≤ P(yt−1)/2 for all t such thatyt 6= ŷt . Therefore,

max
1≤i≤N

[
Pi (y`)

N

]
≤ P(y`) ≤ 2−m,

wherem= MGBP(y`) andP(y`) = (1/N)
∑N

i=1 Pi (y`). Solving the above with respect
to MGBP(y`) gives the bound.

Different noise models produce different versions of the Bayes optimal predictor
(GBP). We now present two versions of the Bayesian predictorGBP which are used in
section 4 to derive master algorithms.
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Algorithmη-GBP. Perhaps the simplest noise model is when the expert’s predictions
are corrupted by an i.i.d. noise process with fixed rate 0≤ η < 1

2. Using this noise
model, the probabilities in (3) are easily seen to be

Pi (y | yt−1) =
{
η if y 6= Ei (yt−1),

1− η otherwise;

andPi (yt−1) =∏t−1
t ′=1 Pi (yt ′ | yt ′−1) = ηki (1−η)`−ki , whereki is the number of mistakes

made byEi on the sequenceyt−1. We call the Bayesian predictor that uses the above
probabilitiesη-GBP.

Algorithmβa,b-GBP. The Bayesian predictorη-GBPis based on the simplistic assump-
tion that the noise model is characterized by a fixed rate 0≤ η < 1

2. However, in many
applications such strong knowledge is not available and thus a different solution for the
prediction problem must be sought. In these cases the Bayesian paradigm suggests that
one should assume a prior distribution on the parameter space and use this prior together
with evidence from the sequence to estimate the noise rate5 η dynamically. Thus we
now assume that the sequencey` is generated by first selecting the relevant expert and
the noise rate from the appropriate prior distributions, and then using the selected noise
rate to corrupt the predictions of the relevant expert. The Bayes optimal prediction (3)
is then computed using the posterior mean as an estimate ofη. The only problem we
are left with is the choice of the priorµ for η. It is convenient to chooseµ so that the
posterior distributionPi (· | yt )with respect toµ is easily computable for each expertEi .
This of course depends on the interaction betweenµ and the distributionPi . A posterior
Pi (· | yt ) whose distribution is in thesame familyas the priorµ is found wheneverµ is
chosen in the conjugate family of distributions forPi (see, e.g., p. 130 of [1]). We now
describe the Bayes optimal predictor that results when the beta distribution is chosen as
the prior.

Let the prior distribution onη be a beta distribution with parametersa,b > 0 where
now η ranges in the interval [0,1]. The corresponding density function with respect to
the dominating Lebesgue measure on [0,1] is

βa,b(η) = ηa−1(1− η)b−1∫ 1
0 ξ

a−1(1− ξ)b−1 dξ
,

and its expected value isa/(a+b). Observe that by changing the setting of the parameters
a andbwe obtain different distributions. For instance, choices ofa andb for whicha > b
correspond to a distribution skewed to the right, and vice versa. The noise model now
picks a noise rate using theβa,b(η) distribution, and the outcomes are then produced by
corrupting the chosen expert’s predictions with i.i.d. noise at the chosen rate.

We can now compute the probabilities in (3) using the new noise model by considering
the two casesEi (yt−1) = y and Ei (yt−1) 6= y. Recall that each distributionPi is

5 Although we use the same notation forη the reader should observe that in this Bayesian contextη is actually
a random variable, rather than a fixed value. For a detailed description of the Bayesian paradigm see [11].
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completely determined by the predictions of expertEi and the assumed noise model. Let
P̂i be the product measurePi ×βa,b and letki be the total number of prediction mistakes
made byEi on yt−1. Then

Pi (y | yt−1) =
∫ 1

0
P̂i (y | yt−1, η)P̂i (η | yt−1)dη(6)

= |Ei (yt−1)− y|
∫ 1

0
η P̂i (η | yt−1)dη

+ (1− |Ei (yt−1)− y|)
∫ 1

0
(1− η)P̂i (η | yt−1)dη

= |Ei (yt−1)− y|
(

ki + a

t − 1+ a+ b

)
+ (1− |Ei (yt−1)− y|)

(
1− ki + a

t − 1+ a+ b

)
.

The last equality follows by noting that when the noise process is i.i.d. the posterior
density ofη is in the same form as theβa,b prior density with the parametersa andb
replaced bya′ = ki + a andb′ = t − 1− ki + b. The estimate given by (6) is usually
referred to as themean posterior estimate. Note thatki is zero whent = 1, so the estimate
produced by (6) isa/(a+ b), the mean of the beta prior density. The simplicity of this
method of estimation is one of the reasons beta densities (which are a special case of
the Dirichlet densities) are so attractive. From (6) it is easy to see that the probability
Pi (yt−1) reduces to

Pi (yt−1) =
[∏ki−1

k=0 (k+ a)
] [∏t−2−ki

m=0 (m+ b)
]

∏t−2
n=0(n+ a+ b)

.(7)

When the distributions in (3) are computed as described by (6) and (7), we obtain a new
family of Bayes optimal predictors which we callβa,b-GBP. As we will see in the next
section, theβa,b-GBP predictor can be rephrased as a multiplicative weighting scheme,
leading to a new family of multiplicative algorithms for the adversarial experts setting.

4. Multiplicative Weighting Algorithms. We are now ready to formulate and analyze
the class of multiplicative algorithms that arise from the Bayesian prediction framework
discussed in Section 3. Since we present algorithms derived from Bayesian learning
algorithms, probabilities will still appear in the formal descriptions of the algorithms.
However, the relative loss bounds we prove do not make probabilistic assumptions about
how the bit sequence to be predicted is generated. That is, we analyze the performance
of the derived algorithms in the adversarial framework of the experts setting.

In the first part of the section we investigate the properties shared by all weight-
ing schemes derived from the Bayesian paradigm (3). Section 4.2 contains a simple
modification to these Bayesian weighting schemes that leads to improved bounds. This
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modification allows us to rederive existing master algorithms as well as a new family of
binomial prediction algorithms.

4.1. From Bayesian Prediction to Weighting Schemes. This section shows how the
Bayesian predictorGBPcan be used in the experts setting. Recall thatGBPcomputes the
sums

∑N
i=1 Pi (y | yt−1) · Pi (yt−1) for bit y = 0 and for bity = 1, and then predicts the

value having the largest sum. This suggest that when predicting the bityt in the experts
setting, each expert should have the weightPi (yt−1). Moreover, the “vote” of expertEi

should be split between the predictionsEi (yt−1)and 1−Ei (yt−1) in the same proportions
that Pi (Ei (yt−1) | yt−1) and 1− Pi (Ei (yt−1) | yt−1) split unit probability. ExpertEi ’s
weight should then be multiplied by the update factorPi (yt | yt−1) after the valueyt is
revealed. Note that the update factorPi (yt | yt−1) is equal toPi (Ei (yt−1) | yt−1) when
Ei ’s advice on bityt is not corrupted and to 1− Pi (Ei (yt−1) | yt−1) whenEi ’s advice
is corrupted by the noise model associated to expertEi . It is now quite easy to rephrase
our Bayesian predictorGBPin term of weighted voting schemes. Once one has specified
a “noise model,” the prediction method and update factors follow naturally.

To make this more precise, we start by reinterpreting the noise model as an up-
date factor. Our goal is to use different update factors for the various experts’ weights
depending on the accuracy of each expert’s previous predictions on the observed se-
quence. Therefore, anoise modelin the experts framework is a parametrized update
factorη(t, k) ∈ (0,1), where the first argumentt measures the length of the (previously)
observed sequence and the second argumentk counts the number of prediction mistakes
made by the expert on the (previously) observed sequence. Hence, at the end of the first
trial each expert’s weight will be multiplied by the update factorη(0,0) if its advice was
wrong, or by 1− η(0,0) if it predicted correctly. Similarly, after observingyt on trial
t , the probability (or weight)Pi (yt−1) of expertEi should be multiplied by the update
factorη(t − 1,Mi (yt−1)) if Ei (yt−1) 6= yt and by 1− η(t − 1,Mi (yt−1)) otherwise,
whereMi (yt−1) is the number of prediction mistakes made byEi on yt−1, i.e.,

Mi (yt−1) = |{s : Ei (ys−1) 6= ys, 1≤ s ≤ t − 1}|.

Note that for each expertEi we have, at each trialt , two possible update factors which
sum to 1. Several master algorithms where the update factors areunnormalized, i.e., they
do not sum to 1, have been proposed and analyzed. However, normalized update factors
arise naturally in weighting schemes derived from the Bayesian paradigm.

The above interpretation of the noise model as an update factor leads to the master pre-
dictorBAY sketched in Figure 2, which is derived from the Bayesian predictorGBPdefined
in Section 3. Note that in Figure 2 we use “y,b” to denote the sequence resulting when bit
b is appended to the end of the sequencey. ThusPi (yt−1,b) is the probability, according
to Pi , of the sequence(y1, . . . , yt−1,b). Furthermore,Pi (yt−1,b) = Pi (b | yt−1)Pi (yt−1)

and Pi (b | yt−1) is eitherη(t − 1,Mi (yt−1)) or 1− η(t − 1,Mi (yt−1)) depending on
whether or notb = Ei (yt−1). The relative loss bound (5) ofGBP carries over toBAY

leading to the bound

MBAY (y
`) ≤ log N + min

1≤i≤N
log

1

Pi (y`)
.(8)
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On-Line Predictor BAY

Input: A set E1, . . . , EN of experts and a noise modelη.
Initialization: Let Pi (y0) = 1 andηi = η(0,0) for eachi = 1, . . . , N.

For t = 1,2 . . .
1. For eachi = 1, . . . , N

let Pi (yt−1, Ei (yt−1)) = (1−ηi )Pi (yt−1)andPi (yt−1, 1−Ei (yt−1)) =
ηi Pi (yt−1).

2. If
∑N

i=1 Pi (yt−1, 1) ≥∑N
i=1 Pi (yt−1, 0), then predict 1 for bityt ; oth-

erwise predict 0.
3. Observe bityt .
4. For eachi = 1, . . . , N

compute the new update factorsηi = η(t,Mi (yt )).

Fig. 2.The master predictorBAY.

4.2. Conservative Algorithms. This subsection presents a modification to the master
algorithmBAY leading to improved performance bounds. Bound (8) relies on the facts
that:

1. Every timeBAY makes a mistake, the sum of the probabilities assigned to the observed
sequence by each expert is (at least) halved.

2. After ` bits have been revealed, this sum is at leastPi (y`) for any 1≤ i ≤ N.

However, the probability (or weight)Pi , of any expertEi , often drops even whenBAY

predicts correctly. This can be partially remedied by using a conservative variant ofBAY

which we callCBAY. This conservative variant skips the weight update step whenever it
predicts correctly, essentially ignoring those trials where it makes a correct prediction.
Since a Bayesian algorithm makes its prediction based on all of the information acquired
during the previous trials, this variant can no longer be considered a Bayesian algo-
rithm (with respect to the original assumptions). This encourages us to use a different
(nonprobabilistic) notation for its weights.

Littlestone and Mesterharm [8], [9] independently explored a slightly different path to
obtain a closely related family of algorithms. They call these algorithms “Apobayesian”
in order to emphasize their Bayesian roots, while making it clear that they are are not
themselves Bayesian (in the usual sense). Their algorithms are designed for the more
general problem of learning disjunctions or other linearly separable functions of the
expert’s predictions, and their analysis revolves around measuring the progress toward
a target distribution. Although the problems they consider are more general, we are able
to obtain better bounds for the simpler experts setting considered here.

Before analyzing the conservative variants of our algorithms, we need the following
definition. Let

M̂i (y`) = |{t : 1≤ t ≤ `, Ei (yt−1) 6= yt ∧ CBAY(yt−1) 6= yt }|

be the number of prediction mistakes made byEi in previous trials where the master
made a mistake as well.
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On-Line Predictor CBAY

Input: A set E1, . . . , EN of experts and a noise modelη.
Initialization: Letwi (0) = 1 andηi = η(0,0) for each 1≤ i ≤ N. Set the
mistake counterm to 0.

For t = 1,2, . . .
1. For eachi = 1, . . . , N

let wxi
i = (1 − ηi )wi (t − 1) and letw1−xi

i = ηiwi (t − 1), where
xi = Ei (yt−1).

2. If
∑N

i=1w
1
i ≥

∑N
i=1w

0
i , then predict 1 for bityt ; otherwise predict 0.

3. Observe bityt .
4. If a mistake occurred, then setwi (t) = wyt

i , compute the new update
factorsηi = η(m+ 1, M̂i (yt )), and increment the mistake counterm
by 1.

5. If no mistake occurred, then for eachi = 1, . . . , N
setwi (t) = wi (t − 1). (The update factors also remain unchanged.)

Fig. 3.The conservative master predictorCBAY.

Despite the change in notation, algorithmCBAY in Figure 3 is similar to the master
predictorBAY of Figure 2. The essential difference is thatCBAY skips the update step
whenever its prediction is correct. The algorithmCBAY uses aweightwi (initially set
to 1) for each expertEi . After observing any sequenceyt , the current weightwi (t) of
expertEi corresponds to the probabilityPi (according to the noise model) assigned to
the subsequence ofyt consisting of only those trials whereCBAY made a mistake. Unlike
thePi ’s computed byBAY, the weights used byCBAY cannot be defined independently for
each expert: their values depend on whenCBAY makes mistakes, which in turn depends
on the behavior of the other experts. Therefore, the weightswi (t) have an implicit
dependence on the particular run ofCBAY.

The analysis ofCBAY is easy, as shown by the following two facts.

FACT 4.1. For all noise modelsη(·, ·), for all sequencesy ∈ {0,1}∞, for all sets of N
experts, and for all integers t≥ 0,

MCBAY(y
t ) ≤ log N + min

1≤i≤N
log

1

wi (t)
.(9)

PROOF. Fix the noise modelη(·, ·), the sequencey to be predicted, and the set ofN
experts. For allt ≥ 1, letWt =

∑N
i=1wi (t − 1) be the total weight of the experts at the

beginning of trialt . Note that ifCBAY makes a mistake predictingyt , thenWt+1 ≤ Wt/2.
SinceW1 = N andwi (t − 1) ≤ Wt for any 1≤ i ≤ N, we have max1≤i≤N wi (t) ≤
N/2mt , wheremt is MCBAY(yt ). Now, solving formt yields the required bound.

Bound (9) containswi (t), a quantity that depends on the particular run of the algorithm.
We now convert this bound into a form that is easier to apply.
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FACT 4.2. For all noise modelsη(·, ·), if f (·, ·) is a nonnegative function such that, for
all y ∈ {0,1}∞, for all sets of N experts, and for all integers t≥ 0,

wi (t) ≥ f (MCBAY(y
t ), M̂i (yt )),

then

MCBAY(y
t ) ≤ max

{
q ∈ N : q ≤ log N + min

1≤i≤N
log

1

f (q, M̂i (yt ))

}
.(10)

PROOF. From Fact 4.1 and the definition off it is easy to see thatMCBAY(yt ) belongs
to the set of integers{

q ∈ N : q ≤ log N + min
1≤i≤N

log
1

f (q, M̂i (yt ))

}
.

Hence,MCBAY(yt ) is at most the maximum integer in this set.

Fact 4.2 gives a general bound on the number of prediction mistakes made byCBAY.
We now apply it to different noise models to obtain previously known bounds for WM
and BW.

4.3. A Revisitation of Some Known Algorithms

Weighted Majority(WM). We now analyzeCBAY with the simple i.i.d. noise model
used byη-GBPof Section 3. For this algorithm, bound (10) becomes linear in the loss of
the best expert. Letη(t, k) = η for all t, k ∈ N, where 0< η < 1

2 is a constant. In this
noise model we multiply the weight of any expert that made a mistake in the last trial by
η and the weight of any expert that was correct in the last trial by 1− η. The weights for
the conservative case are as follows. After any numbert of trials we have thatwi (t) =
ηM̂i (yt )(1− η)mt−M̂i (yt ) wheremt = MCBAY(yt ). Let Mbest(yt ) = min1≤i≤N Mi (yt ) and
M̂best(yt ) = min1≤i≤N M̂i (yt ). By applying Fact 4.2 withf (m, k) = ηk(1− η)m−k we
obtain the following bound:

(11)
MCBAY(y

t ) ≤ max{q ∈ N : q ≤ log N − (q − M̂best(yt )) log(1− η)− M̂best(yt ) logη}.
After a suitable reordering we find that

MCBAY(y
t ) ≤

⌊
log N + M̂best(yt ) · log((1− η)/η)

1+ log(1− η)

⌋
.(12)

As M̂best(y) ≤ Mbest(y) for any y, this shows an upper bound on the number of mistakes
of CBAY of the forma log N + bMbest(y), wherea andb depend onη only. Vovk [13]
studies those pairs(a,b) where mistake bounds of the forma log N + bMbest(y) are
achievable. Littlestone and Warmuth [10] previously obtained a bound identical to (12)
for their WM algorithm which is equivalent to this version of ourCBAY algorithm (even
though the Bayesian origin is not so explicit in the definition of WM as it is in the
definition ofCBAY.)
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Binomial Weighting(BW). We now define a noise model such that ourCBAY becomes
the same as the BW algorithm of [3]. Let

( r
≤s

)
be a shorthand for

∑s
i=0

(r
i

)
. For each

q, K ∈ N, define the noise model

ηq,K (r, s) =
(

q − r − 1

≤ K − s− 1

)/(
q − r

≤ K − s

)
.

Note thatηq,K (r, s) = 0 for r ≥ q or s ≥ K . Thus for certain bit sequencesy, it may
happen thatwi (t) = 0. If this happens for all expertsEi , then according to (3)BAY (or
CBAY) predicts arbitrarily on all future bits. Since the algorithm is predicting arbitrarily
it is not surprising that the bounds (8) and (9) become vacuous. Hence, instances ofBAY

or CBAY using noise modelηq,K should only be used to predict sequencesy for which
there is at least one expertEi whose weight remains positive throughout the prediction
process. In other words, the algorithm requires advance knowledge of an upper bound
K on the number of mistakes made by the best expert. The next result is equivalent to
Theorem 1 of [3].

THEOREM4.1. For all K ∈ N and for all y` ∈ {0,1}`, ` ∈ N, if CBAY is run on y`

using the noise modelηm+1,K , where

m= max

{
q ∈ N : q ≤ log N + log

(
q

≤ K

)}
(13)

andM̂best(y`) ≤ K , then the number of mistakes made byCBAY is upper bounded by m,
i.e., MCBAY(y`) ≤ m.

PROOF. Choosey ∈ {0,1}`, setm as in (13), and for any nonnegative integersr ands
define

f (r, s) =
(

m+ 1− r

≤ K − s

)/(
m+ 1

≤ K

)
.

As f (r, s) = 0 for r > m+ 1, Fact 4.2 does not give a useful bound here. To prove the
theorem, we assume to the contrary thatCBAY makesm+ 1 mistakes on the sequence
y`. Using Fact 4.1, we find that

MCBAY(y
`) ≤ log N + min

1≤i≤N
log

1

wi (`)
.(14)

Now, it is not hard to see that, for eacht = 1, . . . , ` and each 1≤ i ≤ N,

wi (t) = f (MCBAY(y
t ), M̂i (yt )).

SinceM̂best(y`) ≤ K andMCBAY(y`) = m+ 1 (by the assumption) there is at least one
index 1≤ i ∗ ≤ N such that

wi ∗(`) = f (m+ 1, M̂i (y`)) = 1

/(
m+ 1

≤ K

)
.(15)

Combining (14) and (15) we see that

2m+1 ≤ N

(
m+ 1

≤ K

)
,

contradicting the definition ofm given in (13) and completing the proof.
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4.4. Bayesian Binomial Weighting(BBW). In the previous section we unified two
known algorithms, WM and BW, by reformulating them as different versions ofCBAY.
In this section we exploit Bayes theory to derive an improved version ofCBAY by using
the same noise model as theβa,b-GBPalgorithm described in Section 3.

Clearly, bound (12) depends on how the parameterη is chosen as a function ofN and
M̂best(y`). When the algorithm has no knowledge about the magnitude ofM̂best(y`),
a reasonable choice isη = 1

3. If the algorithm knows in advance a boundK on
M̂best(y`), tighter bounds can be obtained by choosing the parameterη as a function
of N and of the boundK . Vovk [12] has given an implicit formula for the valueη∗ that
minimizes (12). More precisely, he has shown that whenη = K/M , wherex = M is
the unique solution of the equation

x = log N + x · H
(

K

x

)
(16)

and H is the binary entropy function,H(α) = −α log(α) − (1− α) log(1− α), then
CBAY run with this constant value ofη has a mistake bound ofM .

We also remark that an explicit approximation toη∗, yielding the more tractable bound

MCBAY(y
`) ≤ 2K + 2

√
K ln N + log N,(17)

has been given by Cesa-Bianchi et al. in Lemma 4 of [2].
Bound (17) has been derived for an algorithm that requires the knowledge of an

upper boundK on the number of mistakes made by the best expert. The algorithm
uses this additional information to tune the noise rate optimally in its noise model. We
now consider a different noise model where the update factor varies over trials and is
potentially different for each expertEi . Using this noise model,CBAY achieves a mistake
bound close to (17)without using any previous knowledge about the sequencey` to
predict. Thus we obtain a more principled method than ad hoc doubling techniques for
automatically determining the proper update factors.

THEOREM4.2. For all positive integers a and b and for ally` ∈ {0,1}`, ` ∈ N, if CBAY

is run ony` using the noise model

ηa,b(r, s) = s+ a

r + a+ b
,(18)

then MCBAY(y`) is at most

max

{
q ∈ N : q ≤ log N + log

(
q + a+ b− 2

k∗ + a− 1

)
+ log

(
1+ q

a+ b− 1

)
− log

(
a+ b− 2

a− 1

)}
,

where k∗ = M̂best(y`).

PROOF. Fix a andb and letr = MCBAY(y`) whenCBAY uses the noise model (18).
Also let Ei be an expert such that̂Mi (y`) = k∗. Then one can see that the final weight
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of expertEi satisfies

wi (`) =
[∏k∗−1

k=0 (k+ a)
] [∏r−k∗−1

m=0 (m+ b)
]

∏r−1
n=0(n+ a+ b)

.(19)

Note that the ratio given in (19) is the conservative analog of the ratio given in (7) of
Section 3. The bound of the theorem immediately follows by applying Fact 4.2 with
f (r, k∗) equal to the right-hand side of (19) and by applying the following chain of
equalities:

log
1

wi (`)
= log

r−1∏
n=0

(n+ a+ b)− log
k∗−1∏
k=0

(k+ a)− log
r−1−k∗∏

m=0

(m+ b)

= log
(r + a+ b− 1)!

(a+ b− 1)!
− log

(k∗ + a− 1)!

(a− 1)!
− log

(r − k∗ + b− 1)!

(b− 1)!

= log
(r + a+ b− 2)!

(k∗ + a− 1)! (r − k∗ + b− 1)!
+ log

r + a+ b− 1

a+ b− 1

− log
(a+ b− 2)!

(a− 1)! (b− 1)!

= log

(
r + a+ b− 2

k∗ + a− 1

)
+ log

(
1+ r

a+ b− 1

)
− log

(
a+ b− 2

a− 1

)
.

Since each expert’s final weight (as given by (19)) is the probability that the expert
generated the subsequence ofy` where the master predicted incorrectly, Theorem 4.2
can also be proven by expressing these probabilities as ratios of beta functions.

Specific choices for the parametersa andb yield the following bounds.

COROLLARY 4.1. For all y` ∈ {0,1}`, ` ∈ N, if CBAY is run on y` using the noise
model(18)with a= b = 1, then the number of mistakes is at most

MCBAY(y
`) ≤ max

{
q ∈ N : q ≤ log N + log

(
q

M̂best(y`)

)
+ log(q + 1)

}
.(20)

Furthermore, if CBAY is run on the same sequence with the setting a= 1 and b= 2,
then the number of mistakes is at most

max

{
q ∈ N : q ≤ log N + log

(
q

M̂best(y`)

)
+ log(q + 1)

}
− 1.

One might be tempted to optimize the choice of parametersa andb in Theorem 4.2
by guessing the number of mistakes made by the best expert on the sequence to predict.
In Section 4.5 we show that this tuning cannot provide a significant advantage on all bit
sequences. In particular, we show that the bound onCBAY using one of the beta priors
from Corollary 4.1 has the same leading term as the bound for the optimally tuned WM
algorithm.
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4.5. Comparison. The results of Section 4.4 raise two natural questions. First, how
can one optimize the choice ofa andb in the bound of Theorem 4.2? Second, how does
this bound (or its special cases in Corollary 4.1) compare with the bounds (12) and (13)?
Note that bound (13) assumes the knowledge of an upper boundK on the number of
mistakes made by the best expert. As already mentioned in Section 4.4, the knowledge
of such a boundK can also be used to tune the parameterη in (12).

Cesa-Bianchi et al. [3] showed that both (12) with tuned parameters and (13) are
asymptotically optimal in a sense that will be made precise in a moment. In this section
we state that the bounds of Corollary 4.1 are asymptotically optimal as well, even though
the algorithm does not require an upper boundK on the number of mistakes made by
the best expert. As a side-effect of this result we have that no tuning of the parameters
a andb in the bound of Theorem 4.2 can get, at least asymptotically, an advantage over
the bounds proven in Corollary 4.1.

To define asymptotical optimality we use the equivalence relation “∼”, between
infinite sequences of positive integers, defined by〈ai 〉 ∼ 〈bi 〉 if and only if

lim
i→∞

ai

bi
= 1.

Let F = F(Ni , ki ) be the function whose value on(Ni , ki ) is the right-hand side of (20)
whenN = Ni andM̂best(y`) = ki . Similarly, letG = G(Ni , ki ) be the function whose
value on(Ni , ki ) is the right-hand side of (13) whenN = Ni and K = ki . Using
Theorem 3 of [3] and an adaptation of the proof of Theorem 4 of [3] we can show the
following.

THEOREM4.3. For any sequence〈(Ni , ki )〉i>0 of positive integers Ni ≥ 2 and ki such
that eitherlim i→∞ ki = ∞ or lim i→∞ Ni = ∞ there exist a sequence〈mi 〉 of positive
integers and a sequence〈Ei 〉 of sets of experts, with |Ei | = Ni , such that the following
hold:

1. For each i> 0 and for any deterministic on-line prediction algorithm A, there is a
sequencey ∈ {0,1}∗ for which M̂best(y) ≤ ki and MA(y) ≥ mi .

2. 〈F(Ni , ki )〉 ∼ 〈G(Ni , ki )〉 ∼ 〈mi 〉.

PROOF. Omitted.

This theorem is especially interesting in light of recent work by Vovk [13]. He con-
siders a family of expert learning games parametrized by the real valuesc1 andc2. The
learner wins a particular(c1, c2) game if, for all N, for all sets ofN experts, and for
all sequencesy, it makes at mostc1 log N + c2Mbest(y) mistakes on the sequencey
(recall thatMbest(y) is the number of mistakes made by the best of theN experts ony,
thusMbest(y) is an upper bound on̂Mbest(y)). Similarly, the adversary wins a particular
(c1, c2) game if for each master algorithm there is a set ofN experts and a sequencey
such that the master algorithm makes more thanc1 log N + c2Mbest(y) mistakes on the
sequencey.

Bound (12) shows thatCBAY, assuming an i.i.d. noise model with known rateη, is a
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winning strategy for the learner in the game with parameters(
1

1+ log(1− η) ,
log((1− η)/η)
1+ log(1− η)

)
.

In addition to showing this result for WM, Vovk also shows that, when the algorithm’s
predictions are in{0,1}, these pairs define the border between games where the learner
has a winning strategy and games where the adversary wins. Vovk has extended these
results to other loss functions.

It is important to realize that different points on this border between where the learner
wins and where the adversary wins lead to different performances on different sequences.
For example, takingη = 1

3 corresponds to the valuesc1 ≈ 2.4 andc2 = 1 whileη = 1
4

leads toc1 ≈ 1.7 andc2 ≈ 1.6. Thus whenMbest(y) is large compared with logN, the
bound forη = 1

4 can be more than half again as large as the bound forη = 1
3. Similarly,

the bound forη = 1
3 can be nearly half again as large as the bound forη = 1

4 when
Mbest(y) is small compared with logN.

Theorem 4.3 illustrates the power of algorithmCBAY with theηa,b(r, s) noise model
of (18) whena = b = 1. The bound for this version ofCBAY is asymptotically the same
as the bound (13) for BW which, as we mentioned above, is asymptotically equivalent
to the bound (12) for WM using the best value ofη for that particular sequence.

In the continuous prediction case, Cesa-Bianchi et al. [3] showed how a complicated
doubling trick can be used to reestimate repeatedly the best choice forη. In our discrete
loss setting, their bound on the loss of the master becomes

2Mbest(y)+ 8
√

Mbest(y) ln N + 5.6 ln N.(21)

Actually, their doubling scheme allows a limited tradeoff between the constant in front of
the
√

Mbest(y) ln N term and the constant in front of the lnN term. The former constant
can be reduced to about20

3 at the cost of letting the latter constant go to infinity.
Our bounds for algorithmCBAY are in an inconvenient implicit form. By making

several overapproximations, we can convert them into a more comparable form. This
bound is an improvement over the doubling scheme unlessMbest(y) is very large with
respect to lnN.

THEOREM4.4. For all y ∈ {0,1}∗, if CBAY is run ony using the noise model(18)with
a = b = 1 and Mbest(y) ≥ 1, then the number of mistakes is at most

MCBAY(y) ≤ 2Mbest(y)+ 3
√

Mbest(y) ln N + 3Mbest(y)2/3+ log N + 3.(22)

PROOFSKETCH. Let k = Mbest(y). Using bound (20), it suffices to show that when
q = 2k+ log(N)+ 3

√
k ln N + 3k2/3+ 3 we have

g(N, k) = q − log N − log

(
q

k

)
− log(q + 1) > 0.

We first approximate the binomial coefficient
(q

k

)
with (q/(q − k))q−k(q/k)k and then

show that the derivative ofg(N, k) with respect toN ≥ 2 is positive. This requires two
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approximations to the logarithms depending on whether or not logN > k. Once it is
known that the derivative with respect toN is positive, it suffices to show thatg(2, k) is
positive. This can be verified numerically for 1≤ k ≤ 1000. For largerk, we show that
g(2, k) > 0 analytically using fifth-order approximations to the logarithms.

Although straightforward once one has the appropriate approximations, the algebra
involved in the proof is exceedingly tedious. We therefore suggest that the interested
reader verify the theorem by “plot” using a suitable tool such as Maple or Mathe-
matica.

When Mbest(y) = 0, bound (22) does not apply, and the implicit bound of Corol-
lary 4.1 is at least logN + log logN. However, one can show that, for the special case
Mbest(y) = 0,

MCBAY(y) ≤ log(N)+ 3
√

log N,

asq > log(N)+ log(q + 1) whenq = log(N)+ 3
√

log N.
We used theβ1,1 prior to obtain the bound (22). Better exponents on the 3Mbest(y)2/3

can be achieved using different priors (at the cost of increasing the term’s constant).
However, we were unable to find a prior for which the exponent drops to1

2. It is unclear
if this is a natural property of the algorithm or an artifact of the approximations used in
the proof of Theorem 4.4.

5. Performance under Absolute Loss. In this section we consider variants ofBAY

that output predictions in the range [0,1]. We measure the loss incurred by these master
algorithms when their prediction iŝyt ∈ [0,1] and the correct bit isyt ∈ {0,1} with the
absolute loss|ŷt− yt |. Note that if the master algorithm’s predictions are always in{0,1}
(like those of our experts), then the absolute loss and the 0-1 loss measures are identical.
Furthermore, if the Boolean sequence is generated probabilistically according to the
model described in Section 3, the Bayes optimal prediction, minimizing the expected
absolute loss, is always found in{0,1}. Therefore, algorithms which “hedge their bets”
by choosing their predictions in [0,1] are not strictly Bayesian.

We useL A(y`) to denote the total absolute loss of the master algorithmA on a
sequencey`, so if ŷt is the prediction ofA for bit yt , thenL A(y`) =

∑`
t=1 |ŷt − yt |.

Observe that if a master algorithm uses a biased coin to predict 1 with probabilityŷt and
0 with probability 1− ŷt (rather than outputting the valuêyt ∈ [0,1]), then|ŷt − yt |
is the probability (with respect to the coin flip) that the randomized master will make
an incorrect prediction whenyt is the correct bit. Furthermore, the total absolute loss∑`

t=1 |ŷt− yt | of the deterministic master predictingŷt ∈ [0,1] equals the expected total
number of mistakes made by the randomized master.

We consider variants of the master algorithmBAY (described in Figure 2) using arbi-
trary noise modelsη(·, ·) to output predictions that range in the continuous interval [0,1].
Each such master predictor computes the probabilitiesP(0 | yt−1)andP(1 | yt−1). How-
ever, instead of outputting a bit, the master algorithms of this section output a prediction

ŷt = F(P(1 | yt−1))

F(P(0 | yt−1))+ F(P(1 | yt−1))
,(23)
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whereF : [0,1]→ R+ is some monotonically increasing function. One natural choice
for F is the identity function, and different choices ofF lead to different master algo-
rithms.

A good choice forF is the sigmoidal function,−log(1−x), previously used in [2] and
[12]. This function has a nice theoretical motivation, as it is the amount of information
(measured in bits) gained when an event with probability 1− x occurs. For this reason,
we call the master predictor whose predictions are produced using (23) withF(x) =
−log(1− x) theIGAIN master algorithm.

Using standard techniques from [2], it is easy to prove the following result.

THEOREM5.1. For all ` ∈ N and y` ∈ {0,1}`, if IGAIN is run on y` using any noise
model, then

L IGAIN (y
`) ≤ 1

2

[
log N + min

1≤i≤N
log

1

Pi (y`)

]
.(24)

PROOF. For 1≤ t ≤ `, we setrt = P(yt | yt−1), so P(1− yt | yt−1) = 1− rt . We
further defineWt =

∑N
i=1 Pi (yt−1) to be the total weight of the experts at the beginning

of trial t . Since at each trialt IGAIN’ s prediction for bityt is

ŷt = −log P(0 | yt−1)

−log(P(0 | yt−1))− log(P(1 | yt−1))
,

the total absolute loss incurred byIGAIN on the prediction sequencey` is

L IGAIN (y
`) =

∑̀
t=1

|yt − ŷt | =
∑̀
t=1

−logrt

−log(rt )− log(1− rt )
.

Using the fact that the function−log(rt (1− rt )) is minimized forrt = 1
2, we can upper

bound the total loss ofIGAIN by

L IGAIN (y
`) ≤ 1

2

∑̀
t=1

log
1

rt
.(25)

On the other hand, the construction ofIGAIN ensures thatWt+1 = Wt rt on each trialt .
Hence the total final weight of the experts isW`+1 = W1(

∏`
t=1 rt ). SinceW1 = N and

W`+1 ≥ Pi (y`) it follows that

Pi (y`) ≤ W`+1 ≤ N
∏̀
t=1

rt .(26)

Solving (26) with respect to
∏`

t=1 rt and taking the log of both sides yields

∑̀
t=1

log
1

rt
≤ log N + log

1

Pi (y`)
.(27)
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Substituting the upper bound in (27) into the right-hand side of (25) we obtain

L IGAIN (y
`) ≤ 1

2

(
log N + log

1

Pi (y`)

)
.(28)

The bound of the theorem then follows by observing that inequality (28) holds for all
i = 1, . . . , N.

Note that (24) is exactly half of the 0-1 loss bound (8) for algorithmBAY. It would
be nice to devise an algorithm whose expected number of mistakes is at most half the
right-hand side of (10), i.e., the bound forCBAY that does not depend directly on the
sequence length̀. Unfortunately, so far this has been shown (see [2] and [12]) only for
the simple noise modelη(t, k) = η for all t, k ∈ N (0 ≤ η < 1

2). Proving expected
mistake bounds equal to half the right-hand side of (20) when the algorithm is allowed
to make predictions in the [0,1] interval remains an open problem.

The reasons for this difficulty are subtle and relate to the use of the conservativeness
to remove the dependence on` in the bounds. When the algorithm’s predictions are in
{0,1}, the algorithm is either right or wrong. If the prediction is between 0 and 1, then
the algorithm is always partly wrong and must adjust the weights of the experts to help
identify the best expert. On the other hand, if the weights of the experts are in exponential
form ηt (1− η)t−k, as when the noise model isη(t, k) = η for all t, k ∈ N, then bounds
can be proven without resorting to conservativeness. This is because, forη ∈ (0, 1

2),
the weights of all experts can be scaled up at each trial by the factor(1− η) without
changing the algorithm’s predictions. This scaling prevents the drop in weight of those
experts predicting correctly, yet the fact that no weight increases preserves the proofs of
the bounds.

Note that bound (24) is trivial wheǹ< 1/2(log N +min1≤i≤N log(1/Pi (y`))). We
can use a game-theoretic analysis to obtain meaningful bounds for all`. Here we present
such an analysis for a slightly different prediction rule which is easier to analyze. Instead
of the sigmoidal−log(1− x) we use the piecewise linear function (similar to the one
used in [4])

F(x) =


0 if x < (1− ln 2)/2,
1 if x > (1+ ln 2)/2,
x/ln 2+ 1

2(1− 1/ln 2) otherwise.
(29)

This analysis shows that the best strategy for an adversary trying to maximize the total
absolute loss of the algorithm is either to spread the information gain evenly over the
sequencey`, or concentrate it on a subset of the sequence.

Let LIN be the master predictor based on (23) and (29).

THEOREM5.2. For all y` ∈ {0,1}`, ` ∈ N, if LIN is run ony` using an arbitrary noise
model, then we have

LLIN (y
`) ≤

{
` · C if ` < log N + log 1/Pbest(y`),
1
2(log N + log 1/Pbest(y`)) otherwise;
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where

C = min

{
1, max

{
ln 2+ 1− 2

√̀
Pbest(y`)/N

2 ln 2
, 0

}}

and Pbest(y`) = max1≤i≤N Pi (y`).

When` ≥ log N+ log 1/Pbest(y`), Theorem 5.2 gives an upper bound on the total loss of
theLIN algorithm that matches the bound given in Theorem 5.1 forIGAIN. However, if the
length of the prediction sequence satisfies` < log N+ log 1/Pbest(y`), then Theorem 5.2
gives a tighter bound.

Before proving Theorem 5.2 we need some definitions. LetWt =
∑N

i=1 Pi (yt−1)

be the total weight of the experts at the beginning of trialt . Recall that, by definition
of the noise model,W1 = N andWt+1 ≤ Wt holds for allt . We now turn the on-line
prediction model into a game where a predictor plays against an adversary choosing both
the experts’ advice and the bits to be predicted. As Theorem 5.2 must hold for arbitrary
noise models, we also assume that the adversary can choose the experts’ update factors.
However, as the loss bound in Theorem 5.2 is parametrized with respect to the final
weight of the best expert, we require thatW`+1/W1 = c hold at the end of the game,
where the constantc ∈ (0,1) is a parameter of the game. A second parameter of the
game is the number̀of trials. On each trialt of the game:

1. For eachi = 1,2, . . . , N, the adversary chooses the adviceEi (yt−1) and the update
factorηi for expertEi .

2. The predictor computes a valueŷt ∈ [0,1].
3. The adversary chooses a bityt ∈ {0,1} and the predictor is charged a loss of|ŷt − yt |.
It should be clear that any upper bound on the total loss incurred by algorithmLIN playing
the predictor for̀ trials of this game is an upper bound on the total loss incurred byLIN

on any sequencey` ∈ {0,1}` whenN experts and an arbitrary noise model are used.
The predictor’s goal in a game with parametersc and` is to minimize its total loss

over the` trials while the adversary’s goal is to maximize it. LetMAXLOSS(`, c) be the
maximum loss the adversary can force on the predictor when the game is played with
parametersc and`. Furthermore, for each trialt , let rt be the fractionWt+1/Wt of the
total weight voting for the correct valueyt . Note that

∏`
t=1 rt = c. For our purposes, it

is convenient to denote the loss|ŷt − yt | of the predictor at trialt by LOSS(rt ). It is not
difficult to see that, for algorithmLIN,

LOSS(rt ) = min

{
1, max

{
ln(2)+ 1− 2rt

2 ln(2)
, 0

}}
.

We begin with the following simple claim which establishes the best strategy for the
adversary when the game consists of two trials. In this case, depending upon the value
of the parameterc, the best strategy is either to splitc evenly among the two trials or to
concentratec on only one trial and to give up in the other trial.

CLAIM 5.1. For any fixed c∈ (0,1), MAXLOSS(2, c) = max{2LOSS(
√

c), LOSS(c)}.



134 N. Cesa-Bianchi, D. P. Helmbold, and S. Panizza

PROOF. Let r, s be the fraction of the weight voting for the correct outcome on the first
and second trial, respectively. Sincec is the fraction of the weight left at the end of the
game, it follows thatrs = c. Therefore the total loss of the algorithm is

min

{
1, max

{
ln(2)+ 1− 2r

2 ln(2)
, 0

}}
+min

{
1, max

{
ln(2)+ 1− 2(c/r )

2 ln(2)
, 0

}}
.

The claim then follows from the fact that the function(ln(2) + 1 − 2r )/(2 ln(2)) +
(ln(2)+ 1− 2(c/r ))/(2 ln(2)) is maximized whenr = √c.

From Claim 5.1 it immediately follows that, ifc ≤ c∗ = (ln2 2/4)((2/ln 2) −√
2
√

1− ln 2/ln 2)2, then MAXLOSS(2, c) = 2LOSS(
√

c). Namely, the best strategy
for the adversary is to splitc evenly among the two trials. Similarly ifc ≥ c∗, then
MAXLOSS(2, c) = LOSS(c), as the adversary’s best strategy is to concentratec on only
one trial and to give up in the other trial.

Claim 5.1 establishes the best strategy for the adversary when` = 2. The next result
generalizes this strategy to the case` > 2. A reasonable generalization consists in setting
r1 = · · · = r` =

√̀
c. However, as in thè = 2 case, for some choices ofc the adversary

maximizes the predictor’s loss by “giving up” some trials and concentrating the fraction
c on the remaining trials. For each fixedc ∈ (0,1), let`∗ = `∗(c) be the smallest integer
` achievingMAXLOSS(`, c) = maxt≥1 MAXLOSS(t, c). Observe that, for any parameter
0 < c < 1 of the game, the valuè∗(c) achieving the maximum loss is finite. This
follows from the fact that the total weight of the experts drops by at least a factor of
(1− ln 2)/2 on each of the trials where the algorithm incurs a positive loss.

CLAIM 5.2. For any fixed c∈ (0,1),

MAXLOSS(∞, c) = max
`≥1

MAXLOSS(`, c) = `∗ LOSS( `∗√c).

PROOF. Let S = (r1, . . . , r`∗), wherert = Wt+1/Wt for eacht = 1, . . . , `∗, be the
sequence of splits maximizing the predictor’s total loss. Without loss of generality, we
can assumert < 1 for all 1 ≤ t ≤ `∗. For the purpose of contradiction, assume that
there is at such thatrt 6= `∗√c. Then, as

∏
t r t = c must hold, there must bet ′ 6= t such

thatrt 6= rt ′ . Without loss of generality lett = 1 andt ′ = 2. We now proceed by case
analysis.

Case1: (1− ln 2)/2< r1, r2 < (ln 2+1)/2. Using Claim 5.1 we can consider the two
following subcases. Ifr1 · r2 ≤ c∗, thenMAXLOSS(2, r1 · r2) = 2LOSS(

√
r1r2). Therefore

the sequenceS′ = (r ′1, r ′2, r3, . . . , r`∗), wherer ′1 = r ′2 =
√

r1r2 gives a higher total loss,
contradicting the fact thatS is the sequence maximizing the total loss. On the other
hand, ifr1 · r2 ≥ c∗, thenMAXLOSS(2, r1 · r2) = LOSS(r1 · r2), therefore the sequence
S′ = (r ′1, r

′
2, r3, . . . , r`∗), wherer ′1 = 1 andr ′2 = r1 · r2, can give a higher total loss.

Now, if S is different fromS′, then the assumption thatS′ is the sequence maximizing
the predictor’s loss is contradicted. IfS= S′, it must be the case thatr1 = r ′1 andr2 = r ′2
or vice versa. However, both these cases contradict the assumptionr1, r2 < 1.
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Case2. When eitherr1 or r2 lies outside the interval [(1− ln 2)/2, (ln 2)+ 1)/2], the
proof proceeds similarly to that of case 1.

An explicit formula for the maximum loss incurred by theLIN predictor is given by
the following result, which easily follows from Claim 5.2.

COROLLARY 5.1. For any fixed c∈ (0,1),

MAXLOSS(∞, c) = max

{⌈
log

(
1

c

)⌉
LOSS( dlog(1/c)e√c),

⌊
log

(
1

c

)⌋
LOSS( blog(1/c)c√c)

}
.

PROOF. From Claim 5.2 and the fact that the function` LOSS(
√̀

c) is maximized when
` = log(1/c) we obtain

MAXLOSS(∞, c) ≤ LOSS( log(1/c)
√

c) log
1

c
.

The thesis then follows from the fact that the function` LOSS
(√̀

c
)

is concave.

In order to prove Theorem 5.2 we need one further claim which establishes the strategy
played by the adversary as a function of the number` of trials to be played. Note that,
for any 0< c < 1, `∗(c) is the minimum number of trials for which the adversary is
able to apply its best strategy. Thus, when` < `∗(c) the adversary does not have enough
trials to apply such an optimal strategy and the loss incurred by the algorithm is smaller.

CLAIM 5.3. For any fixed c∈ (0,1), the following hold:

∀` ≤ `∗, MAXLOSS(`, c) = ` LOSS(
√̀

c),

∀` ≥ `∗, MAXLOSS(`, c) = `∗ LOSS( `∗√c).

We are now ready to prove the main theorem of this section.

PROOF OFTHEOREM5.2. Let y` be the sequence of length̀to be predicted and let
c = W`+1/W1 be the fraction of the initial weight left after all bits have been predicted.
Recall thatWt =

∑N
i=1 Pi (yt−1) and Pbest = Pbest(y`) = max1≤i≤N Pi (y`). Clearly,

W`+1 ≥ Pbest implying c ≥ Pbest/N. This in turn implies

MAXLOSS(`, c) ≤ MAXLOSS

(
`,

Pbest

N

)
.(30)

Now, when logN/Pbest≤ `, it follows from Claim 5.3 that

MAXLOSS

(
`,

Pbest

N

)
≤ LOSS

((
Pbest

N

)1/log(N/Pbest)
)
· log

N

Pbest
= 1

2 log
N

Pbest
,
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which substituted in (30) gives the first of the two bounds of the theorem. When
log N/Pbest> `, we can obtain a better bound since the adversary does not have enough
trials to apply its best strategy. In this case it follows that

MAXLOSS

(
`,

Pbest

N

)
= ` LOSS

(√̀
Pbest

N

)

= ` ·min

{
1, max

{
ln 2+ 1− 2

√̀
Pbest/N

2 ln 2
, 0

}}
,

which substituted in (30) proves the second bound of the theorem.

6. Conclusions. We have examined the problem of predicting the bits of an unknown
sequence using the advice of experts. If the unknown sequence is viewed as a corrupted
version of an expert’s advice, then Bayesian predictors can be defined. Bounds on the
performance of these predictors can be improved by making the predictors conservative.
Several existing algorithms, such as the WM and BW algorithms, can be derived in this
way.

If we assume that the corruption is due to i.i.d. noise with a rate which is unknown, but
drawn from a beta distribution, then we can define algorithms based on mean posterior
estimates. We show that algorithms of this type are asymptotically optimal under the
0-1 loss, and they have the same asymptotic performance as existing algorithms which
require more information about the true noise rate.

When the algorithms are allowed to “hedge their bets” by predicting a value in [0,1] we
use the absolute loss to measure their performance. The analysis of one such algorithm
(algorithm LIN of Section 5) involves interesting techniques. We show that the best
adversaries split the loss evenly over some of the trials and inflict no loss on the others.
When we started this research we hoped to find an algorithm for the experts setting
with absolute loss bounds exactly half of the 0-1 loss bounds for the (conservative)
BW algorithm. This seemed an attractive problem since the BW algorithm has the best
known 0-1 loss bounds in the experts setting (although it does require significant side
information), and the other important algorithms all had absolute loss variants with
bounds equal to exactly one-half of their 0-1 loss bounds. It remains open whether or
not there is an algorithm whose absolute loss is at most half of the BW algorithm’s 0-1
loss bound.
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