Algorithmica (1998) 22: 112-137 AI g O r|th m | Ca_

© 1998 Springer-Verlag New York Inc.

On Bayes Methods for On-Line Boolean Predictiof
N. Cesa-Biancht,D. P. Helmbolcf and S. PanizZa

Abstract. We examine a general Bayesian framework for constructing on-line prediction algorithms in
the experts setting. These algorithms predict the bits of an unknown Boolean sequence using the advice of a
finite set of experts. In this framework we use probabilistic assumptions on the unknown sequence to motivate
prediction strategies. However, the relative bounds that we prove on the number of prediction mistakes made
by these strategies hold for any sequence. The Bayesian framework provides a unified derivation and analysis
of previously known prediction strategies, such as the Weighted Majority and Binomial Weighting algorithms.
Furthermore, it provides a principled way of automatically adapting the parameters of Weighted Majority to
the sequence, in contrast to previous ad hoc doubling techniques. Finally, we discuss the generalization of our
methods to algorithms making randomized predictions.
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1. Introduction. A fundamental problem in learning theory is to predict the bits of an
unknown Boolean sequence. The problem is uninteresting when the algorithm is required
to minimize its worst-case number of mistakes over all sequences, as no algorithm can
do better than random guessing. A richer problem results if the algorithm is given a
(finite) set of models and the sequence is reasonably close to that generated by one
of the models. Now interesting “relative” mistake bounds that depend on the distance
between the unknown Boolean sequence and the closest model can be proven. This
is sometimes referred to as the “experts” setting, since the models can be viewed as
“experts” providing “advice” to the algorithm. Variants and extensions of this experts
setting have been extensively studied by Littlestone and Warmuth [10], Vovk [12], Cesa-
Bianchi et al. [2], [3], Haussler et al. [6], and others in the area of computational learning
theory. Here we use a Bayesian approach to derive prediction algorithms with good
performance in the experts settings. A crucial aspect of this work is that although the
algorithms are derived by making probabilistic assumptions about the generation of the
sequence to be predicted, they are analyzed in the adversarial experts setting.

In this experts setting, a “master algorithm” attempts to predict, one by one, the bits
of an unknown sequence. Before predicting each bit, the master is allowed to listen
to the “advice” provided by a pool dfl experts. After each bit is revealed, the master
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incurs dossmeasuring the discrepancy between its prediction and the corresponding bit.
Similarly, each of the expertsincurs aloss based onits advice. For Boolean predictions we
measure the performance of the experts and of the algorithm with the 0-1 dissiete

loss, which simply counts the number of prediction mistakes. Instead, when the master’s
predictions range in the continuous interval [0,1] we usethsolutdoss|y — §|, where

y is the master’s prediction for bjt Our goal is to design master algorithms whose total
loss onarbitrary sequences is within a constant factor to that of the best expert. Thus the
bounds proven anelativeloss bounds, since they typically depend on both the number

of experts and the loss of the best expert on the sequence observed. Although the bounds
hold for all sequences, the value of the bound can change as the loss of the best expert
increases.

Several algorithms with good relative loss bounds associate a weight with each expert
and predict with a weighted combination of the experts’ advice. After each bitis revealed,
these algorithms slash the weights of those experts giving bad advice by a multiplicative
update factor We call these algorithms “multiplicative” since they use multiplicative
factors to update the weights of the experts. The essential property of these multiplicative
algorithms is that experts making many mistakes get their weights rapidly slashed, thus
reducing their influence on the voting.

Most multiplicative algorithms use a parameter estimating the loss of the best experton
the sequence totune their update factors. When tuned optimally, multiplicative algorithms
have asymptotically optimal relative loss bounds for some 0-1 loss [3], [10] and absolute
loss [2], [7] settings. Vovk [13] shows that multiplicative algorithms are optimal in a
different way. He shows that if any master algorithm can achieve the relative loss bound
aL + blogN (wherelL is the loss of the best expel, is the number of experts, ard
andb are constants), then a properly tuned multiplicative algorithm has the same relative
loss bound.

In the simplest case where all predictions and outcomes are Boolean, two main mul-
tiplicative algorithms for combining the predictions of the experts have been proposed:
the basic Weighted Majority (WM) algorithm [10], and the Binomial Weighting (BW)
algorithm [3]. Although both algorithms use the weights in a similar way, their different
update factors makes the form of their weights quite different. WM uses a fixed update
factor which leads to weights that are in exponential form. In contrast, BW uses a variable
update factor which depends on the current mistake count of the expert as well as on the
current mistake count of the master. This update method leads to weights that are sums
of binomial tails rather than exponentials.

Another difference between the WM and BW algorithms is that BW does not update
the weights of the experts when it predicts correctly. Algorithms which only update the
weights when they predict incorrectly are caltamhservativeThe bounds for WM apply
whether or not the algorithm is run conservatively.

Cesa-Bianchi et al. [3] have compared the relative bounds of the WM and BW algo-
rithms. They showed that if both algorithms are properly tuned, then the BW algorithm
has the better 0-1 relative loss bound in the experts setting. Thus, under the 0-1 loss,
binomial weighting schemes seem to encode more useful information about the experts
than exponential weighting schemes. In many situations (see [3]) this enables the BW
algorithm to follow more quickly the predictions of the best expert and thus reduce its
additional loss over the loss of the best expert.
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Although both the WM and the BW algorithms are tuned through a parameter estimat-
ing the loss of the best expert, the BW algorithm relies more heavily on this information.
One can easily obtain bounds on the performance of the WM algorithm, even when it is
poorly tuned. In contrast, the BW algorithm is not robust: it can fail if the best expert has
loss exceeding the given estimate. Thus a desirable goal is to develop on-line multiplica-
tive algorithms that retain, at least asymptotically, the optimality properties of binomial
weights while gaining the robustness of exponential weights. The purpose of this paper
is to show the existence of such on-line learning algorithms and to provide more insight
about the properties shared by binomial and exponential weighting schemes.

The first step in unifying the binomial and exponential weighting schemes is to
consider an on-line prediction problem where explicit probabilistic assumptions are made
about the sequence to be predicted. In particular, we assume that the unknown sequence
is generated by first selecting an expert at random according to some prior distribution
over the experts set and then by corrupting the selected expert's predictions with a
noise proces$Different Bayes optimal prediction algorithms result from different noise
assumptions, and a simple condition on the noise process guarantees that the resulting
Bayes optimal algorithm is equivalent to a weighting scheme on the experts. It is then
straightforward to convert these Bayesian learning algorithms into the corresponding
multiplicative algorithms. The multiplicative algorithms derived in this way are then
analyzed within the adversarial framework of the experts setting. This procedure enables
us to obtain new algorithms as well as previously known multiplicative algorithms such
as WM and BW, providing more insight into various weighting schemes.

For example, when the noise process is i.i.d. with a knownydiee., each bit in
the unknown sequence differs from that predicted by the selected expert with fixed
probability n) the Bayes optimal algorithm for the 0-1 loss reduces to the WM [10]
algorithm. When the sequence to be predicted is of known length and is equally likely to
be any of the sequences within Hamming distalkaaf the selected expert’s predictions,
then we obtain the BW algorithm.

If the noise process is i.i.d. with an unknown rate selected according to a beta dis-
tribution, then we obtain another family of Bayesian prediction algorithms using mean
posterior estimates and the corresponding new family of multiplicative algorithms. We
call this new family of multiplicative algorithms Bayesian Binomial Weighting (BBW)
algorithms. Like the BW algorithm, this new family updates its weights using an update
factor that depends not only on the current mistake count of the experts, but also on the
current mistake count of the master algorithm. This leads to weights that are also in bino-
mial form. Although the original Bayesian algorithms assumpéar distribution on the
noise rate, the derived BBW algorithms are robust, and their performance in the experts
setting can be bounded even when this prior grossly misestimates the true behavior of
the experts on the bit sequence.

Like the BW algorithm, we can prove better bounds for this new family of algorithms
whenthey are run conservatively, i.e., they ignore those trials where they predict correctly
and only update the experts’ weights when an incorrect prediction is made.

We have also derived an adversarial technique that enables us to study in more detail

4 Littlestone [8] has recently used a similar technique in a different setting to obtain an algorithm for predicting
linearly separable boolean sequence (see the discussion in Section 4.2).
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Table 1. Summary of notation used in the paper.

Notation Description

Ei (Y1) Prediction of experE; at timet given the sequencé—?!

M; (Y Number of prediction mistakes made by exggrion the sequencg

Mpes(y') Number of prediction mistakes made by the best expert on the seqgylence

l(/l\i ) Number of prediction mistakes made by exggrton those bits of* that are also
R incorrectly predicted by the master

Mpes(y') The minimum (over the experts) of t; (y') values

n Noise rate (used in Section 3)

n(,-) Noise model (used in Section 4)

the performance of the BBW algorithms under the absolute loss. Despite the fact that
we derive our technique for a special family of algorithms, we believe that this style
of analysis can give insight into the performance of other algorithms as well. Although
the performance bounds for this new family improve when the absolute loss measure
(instead of the 0-1 loss) is used, we have been unable to show the falgimpnfovement

that the exponential update algorithms exhibit (see [2]).

The paper is organized as follows. Section 2 describes the experts setting. The
Bayesian framework and some families of Bayes optimal algorithms are discussed in
Section 3. These algorithms are turned into (conservative) algorithms for the on-line
prediction model in Section 4, where we also compare their mistake bounds. Finally, in
Section 5 we study the performance of these on-line prediction algorithms with respect
to the absolute loss.

Notation Throughout, log and In denote the binary and natural logarithms, respectively,
andN denotes the nonnegative integers. {@&t1}* be the set of all Boolean sequences
of finite (including zero) length and 1¢0, 1}*° be the set of all Boolean sequences of
infinite length. We use to denote a Boolean sequence of finite unspecified length and
y* to denote a Boolean sequence of lengitiivheny is set by the surrounding context,

y denotes the lengthprefix of y andy; denotes théth bit of y. The empty sequence of
length 0 is denoted by°. An on-line (Boolear) predictoris any function from{0, 1}*

to {0, 1}. For an on-line predictoA we define

Ma(Y) = [t : AW D #y, 1<t < ¢}

as the number of prediction mistakes madefbyn the sequency . Table 1 contains a
summary of some other notation introduced later in the paper.

2. An Overview of the Experts Setting. In the on-line prediction framework of
Littlestone and Warmuth [10] there akeexpertq Ey, . .., En}, each of which is an on-
line predictorE;: {0, 1}* — {0, 1}. At each time step, the “master predictor” combines
the expertsadvice E1 (YY), ..., En(Y*™1), to produce its own predictiof for bit y;.
Note that the advice of each expert can depend on the previously seen i{bwf



116 N. Cesa-Bianchi, D. P. Helmbold, and S. Panizza

not on the “future” ones). Two examples of experts allowed by the above definition are
the one that always predicts the previous bitypind the expert that predicts with the
exclusive-or of the previously seen bits. Furthermore, the master algorithm does not get
the structure or definition of the various experts, but only their advice on the current (and
previous) bit(s) ofy.

In the simple case where the master’s predictions are booleany;ie.{0, 1}, the
performance of the master algorithm is measured by the number of mistakes it makes
when both the sequence of bits and the predictions of the experts are chosen by an
adversary. Thus the goal is to prove mistake bounds on the master algorithms which
hold for all sequences. Clearly, some sequences (such as when all the experts predict
perfectly) are much easier on the algorithm than others (such as when the experts’ advice
is not correlated with the bits to be predicted). One obvious way to measure the difficulty
of a sequence is with the number of mistakes made by the best expert on the sequence.
Thus meaningful mistake bounds in the experts setting depend olNbtite number of
experts, and the number of mistakes made by the best expert on the actual sequence of
bits observed. Although the setting is adversarial, it is inappropriate to call the analysis
worst casesince the resulting bounds depend on the particular sequence observed. We
use the termelative boundgas advocated by Yoav Freund) for this style of analysis
since the value of the algorithm’s mistake bound is relative to the “difficulty” of the
sequence being predicted.

Different algorithms for the on-line prediction model with experts have recently been
proposed [2], [7], [10], [12], both for the simple setting in which all the predictions
are Boolean and for the more general setting in which the experts’ advigeratig:
master’s predictions are chosen in the interval [0,1]. All these algorithms share the same
general multiplicative weighting scheme which we mentioned in the Introduction. For
each experE; and for each time stetpa weightw; (t) is maintained. These weights are
used to combine the advice of tiN experts on bity; in order to produce the master
algorithm’s own prediction. After receiving the actual valueygfthe master algorithm
may adjust the voting weight of each expErt multiplying it by a suitable update factor.

As outlined above, the two main ingredients in designing master algorithms are the
weighting schemeused to weight the advice of the experts, andphegliction func-
tion, used by the master algorithm to convert the weighted average of experts’ advice
into a prediction. Bayes theory provides a clear and theoretically sound basis to de-
rive master algorithms whose weighting schemes and prediction functions meet certain
requirements.

3. The Bayesian Framework. Following the work of Haussler and Barron [5], in this
section we present a general Bayesian framework for sequentially predicting Boolean
sequences by combining the advice of a finite set of experts. Throughout the section we
assume that a “noise model” is associated with each expert and that the seyuisnce
generated by first selecting an expert at random (according to some prior distribution
Q over the sefE;, ..., Ex}) and then by corrupting that expert’s predictions using

its associated noise model. In other words, each bit of the unknown sequenree

vi, ..., Y, differs from that predicted by the selected expert with a probability that
depends on the assumed noise model for that expert.
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The Bayes decision rule is an optimal prediction strategy (i.e., it minimizes the prob-
ability of an incorrect prediction or the expected total number of mistakes) in this prob-
abilistic setting. On each round this rule simply outputs the label with the highest
posterior probability (having segfi™1), i.e.,

0 — -1
1) i = arg max Pyl y™.

whereP is a probability distribution ovef0, 1}°° (equipped with the natural-algebra)
that is determined by the experts’ predictions and by the noise model. \Whsra
distribution over{0, 1}*°, we useP(y') to denote the measure of the set of all infinite
sequences with prefiy.

Rule (1) is especially easy to compute when we express the probabilty y*—1)
as a sum over the expert &, .. ., En},

N
Py |y =) Pyly LE)PE | Y.

i=1

To simplify our notation we abbreviat(y' | E;) by P, (y"), so
N
Py Iy ™H=>Y Ryl Yy HPE | Y.
i=1

The first factor in each summanBg,(y | y*=1), is simply the probability, under expert
E;, that thetth bit of the sequence will bg given that the previous — 1 bits were

Y1, ..., Yi—1. In particular, ify = E; (y'~1), whereE; (y'~1) is the prediction of expert

E; at timet, then we can view the probabilitg; (y | y*~%) as measuring the chance
(under the assumed noise model for exfigjtthat the bity; is notcorrupted. Similarly,

P (1 -y |y 1) is the chance that the bjt is corrupted by the noise model associated
with expertE;. The second facto®(E; | y*~1), represents the posterior probability
that expertE; was selected given that we have observed the py&fix Thus each term

in the sumZiN=l P(y | Y HP(E | y1) represents the contribution of one expert,
weighted according to its posterior probability, to the chance that the next outcome will
bey € {0, 1}. By applying the Bayes rule, we can compute the posterior probability
P(E; | y1) in terms of the prior over the expert®(E;), and the likelihoodP, (y*~1)

of y'~1 underE;,

P(yYHQ(E)
Yic..ny PO DQE)

whereP; (y°) is defined to be 1. Although the following trivially generalizes to nonuni-
form priors, the presence of the prior complicates the notation and obscures the points we
wish to make. Therefore we now assume that the i@y is uniform, soQ(E;) = 1/N

fori =1,..., N. Since the uniform prior makes the factor multiplyiRg y* 1) in (2) the

same for ali, the Bayes optimal predictiof can be written in the following equivalent
form:

) PE |y =

N
©) $i =arg maxy Ry |y HRY ™.
yel0.1} i
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On-Line Predictor GBP

Input A setEy, ..., En of experts and a noise model defining distributions
Py, ..., Py over{0, 1}*.
Fort=1,2...

LYY, RAy DRy =N, ROy HR(yD), then pre-
dict 1 for bit y;; otherwise predict 0.
2. Observe bity.

Fig. 1. The general Bayesian predicteBP.

As shown by (3), the Bayesian predictor uses the distribut{@hy'., to determine

the conditional probabilities of each label, and predicts with the most likely one. The
“general Bayesian predictor” @asp which is derived from schema (3) is summarized
in Figure 1. Observe that the predictiginchosen bycBP minimizes the “mistake prob-
ability” according to the current mixturgP (E; | y*=H} ;. Thatis,

4 P # % I Y H=min{P(yy #0 |y, Py #1] y"Hl.

Although the predictor’s goal in a Bayesian framework is to minimize the mistake
probability or the expected total number of mistakes, Bayesian algorithms can also
be analyzed in an adversarial setting. The following well-known result (see, e.g., [5])
bounds the performance of the Bayesian predictr within the adversarial experts
setting. This result shows that the number of prediction mistakes madergn any
sequencey is bounded by the log-likelihood of under the best model. Precisely, we
have the following:

LemmMA 3.1. For any positive integer Nlet {Py, ..., Py} be a set of N probability
distributions over{0, 1}°°. Then for any sequencg’ € {0, 1}¢, ¢ € N, the total number
of prediction mistakes made kagPon y* is at most

) 1
(5) Mcep(Y) < logN + 12?|5nN log %)

ProoF Note thatP(y') < P(y'™1) holds for all 1 < t < ¢ and that (4) implies
P(y') < P(y*~1)/2 for all t such thaty; # Y. Therefore,

P (YY) —m
mey| N <P =2
wherem = Mggp(y%) andP(y*) = (1/N) Zi’\‘zl P (y%). Solving the above with respect
to Mggp(Y*) gives the bound. O

Different noise models produce different versions of the Bayes optimal predictor
(cBP). We now present two versions of the Bayesian predicir which are used in
section 4 to derive master algorithms.
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Algorithm n-GBP. Perhaps the simplest noise model is when the expert’s predictions
are corrupted by an i.i.d. noise process with fixed rate @ < % Using this noise
model, the probabilities in (3) are easily seen to be

e [n if y#E(,
PylYy ™= {1_ n  otherwise;

andP, (YY) = [TV Py | Y'Y = 9 (1 —n)*~, wherek; is the number of mistakes
made byE; on the sequency . We call the Bayesian predictor that uses the above
probabilitiesn-GBP.

Algorithm 8, ,-GBP.  The Bayesian predictar-GBPis based on the simplistic assump-
tion that the noise model is characterized by a fixed rateiD< % However, in many
applications such strong knowledge is not available and thus a different solution for the
prediction problem must be sought. In these cases the Bayesian paradigm suggests that
one should assume a prior distribution on the parameter space and use this prior together
with evidence from the sequence to estimate the noisé ratiynamically. Thus we
now assume that the sequendds generated by first selecting the relevant expert and
the noise rate from the appropriate prior distributions, and then using the selected noise
rate to corrupt the predictions of the relevant expert. The Bayes optimal prediction (3)
is then computed using the posterior mean as an estimateTdfe only problem we
are left with is the choice of the priqr for 5. It is convenient to choose so that the
posterior distributiorP, (- | y') with respect tqu is easily computable for each exp&t
This of course depends on the interaction betweand the distributior, . A posterior
P (- | ¥ whose distribution is in theame familyas the priog is found whenevep is
chosen in the conjugate family of distributions far(see, e.g., p. 130 of [1]). We now
describe the Bayes optimal predictor that results when the beta distribution is chosen as
the prior.

Let the prior distribution om be a beta distribution with parametexs > 0 where
now n ranges in the interval [A]. The corresponding density function with respect to
the dominating Lebesgue measure onlf[ds

n* ML —m°t

Bab(n) = foléa_l(l PR d“g“’

and its expected valuedg (a+b). Observe that by changing the setting of the parameters
a andb we obtain different distributions. For instance, choicesafidb for whicha > b
correspond to a distribution skewed to the right, and vice versa. The noise model now
picks a noise rate using tifa () distribution, and the outcomes are then produced by
corrupting the chosen expert’s predictions with i.i.d. noise at the chosen rate.

We can now compute the probabilities in (3) using the new noise model by considering
the two cases; (y'™1) = y and E;(y'™) # y. Recall that each distributioR is

5 Although we use the same notation fothe reader should observe that in this Bayesian contisxactually
arandom variable, rather than a fixed value. For a detailed description of the Bayesian paradigm see [11].
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completely determined by the predictions of exggrand the assumed noise model. Let

P, be the product measuR® x B8, p and letk; be the total number of prediction mistakes
made byE; ony*~1. Then

1
©®  Rylyh = /0 By |y B |y Y dn

1
|Ei<y“1>—y|/0nmn |y Yy dy
1
- |Ei(y‘—1>—y|>/0<1—nm<n Iy Y dy

EG Y-yl <&>

t—1+a+b

+<1—|Ei(y‘—1)—y|>(1— ki +a )

t—1+a+b

The last equality follows by noting that when the noise process is i.i.d. the posterior
density ofy is in the same form as th&, , prior density with the parametessandb
replaced bya’ = ki + aandb’ =t — 1 — k + b. The estimate given by (6) is usually
referred to as theean posterior estimatBlote thak; is zero when = 1, so the estimate
produced by (6) is/(a + b), the mean of the beta prior density. The simplicity of this
method of estimation is one of the reasons beta densities (which are a special case of
the Dirichlet densities) are so attractive. From (6) it is easy to see that the probability
P (y*~1) reduces to

[+ )] [T  m+b)]

(7 R(y™ = -
' M2 +a+b)

When the distributions in (3) are computed as described by (6) and (7), we obtain a new

family of Bayes optimal predictors which we c#@li p-GBP. As we will see in the next

section, thes, ,-GBP predictor can be rephrased as a multiplicative weighting scheme,

leading to a new family of multiplicative algorithms for the adversarial experts setting.

4. Multiplicative Weighting Algorithms.  We are now ready to formulate and analyze
the class of multiplicative algorithms that arise from the Bayesian prediction framework
discussed in Section 3. Since we present algorithms derived from Bayesian learning
algorithms, probabilities will still appear in the formal descriptions of the algorithms.
However, the relative loss bounds we prove do not make probabilistic assumptions about
how the bit sequence to be predicted is generated. That is, we analyze the performance
of the derived algorithms in the adversarial framework of the experts setting.

In the first part of the section we investigate the properties shared by all weight-
ing schemes derived from the Bayesian paradigm (3). Section 4.2 contains a simple
modification to these Bayesian weighting schemes that leads to improved bounds. This
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modification allows us to rederive existing master algorithms as well as a new family of
binomial prediction algorithms.

4.1. From Bayesian Prediction to Weighting Schemeshis section shows how the
Bayesian predictogBP can be used in the experts setting. Recall tetcomputes the
sumsY L, P(y | Y1) - Py for bit y = 0 and for bity = 1, and then predicts the
value having the largest sum. This suggest that when predicting teibithe experts
setting, each expert should have the weiBfit'~1). Moreover, the “vote” of experf;
should be split between the predictidggy' ) and 1— E; (Y1) in the same proportions
that P (E; (1) | y=1) and 1— P (E; (1) | y*=1) split unit probability. ExperE;’s
weight should then be multiplied by the update fad®ty; | y*~1) after the valuey; is
revealed. Note that the update fac®ry; | 1) is equal toP; (E; (y*™Y) | y*~1) when
E;’s advice on bity; is not corrupted and to & P, (E;(y*™1) | ¥*~1) whenE;’s advice
is corrupted by the noise model associated to exipert is now quite easy to rephrase
our Bayesian predictarspin term of weighted voting schemes. Once one has specified
a “noise model,” the prediction method and update factors follow naturally.

To make this more precise, we start by reinterpreting the noise model as an up-
date factor. Our goal is to use different update factors for the various experts’ weights
depending on the accuracy of each expert’s previous predictions on the observed se-
guence. Therefore, moise modein the experts framework is a parametrized update
factorn(t, k) € (0, 1), where the first argumenhmeasures the length of the (previously)
observed sequence and the second arguknemints the number of prediction mistakes
made by the expert on the (previously) observed sequence. Hence, at the end of the first
trial each expert’s weight will be multiplied by the update faet@, O) if its advice was
wrong, or by 1— 5(0, 0) if it predicted correctly. Similarly, after observing on trial
t, the probability (or weightP; (y'~1) of expertE; should be multiplied by the update
factorn(t — 1, M (') if Ei(y'™1) # y and by 1— n(t — 1, M; (y*~Y)) otherwise,
whereM; (y'~1) is the number of prediction mistakes madeByon y*—1, i.e.,

MY D =(s:E(y ) #y, L<s<t—1).

Note that for each expeH; we have, at each tria| two possible update factors which
sumto 1. Several master algorithms where the update factausaoemalizedi.e., they
do not sum to 1, have been proposed and analyzed. However, normalized update factors
arise naturally in weighting schemes derived from the Bayesian paradigm.

The above interpretation of the noise model as an update factor leads to the master pre-
dictorsay sketched in Figure 2, which is derived from the Bayesian predigpdefined
in Section 3. Note that in Figure 2 we usg b” to denote the sequence resulting when bit
bis appended to the end of the sequencBhusP; (Y1, b) is the probability, according
to P, of the sequenc@y, . . ., yi_1, b). FurthermoreP, (y*=%, b) = P (b| Y )P, (y* 1)
and P (b| y'~1) is eithern(t — 1, M (y*™1) or 1 — n(t — 1, M; (y*1)) depending on
whether or nob = E;(y'~1). The relative loss bound (5) @fBP carries over t@AY
leading to the bound

. 1
(8) Mgay (") < logN + L log Ry
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On-Line Predictor BAY

Input A setEs, ..., Ey of experts and a noise modegl
Initialization: Let P, (y°) = 1 andn; = (0, 0) for eachi =1, ..., N.
Fort=1,2...

1. Foreach =1,..., N
letP (y'" L, Ei(yh) = A—n) Ry HandR (Y1 1-Ei (Y1) =
nP (Y.

2. IfZiN:l Pyt 1) > ZiN:l P.(y*~1, 0), then predict 1 for bit;; oth-
erwise predict 0.

3. Observe bity.

4, Foreach =1,...,N
compute the new update factogs= n(t, M; (Y")).

Fig. 2. The master predict@®ay .

4.2. Conservative Algorithms This subsection presents a modification to the master
algorithmBay leading to improved performance bounds. Bound (8) relies on the facts
that:

1. EverytimeBAY makes a mistake, the sum of the probabilities assigned to the observed
sequence by each expert is (at least) halved.
2. After ¢ bits have been revealed, this sum is at l&asy*) forany 1<i < N.

However, the probability (or weight,, of any experts;, often drops even whegay
predicts correctly. This can be partially remedied by using a conservative vargxvt of
which we callcBay. This conservative variant skips the weight update step whenever it
predicts correctly, essentially ignoring those trials where it makes a correct prediction.
Since a Bayesian algorithm makes its prediction based on all of the information acquired
during the previous trials, this variant can no longer be considered a Bayesian algo-
rithm (with respect to the original assumptions). This encourages us to use a different
(nonprobabilistic) notation for its weights.

Littlestone and Mesterharm [8], [9] independently explored a slightly different path to
obtain a closely related family of algorithms. They call these algorithms “Apobayesian”
in order to emphasize their Bayesian roots, while making it clear that they are are not
themselves Bayesian (in the usual sense). Their algorithms are designed for the more
general problem of learning disjunctions or other linearly separable functions of the
expert’s predictions, and their analysis revolves around measuring the progress toward
a target distribution. Although the problems they consider are more general, we are able
to obtain better bounds for the simpler experts setting considered here.

Before analyzing the conservative variants of our algorithms, we need the following
definition. Let

Mi(Y)=H{t:1<t<e E(y™) #yAcear(y ™) # will

be the number of prediction mistakes madeHyin previous trials where the master
made a mistake as well.
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On-Line Predictor CBAY

Input A setEy, ..., Ey of experts and a noise model
Initialization: Let w; (0) = 1 andn; = (0, 0) for each 1<i < N. Set the
mistake countemto O.

Fort=12,...
1. Foreach =1,..., N
let w = (1 — n)wi(t — 1) and letw'™ = pwi(t — 1), where
X = Ei(y).

YN wh = 3N w?, then predict 1 for bity; otherwise predict O.

3. Observe bit;.

4. If amistake occurredthen setw; (t) = wiy', compute the new update
factorsny; = n(m+ 1, Mi (y)), and increment the mistake countar
by 1.

5. If no mistake occurregthen foreachh = 1,..., N
setw; (t) = wj (t — 1). (The update factors also remain unchanged.)

N

Fig. 3. The conservative master predicttBAy .

Despite the change in notation, algoritlumay in Figure 3 is similar to the master
predictorBay of Figure 2. The essential difference is tlza@ay skips the update step
whenever its prediction is correct. The algorittuBay uses aweightw; (initially set
to 1) for each experE;. After observing any sequengé, the current weightu; (t) of
expertE; corresponds to the probabilify; (according to the noise model) assigned to
the subsequence gf consisting of only those trials wheosAy made a mistake. Unlike
the B’s computed bAy, the weights used byBAy cannot be defined independently for
each expert: their values depend on whkieay makes mistakes, which in turn depends
on the behavior of the other experts. Therefore, the weights) have an implicit
dependence on the particular runasfay.

The analysis oEBAY is easy, as shown by the following two facts.

FacT 4.1. For all noise modelg (-, -), for all sequencey € {0, 1}*°, for all sets of N
expertsand for all integers t> 0,

) 1
(9) Mceay (¥') < logN + M} log wi(t)

PROOF Fix the noise modeh (-, -), the sequency to be predicted, and the set Nf
experts. For alt > 1, letW; = Zi’\‘zl wi (t — 1) be the total weight of the experts at the
beginning of triak. Note that ifcBAY makes a mistake predicting, thenW,; < W, /2.
SinceW; = N andw;i(t — 1) < W, forany 1 <i < N, we have max;n wi(t) <
N/2™ wherem; is Mcpay (Y!). Now, solving form, yields the required bound. [

Bound (9) containg); (t), a quantity that depends on the particular run of the algorithm.
We now convert this bound into a form that is easier to apply.
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FACT 4.2. For all noise models(-, -), if f (-, -) is a nonnegative function such thédr
all y € {0, 1}, for all sets of N expertsand for all integers t> 0,

wi (1) > f(Mcpay (), Mi (),

then

1
100 M N:qg<logN in log ———=——1.
(10)  Mogay(¥) < max{q €N -a=logN+ M9y Mi(yt»}

PrROOF  From Fact 4.1 and the definition dfit is easy to see thaflcgay (V') belongs
to the set of integers

1
geN:g<logN + min Iogf}.
{ 1=i=N (g, Mi(y)

Hence Mcgay () is at most the maximum integer in this set. O

Fact 4.2 gives a general bound on the number of prediction mistakes magavy
We now apply it to different noise models to obtain previously known bounds for WM
and BW.

4.3. A Revisitation of Some Known Algorithms

Weighted Majority(WM). We now analyzecBay with the simple i.i.d. noise model
used byn-GBP of Section 3. For this algorithm, bound (10) becomes linear in the loss of
the best expert. Lej(t, k) = nforallt,k € N, where O< n < % is a constant. In this
noise model we multiply the weight of any expert that made a mistake in the last trial by
n and the weight of any expert that was correct in the last trial byy1 The weights for

the conservative case are as follows. After any nunlaéitrials we have thaty; (t) =
MO (1 — ™M) wherem; = Mcgay (V). Let Mpes(y') = miny<i <y M; (y) and
Mpes( ') = mini<j<n M; (). By applying Fact 4.2 withf (m, k) = (1 — n)™ < we
obtain the following bound:

(11) R .
Mceay () <maxqg e N:q <logN — (4 — Mpes(¥")) l0g(1 — 1) — Mpes(y') logn}.

After a suitable reordering we find that

log N + Mes(Y) - 10g((1 — 1)/7)
(12) Mcgay (V) < L 1+ log(l— ) J .

As I\Wbesl(y) < Mypes(y) for anyy, this shows an upper bound on the number of mistakes
of cBay of the formalog N + bMyes(y), wherea andb depend om only. Vovk [13]
studies those pair&, b) where mistake bounds of the foralog N + bMyes(y) are
achievable. Littlestone and Warmuth [10] previously obtained a bound identical to (12)
for their WM algorithm which is equivalent to this version of atBay algorithm (even
though the Bayesian origin is not so explicit in the definition of WM as it is in the
definition ofcBAy.)
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Binomial WeightindBW). We now define a noise model such that oBrY becomes
the same as the BW algorithm of [3]. Lgf,) be a shorthand fop 7, (}). For each
g, K € N, define the noise model N

—-r—-1 —r
Na.x (F,8) = (<qK —s—l)/(<qK —s) :

Note thatyq k (r,s) = 0 forr > g ors > K. Thus for certain bit sequencegsit may
happen thatv; (t) = 0. If this happens for all expert;, then according to (BAy (or

cBAY) predicts arbitrarily on all future bits. Since the algorithm is predicting arbitrarily

it is not surprising that the bounds (8) and (9) become vacuous. Hence, instaBges of

or CBAY using noise modejq k should only be used to predict sequengder which

there is at least one expedft whose weight remains positive throughout the prediction
process. In other words, the algorithm requires advance knowledge of an upper bound
K on the number of mistakes made by the best expert. The next result is equivalent to
Theorem 1 of [3].

THEOREMA4.1. For all K € N and for all y* € {0, 1}¢, ¢ € N, if cBAY is run ony*
using the noise modek,,1 , where

(13) m=max{qeN:qflogN+Iog<<qK>}

and l\ﬁbest(yg) < K, then the number of mistakes madedsyy is upper bounded by m
i.e., Mcpay (Y) <m.

PrOOF Choosey € {0, 1}, setm as in (13), and for any nonnegative integeands
define
m+1-—r m+1
f = .
"9 <§K—S>/(5K>
As f(r,s) =0forr > m+ 1, Fact 4.2 does not give a useful bound here. To prove the

theorem, we assume to the contrary theay makesm + 1 mistakes on the sequence
y*. Using Fact 4.1, we find that

(14) Mceay (") < logN + min log @)

Now, it is not hard to see that, foreath=1,...,£andeach ki < N,
wi(t) = f(Mceay (¥), Mi (¥)).

Sinceﬂbes(y‘) < K andMcpay (V) = m+ 1 (by the assumption) there is at least one
index 1< i* < N such that

. m+1
(15) wi=(£) = f(m+1, Mi(y“))=1/< ) )
<K
Combining (14) and (15) we see that
2m+l <N <m + 1)
— S K ’
contradicting the definition ah given in (13) and completing the proof. O
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4.4, Bayesian Binomial Weightin¢BBW). In the previous section we unified two
known algorithms, WM and BW, by reformulating them as different versiorzsa¥ .
In this section we exploit Bayes theory to derive an improved versiasaf by using
the same noise model as thg,-GBP algorithm described in Section 3.

Clearly, bound (12) depends on how the paramgteichosen as a function &f and
Mbes( ¥¢). When the algorithm has no knowledge about the magnitudelit( y*),
a reasonable choice is = % If the algorithm knows in advance a bourd on
Mbes(W), tighter bounds can be obtained by choosing the parame#sra function
of N and of the bound. Vovk [12] has given an implicit formula for the valug that
minimizes (12). More precisely, he has shown that whea K/M, wherex = M is

the unique solution of the equation

(16) x=|ogN+x.H<§)

andH is the binary entropy functiorl () = —a log(a) — (1 — @) log(1 — «), then
CBAY run with this constant value af has a mistake bound &f.
We also remark that an explicit approximatiomtoyielding the more tractable bound

17 Mceay (Y) < 2K +2VKInN +logN,

has been given by Cesa-Bianchi et al. in Lemma 4 of [2].

Bound (17) has been derived for an algorithm that requires the knowledge of an
upper boundK on the number of mistakes made by the best expert. The algorithm
uses this additional information to tune the noise rate optimally in its noise model. We
now consider a different noise model where the update factor varies over trials and is
potentially different for each expek; . Using this noise modetBAY achieves a mistake
bound close to (17ithout using any previous knowledge about the sequeyic®
predict. Thus we obtain a more principled method than ad hoc doubling techniques for
automatically determining the proper update factors.

THEOREMA4.2. For all positive integers a and b and for ajf € {0, 1}, ¢ € N, if cBay
is run ony* using the noise model

S+a

(18) Nap(r,S) = m,

then Mcgay (YY) is at most

max{qu:q5IogN+Iog(q+a+b_2>+Iog(1+L>

kx+a—-1 at+b-1
at+b-2
— log a_1 ,

ProoOE Fix a andb and letr = MCBAY(y@) whencBAY uses the noise model (18).
Also let E; be an expert such thad; (y°) = k*. Then one can see that the final weight
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of expertE; satisfies

[]‘[ (k+a)][ r—k l(erb)]

19 (0) =
(19) wi (£) TXntath

Note that the ratio given in (19) is the conservative analog of the ratio given in (7) of
Section 3. The bound of the theorem immediately follows by applying Fact 4.2 with
f (r, k*) equal to the right-hand side of (19) and by applying the following chain of
equalities:

1 k*— r—1-—k*
Igwl(z) = Iogl_[(n+a+b) Iog]_[(k+a) log rln_lo (m+b)

(r+a+b 1! (k*+a 1! r —k* +b— 1)

=l Y9 e 9T p

— log r+a+b-2)! Jrogr+a+b—1
(k*+a—1)'(r—k*+b 1)! a+b-1

(a+b—2)
P @a-1'b-1!

o r+a+b-2 tloal 14+ r o a+b-2 O
=99 wia-1 I\t Tarp_1 9\ a1 )

Since each expert’s final weight (as given by (19)) is the probability that the expert
generated the subsequenceybfwhere the master predicted incorrectly, Theorem 4.2
can also be proven by expressing these probabilities as ratios of beta functions.

Specific choices for the parameterandb yield the following bounds.

COROLLARY 4.1. For all y* € {0,1}¢, ¢ € N, if cBAY is run ony* using the noise
model(18) with a = b = 1, then the number of mistakes is at most

(20) Mcpay (YY) < max{q eN:qg=<logN + Iog( ) + log(q + 1)}.

Mbest(yl)

Furthermore if CBAY is run on the same sequence with the setting 4 and b= 2,
then the number of mistakes is at most

I Dt —
Mbesl(yz)> * Og(q * )}

One might be tempted to optimize the choice of parametensdb in Theorem 4.2
by guessing the number of mistakes made by the best expert on the sequence to predict.
In Section 4.5 we show that this tuning cannot provide a significant advantage on all bit
sequences. In particular, we show that the bound®ny using one of the beta priors
from Corollary 4.1 has the same leading term as the bound for the optimally tuned WM
algorithm.

max{qu q<|ogN+Iog(
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4.5. Comparison The results of Section 4.4 raise two natural questions. First, how
can one optimize the choice afandb in the bound of Theorem 4.2? Second, how does
this bound (or its special cases in Corollary 4.1) compare with the bounds (12) and (13)?
Note that bound (13) assumes the knowledge of an upper buod the number of
mistakes made by the best expert. As already mentioned in Section 4.4, the knowledge
of such a bound& can also be used to tune the parametir (12).

Cesa-Bianchi et al. [3] showed that both (12) with tuned parameters and (13) are
asymptotically optimal in a sense that will be made precise in a moment. In this section
we state that the bounds of Corollary 4.1 are asymptotically optimal as well, even though
the algorithm does not require an upper bolhan the number of mistakes made by
the best expert. As a side-effect of this result we have that no tuning of the parameters
a andb in the bound of Theorem 4.2 can get, at least asymptotically, an advantage over
the bounds proven in Corollary 4.1.

To define asymptotical optimality we use the equivalence relatiof) between
infinite sequences of positive integers, defineddy ~ (b;) if and only if

LetF = F(N;, k) be the function whose value @, k;) is the right-hand side of (20)
whenN = N; and l\’/Tbest(yl) = k;. Similarly, letG = G(N;, k) be the function whose
value on(N;, ki) is the right-hand side of (13) wheN = N; and K = k;. Using
Theorem 3 of [3] and an adaptation of the proof of Theorem 4 of [3] we can show the
following.

THEOREM4.3. For any sequencéN;, ki ))i-o of positive integers N> 2 and k such
that eitherlim;_, .. ki = oo or lim;j_, o, N; = co there exist a sequencay;) of positive
integers and a sequencé;) of sets of expertsvith || = N;, such that the following
hold:

1. For each i > 0 and for any deterministic on-line prediction algorithm there is a
sequenceg € {0, 1}* for which Mpes(y) < ki and Ma(y) > m;.
2. (F(Ni, k) ~ (G(Ni, ki)) ~ (m;).

ProoOr Omitted.

This theorem is especially interesting in light of recent work by Vovk [13]. He con-
siders a family of expert learning games parametrized by the real val@esic,. The
learner wins a particulafc,, c;) game if, for allN, for all sets ofN experts, and for
all sequencey, it makes at most; log N + ¢, Mpes(y) mistakes on the sequenge
(recall thatMpes(y) is the number Qf mistakes made by the best offthexperts ony,
thus Mpes((Y) is an upper bound olNpes(Y)). Similarly, the adversary wins a particular
(c1, ¢2) game if for each master algorithm there is a selNoéxperts and a sequenge
such that the master algorithm makes more thdog N + ¢, Mpes(y) mistakes on the
sequencsy.

Bound (12) shows thatBAy, assuming an i.i.d. noise model with known rates a
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winning strategy for the learner in the game with parameters

< 1 log((1 — n)/n))
1+logl—n) 1+logll—n) )"

In addition to showing this result for WM, Vovk also shows that, when the algorithm’s
predictions are if0, 1}, these pairs define the border between games where the learner
has a winning strategy and games where the adversary wins. Vovk has extended these
results to other loss functions.

Itis important to realize that different points on this border between where the learner
wins and where the adversary wins lead to different performances on different sequences.
For example, taking = % corresponds to the valueg ~ 2.4 andc, = 1 whilen = 211
leads toc; &~ 1.7 andc; ~ 1.6. Thus wherMpes(y) is large compared with loly, the
bound forn = ;11 can be more than half again as large as the boungl mr%. Similarly,
the bound fom = % can be nearly half again as large as the bound;fes % when
Mpest(Y) is small compared with logyl.

Theorem 4.3 illustrates the power of algorittuBay with the n, p(r, S) noise model
of (18) whena = b = 1. The bound for this version aBAY is asymptotically the same
as the bound (13) for BW which, as we mentioned above, is asymptotically equivalent
to the bound (12) for WM using the best valuerdfor that particular sequence.

In the continuous prediction case, Cesa-Bianchi et al. [3] showed how a complicated
doubling trick can be used to reestimate repeatedly the best choigelfoour discrete
loss setting, their bound on the loss of the master becomes

(21) 2Mbes(¥) + 8v/Mpes(y) IN N + 5.6 In N.

Actually, their doubling scheme allows a limited tradeoff between the constant in front of
the /Mpes(y) In N term and the constant in front of thehterm. The former constant
can be reduced to aboéﬁ at the cost of letting the latter constant go to infinity.

Our bounds for algorithntsay are in an inconvenient implicit form. By making
several overapproximations, we can convert them into a more comparable form. This
bound is an improvement over the doubling scheme urilggs(y) is very large with
respect to IrN.

THEOREM4.4. Forall y € {0, 1}*, if cBAY is run ony using the noise modé18) with
a=Db=1and Mees(y) > 1, then the number of mistakes is at most

(22) MCBAY(Y) = 2Mbesl(Y) + 3\/ Mbesl(y) INN + 3Mbest(Y)2/3 + |Og N + 3.

PROOFSKETCH. Letk = Mpes(y). Using bound (20), it suffices to show that when
g = 2k + log(N) + 3vkIn N + 3k%3 4 3 we have

q

g(N,k) =q—logN —Iog(k

) —log(q+1) > 0.

We first approximate the binomial coefficie@t) with (q/(q — k))9K(g/k)* and then
show that the derivative af(N, k) with respect toN > 2 is positive. This requires two
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approximations to the logarithms depending on whether or nolog k. Once it is
known that the derivative with respecthbis positive, it suffices to show thg(2, k) is
positive. This can be verified numerically ford k < 1000. For largek, we show that
g(2, k) > 0 analytically using fifth-order approximations to the logarithms.

Although straightforward once one has the appropriate approximations, the algebra
involved in the proof is exceedingly tedious. We therefore suggest that the interested
reader verify the theorem by “plot” using a suitable tool such as Maple or Mathe-
matica. O

When Mpes(y) = 0, bound (22) does not apply, and the implicit bound of Corol-
lary 4.1 is at least lo§l + loglogN. However, one can show that, for the special case

Mbesl(y) = 0,
Mcaay (Y) < log(N) 4+ 3,/logN,

asq > log(N) + log(q + 1) whenqg = log(N) + 3./logN.

We used thesy ; prior to obtain the bound (22). Better exponents on thige3( y)%/3
can be achieved using different priors (at the cost of increasing the term’s constant).
However, we were unable to find a prior for which the exponent droés ltds unclear
if this is a natural property of the algorithm or an artifact of the approximations used in
the proof of Theorem 4.4.

5. Performance under Absolute Loss. In this section we consider variants ey

that output predictions in the range [[J. We measure the loss incurred by these master
algorithms when their prediction i € [0, 1] and the correct bit ig; € {0, 1} with the
absolute los§); — y;|. Note that if the master algorithm’s predictions are alway®jri}

(like those of our experts), then the absolute loss and the 0-1 loss measures are identical.
Furthermore, if the Boolean sequence is generated probabilistically according to the
model described in Section 3, the Bayes optimal prediction, minimizing the expected
absolute loss, is always found {8, 1}. Therefore, algorithms which “hedge their bets”

by choosing their predictions in [Q] are not strictly Bayesian.

We uselL A(Y") to denote the total absolute loss of the master algorithmn a
sequencey, so if § is the prediction ofA for bit y;, thenL o(Y*) = Zle Vi — Vel
Observe that if a master algorithm uses a biased coin to predict 1 with probgbdity
0 with probability 1— ¥; (rather than outputting the valug € [0, 1]), then | — vt
is the probability (with respect to the coin flip) that the randomized master will make
an incorrect prediction whew is the correct bit. Furthermore, the total absolute loss
Zle |V — Yt | of the deterministic master predictigg e [0, 1] equals the expected total
number of mistakes made by the randomized master.

We consider variants of the master algoritBay (described in Figure 2) using arbi-
trary noise models(-, -) to output predictions that range in the continuous interval [0
Each such master predictor computes the probabifti@s y'—') andP (1| y'~1). How-
ever, instead of outputting a bit, the master algorithms of this section output a prediction

_ F(PA YY)
F(PO[ Y1) + F(PAT YD)’

(23) %
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whereF: [0, 1] — R* is some monotonically increasing function. One natural choice
for F is the identity function, and different choices Bflead to different master algo-
rithms.

A good choice fofF is the sigmoidal function;-log(1—x), previously used in [2] and
[12]. This function has a nice theoretical motivation, as it is the amount of information
(measured in bits) gained when an event with probabilityX occurs. For this reason,
we call the master predictor whose predictions are produced using (23F\with=
—log(1 — x) theIGAIN master algorithm.

Using standard techniques from [2], it is easy to prove the following result.

THEOREMS5.1. For all £ € N andy’ e {0, 1}, if IGAIN is run ony’ using any noise
mode] then

1
l .
(24) Lican (Y) < 3 [Iog N + min log P.(y‘f)} .
PROOF Forl<t < ¢, wesetry = P(y | ¥ ,s0PL—y | ¥ =1—-r.We
further defineW; = ZiN=1 P, (y*~1) to be the total weight of the experts at the beginning
of trial t. Since at each tridlIGAIN’ s prediction for bity; is

o —logP (0] y*1
= Tlog(PO [ y1) — log(P(L| 1)’

the total absolute loss incurred BAIN on the prediction sequengé is

¢ . ¢ —logr;
Lican(Y) =) Iy —$il =Y
t=1

— —log(r) —log(1 —ry)’

Using the fact that the functiorlog(ri (1 — r;)) is minimized forr, = % we can upper
bound the total loss aGAIN by

4

1

(25) Licain (Y) < 3 E log e
t=1

On the other hand, the constructioniehAIN ensures thaéV;,; = W, r; on each triat.
Hence the total final weight of the expertais,; = Wl(]_[lert). SinceW; = N and
W1 > P (YY) it follows that

[4
(26) P(Y) < Weys < N[ ]re.
t=1

Solving (26) with respect tﬂf:1 r and taking the log of both sides yields

¢ 1 1
27 log— <logN + lo .
(27) t; 9. <log Ty
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Substituting the upper bound in (27) into the right-hand side of (25) we obtain

1
28 L fl(lo N +lo —)
(28) icaiN (Y) < 3 (log g By
The bound of the theorem then follows by observing that inequality (28) holds for all
i=1...,N. O

Note that (24) is exactly half of the 0-1 loss bound (8) for algoritswn. It would
be nice to devise an algorithm whose expected number of mistakes is at most half the
right-hand side of (10), i.e., the bound foeay that does not depend directly on the
sequence length Unfortunately, so far this has been shown (see [2] and [12]) only for
the simple noise modej(t,k) = nforallt,k e N(0 < 5 < %). Proving expected
mistake bounds equal to half the right-hand side of (20) when the algorithm is allowed
to make predictions in the [d] interval remains an open problem.

The reasons for this difficulty are subtle and relate to the use of the conservativeness
to remove the dependence 6in the bounds. When the algorithm’s predictions are in
{0, 1}, the algorithm is either right or wrong. If the prediction is between 0 and 1, then
the algorithm is always partly wrong and must adjust the weights of the experts to help
identify the best expert. On the other hand, if the weights of the experts are in exponential
form (1 — n)'~%, as when the noise modelijgt, k) = 5 for all t, k € N, then bounds
can be proven without resorting to conservativeness. This is becausg fd, %),
the weights of all experts can be scaled up at each trial by the félctern) without
changing the algorithm’s predictions. This scaling prevents the drop in weight of those
experts predicting correctly, yet the fact that no weight increases preserves the proofs of
the bounds.

Note that bound (24) is trivial wheti < 1/2(log N + min;< <\ log(1/P: (y*))). We
can use a game-theoretic analysis to obtain meaningful bounds foHalte we present
such an analysis for a slightly different prediction rule which is easier to analyze. Instead
of the sigmoidal-log(1 — x) we use the piecewise linear function (similar to the one
used in [4])

0 it x<(@1—In2)/2,
(29) Foo)= {1 it x> (1+In2)/2,
x/IN2+ 3(1-1/In2)  otherwise.

This analysis shows that the best strategy for an adversary trying to maximize the total
absolute loss of the algorithm is either to spread the information gain evenly over the
sequence/’, or concentrate it on a subset of the sequence.

LetLIN be the master predictor based on (23) and (29).

THEOREMS.2. Forall y¢ € {0, 1}¢, £ € N, if LIN is run ony* using an arbitrary noise
mode] then we have

I if ¢ <logN + 109 1/Ppes(Y),

l-
Lun(y) < {%(log N +10g1/Poes(y’))  otherwise
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where

C=min{1l ma
! { X{ 2In2

IN2+1— 2/ Prest(¥")/N 0”

and Res(Y) = maxi<i<n P ().

When¢ > log N +log 1/ Pyes( Y*), Theorem 5.2 gives an upper bound on the total loss of
theLIN algorithm that matches the bound given in Theorem 5. ldeN . However, if the
length of the prediction sequence satisfies log N +1og 1/ Pues( ¥¢), then Theorem 5.2
gives a tighter bound.

Before proving Theorem 5.2 we need some definitions. Wet= ZiN:l Py
be the total weight of the experts at the beginning of tridRecall that, by definition
of the noise modelW; = N andW,;; < W, holds for allt. We now turn the on-line
prediction model into a game where a predictor plays against an adversary choosing both
the experts’ advice and the bits to be predicted. As Theorem 5.2 must hold for arbitrary
noise models, we also assume that the adversary can choose the experts’ update factors.
However, as the loss bound in Theorem 5.2 is parametrized with respect to the final
weight of the best expert, we require that,,/W; = c hold at the end of the game,
where the constart € (0, 1) is a parameter of the game. A second parameter of the
game is the numberof trials. On each triat of the game:

1. Foreach =1, 2, ..., N, the adversary chooses the advig&y' ') and the update
factorn; for expertE;.

2. The predictor computes a valgiee [0, 1].

3. The adversary chooses a¥ite {0, 1} and the predictor is charged a los$@af— vt |.

It should be clear that any upper bound on the total loss incurred by alganithpraying
the predictor for trials of this game is an upper bound on the total loss incurradny
on any sequency e {0, 1}* whenN experts and an arbitrary noise model are used.
The predictor’s goal in a game with parametei@nd/ is to minimize its total loss
over thet trials while the adversary’s goal is to maximize it. ltXLOSS(¢, c) be the
maximum loss the adversary can force on the predictor when the game is played with
parameterg and{. Furthermore, for each tria| letr; be the fraction\,, 1/ W, of the
total weight voting for the correct valug. Note that]_[f:1 ri = c. For our purposes, it
is convenient to denote the logs — y;| of the predictor at triat by LosH(ry). It is not
difficult to see that, for algorithmin,
LOSY(r{) = min {1, max{%, ” .

We begin with the following simple claim which establishes the best strategy for the
adversary when the game consists of two trials. In this case, depending upon the value
of the parametet, the best strategy is either to sglievenly among the two trials or to
concentrate on only one trial and to give up in the other trial.

CLaim 5.1. For any fixed ce (0, 1), MAXLOSS(2, €) = max{2LOSS(,/C), LOSS(C)}.
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PROOF Letr, s be the fraction of the weight voting for the correct outcome on the first

and second trial, respectively. Sincés the fraction of the weight left at the end of the
game, it follows thats = c. Therefore the total loss of the algorithm is

min{l, max{w O” +min{1, max{ln(2)+l_2(c/r), 0}}

2In(2) 2In(2)

The claim then follows from the fact that the functigm(2) + 1 — 2r)/(2In(2)) +
(In(2) + 1 — 2(c/r))/(2In(2)) is maximized whem = ./c. O

From Claim 5.1 it immediately follows that, i€ < ¢* = (In?2/4)((2/In2) —
V2/1T=1n2/In2)?, then MAXLOSS(2, C) = 2L0SS,/C). Namely, the best strategy
for the adversary is to split evenly among the two trials. Similarly & > c*, then
MAXLOSS(2, ) = LOSS(C), as the adversary’s best strategy is to concentrate only
one trial and to give up in the other trial.

Claim 5.1 establishes the best strategy for the adversary ¥keB. The next result
generalizes this strategy to the cése 2. A reasonable generalization consists in setting
rp=---=ry, = {/c. However, as in thé = 2 case, for some choicesothe adversary
maximizes the predictor’s loss by “giving up” some trials and concentrating the fraction
c on the remaining trials. For each fixed (0, 1), let¢* = £*(c) be the smallest integer
£ achievingMAXLOSS(¢, ) = maxs1 MAXLOSS(t, c). Observe that, for any parameter
0 < ¢ < 1 of the game, the valué*(c) achieving the maximum loss is finite. This
follows from the fact that the total weight of the experts drops by at least a factor of
(1—1In2)/2 on each of the trials where the algorithm incurs a positive loss.

CLAaM 5.2. For any fixed ¢ (0, 1),

MAXLOSS(00, C) = rpa1XMAXLOSS(K, C) = £* LosY 4/0).
>

PROOF LetS = (ry,...,re), wherery, = Wi, 1/ W, for eacht = 1, ..., £*, be the
sequence of splits maximizing the predictor’s total loss. Without loss of generality, we
can assume; < 1forall 1 <t < ¢* For the purpose of contradiction, assume that
there is & such that; # %/c. Then, a [, rc = ¢ must hold, there must ¢ # t such
thatr; # ry.. Without loss of generality let = 1 andt’ = 2. We now proceed by case
analysis.

Casel: (1-1In2)/2 <ry,rp < (In241)/2. Using Claim 5.1 we can consider the two
following subcases. Ify - ro < ¢*, thenMAXLOSS(2, r1-I2) = 2L0SS(,/f1r2). Therefore
the sequenc® = (ry,r5,rs, ..., re), Wherer; =r5 = . /r1r» gives a higher total loss,
contradicting the fact thas is the sequence maximizing the total loss. On the other
hand, ifry - rp > ¢*, thenMAXLOSS(2,r; - o) = LOSS(r - I2), therefore the sequence
S = (r{,r5rs, ..., ), wherer; = 1 andr;, = ry - rp, can give a higher total loss.
Now, if Sis different fromS/, then the assumption th& is the sequence maximizing
the predictor’s loss is contradicted 8f= S, it must be the case thet =r; andr, =r,

or vice versa. However, both these cases contradict the assumptien< 1.
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Case2. When eitherq orr; lies outside the intervall — In2)/2, (In2) + 1)/2], the
proof proceeds similarly to that of case 1. O

An explicit formula for the maximum loss incurred by the predictor is given by
the following result, which easily follows from Claim 5.2.

COROLLARY 5.1. For any fixed ce (0, 1),
1 1
MAXLOSS(00, C) = max{ [Iog (E)—‘ LosY( ™9 /¢y, Llog (E)J LOSS( “"Q‘”%/E)} )

Proor From Claim 5.2 and the fact that the functibnoss(</c) is maximized when
¢ = log(1/c) we obtain

1
MAXLOSS(00, €) < LOSS( ***%,/c) log o
The thesis then follows from the fact that the functiaross(4/c) is concave. O

Inorderto prove Theorem 5.2 we need one further claim which establishes the strategy
played by the adversary as a function of the nuntbef trials to be played. Note that,
for any 0 < ¢ < 1, £*(c) is the minimum number of trials for which the adversary is
able to apply its best strategy. Thus, witea ¢*(c) the adversary does not have enough
trials to apply such an optimal strategy and the loss incurred by the algorithm is smaller.

CLaM 5.3. For any fixed c= (0, 1), the following hold

Ve < £*, MAXLOSS(¥, C) = £ LOSS(+/C),

A MAXLOSS(£, C) = £* LoSS( 4/C).
We are now ready to prove the main theorem of this section.

PrROOF OFTHEOREM5.2. Lety* be the sequence of lengthto be predicted and let

¢ = W1/ W; be the fraction of the initial weight left after all bits have been predicted.
Recall thatW; = Y1) Pl (YY) and Phest = Presi(y") = Maxi<i=n R (y"). Clearly,
W1 > Ppestimplying ¢ > Pyesy/ N. This in turn implies

(30) MAXLOSS(, C) < MAXLOSS (ﬁ, PKIeSt) .

Now, when logN / Pyest < ¢, it follows from Claim 5.3 that

P l/|0g( N/Phesv) N N
MAXLOSS <£, beSt> < LOSS<<%t> ) -log = llog—,
N N Phest Phest
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which substituted in (30) gives the first of the two bounds of the theorem. When

log N/Pyest > £, we can obtain a better bound since the adversary does not have enough
trials to apply its best strategy. In this case it follows that

Pbest 13 Pbest
MAXLOSS ( ¢, = (LOSS
(:5%) = o)

£ - min {1, max{

IN2+1— 24/ PresyN 0”
2In2 ’ ’

which substituted in (30) proves the second bound of the theorem. O

6. Conclusions. We have examined the problem of predicting the bits of an unknown
sequence using the advice of experts. If the unknown sequence is viewed as a corrupted
version of an expert’s advice, then Bayesian predictors can be defined. Bounds on the
performance of these predictors can be improved by making the predictors conservative.
Several existing algorithms, such as the WM and BW algorithms, can be derived in this
way.

If we assume that the corruption is due to i.i.d. noise with a rate which is unknown, but
drawn from a beta distribution, then we can define algorithms based on mean posterior
estimates. We show that algorithms of this type are asymptotically optimal under the
0-1 loss, and they have the same asymptotic performance as existing algorithms which
require more information about the true noise rate.

Whenthe algorithms are allowed to “hedge their bets” by predicting a valugi@
use the absolute loss to measure their performance. The analysis of one such algorithm
(algorithmLin of Section 5) involves interesting techniques. We show that the best
adversaries split the loss evenly over some of the trials and inflict no loss on the others.
When we started this research we hoped to find an algorithm for the experts setting
with absolute loss bounds exactly half of the 0-1 loss bounds for the (conservative)
BW algorithm. This seemed an attractive problem since the BW algorithm has the best
known 0-1 loss bounds in the experts setting (although it does require significant side
information), and the other important algorithms all had absolute loss variants with
bounds equal to exactly one-half of their 0-1 loss bounds. It remains open whether or
not there is an algorithm whose absolute loss is at most half of the BW algorithm’s 0-1
loss bound.

Acknowledgments. We would like to thank Nick Littlestone, Manfred Warmuth, Mark
Herbster, and Vladimir Vovk for many helpful conversations. In addition we are indebted
to Robert Schapire for pointing out the connection between our work and Nick Little-
stone’s Apobayesian algorithm, as well as to Claudio Gentile and the anonymous referees
for their many helpful suggestions.



On Bayes Methods for On-Line Boolean Prediction 137

(1]
(2]

(3]
(4]
(5]
(6]

(7]
(8]
(9]
[10]

[11]
[12]

(23]

References

J.O. BergerStatistical Decision Theory and Bayesian AnalySigringer Verlag, New York, 1985.

N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R. Schapire, and M.K. Warmuth. How to use
expert adviceJournal of the ACM44(3):427-485, 1997.

N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, and M.K. Warmuth. On-line prediction and conversion
strategiesMachine Learning25:71-110, 1996.

M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequeHeeE Transactions

on Information Theory38:1258-1270, 1992.

D. Haussler and A. Barron. How well does the Bayes method work in on-line predictiqrslof-1}
values? IrProceedings 08rd NEC Symposiunpages 74-100. SIAM, Philadelphia, PA, 1993.

D. Haussler, J. Kivinen, and M.K. Warmuth. Tight worst-case loss bounds for predicting with expert
advice. InProceedings of thend European Conference on Computational Learning Thgmages 69—

83. Lecture Notes on Artificial Intelligence, Vol. 904. Springer-Verlag, New York, 1995.

J. Kivinen and M.K. Warmuth. Using experts for predicting continuous outcomeRrdeeedings of

the First Euro-COLT WorkshofT he Institute of Mathematics and Its Applications, Oxford, 1994.

N. Littlestone. Mistake-Driven Bayes Sports: Bounds for Symmetric Apobayesian Learning Algorithms.
Technical report, NEC Research Institute, Princeton, NJ, 1996.

N. Littlestone and C. Mesterharm. An apobayesian relative of Winnowdvances in Neural Infor-
mation Processing Syste@sMIT Press, Cambridge, MA, 1997.

N. Littlestone and M.K. Warmuth. The weighted majority algoritinformation and Computatign
108:212-261, 1994.

M.J. SchervishTheory of StatisticsSpringer Verlag, New York, 1995.

V.G. Vovk. Aggregating strategies. IRroceedings of th&rd Annual Workshop on Computational
Learning Theorypages 372-383, 1990.

V.G. Vovk. A game of prediction with expert advice. Froceedings of th8th Annual Conference on
Computational Learning Theorpages 51-60, 1995.



