Machine Learning, 25, 71-110 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On-line Prediction and Conversion Strategies

NICOLO CESA-BIANCHI cesabian@dsi.unimi.it
DSI, Universia di Milano, Via Comelico 39,
20135 Milano, Italy.

YOAV FREUND yoav@research.att.com

AT&T Bell Laboratories, 600 Mountain Avenue, Room 2B-428,
Murray Hill, NJ 07974-0636, USA.

DAVID P. HELMBOLD dph@cse.ucsc.edu

MANFRED K. WARMUTH manfred@cse.ucsc.edu

Computer Science Department, University of California,
Santa Cruz, CA 95064, USA.

Editor: Leonard Pitt

Abstract. We study the problem of deterministically predicting boolean values by combining the boolean
predictions of several experts. Previous on-line algorithms for this problem predict with the weighted majority of
the experts’ predictions. These algorithms give each expert an exponential Weéighhereg is a constant in

[0,1) andm is the number of mistakes made by the expert in the past. We show that it is better to use sums of
binomials as weights. In particular, we present a deterministic algorithm using binomial weights that has a better
worst case mistake bound than the best deterministic algorithm using exponential weights. The binomial weights
naturally arise from a version space argument. We also show how both exponential and binomial weighting
schemes can be used to make prediction algorithms robust against noise.

Keywords: On-line learning, conversion strategies, noise robustness, binomial weights, exponential weights,
weighted majority algorithm, expert advice, mistake bounds, Ulam’s game.

1. Introduction

This paper studies a simple on-line model where predictions are made in a series of trials.
At each trialt the prediction algorithm receives thgh observationz; and produces a
boolean predictionjj;. It then receives the correct outcomgas feedback. A mistake
occurs if predictionj; and outcomey, disagree. Following Littlestone (Littlestone, 1988),
we seek prediction algorithms that minimize the number of mistakes over a worst case
sequence of; andy,. Of course in the unconstrained worst case a mistake can occur
in every trial. In order to make good predictions the predictor needs to have some prior
knowledge that enables it to makes predictions about the future based on the past. In a
Bayesian regression framework, one can encode this knowledge using a prior distribution
over the set of sequences or over a set of sequence models. In this work we are interested
in performance bounds that make no probabilistic assumptions, and so we define the prior
knowledge somewhat differently.

We assume that there anré experts each of which is a prediction strategy. Our goal
is to design an algorithm, which we shall call the “master algorithm”, that combines the

72 N. CESA-BIANCHI, ET AL.

predictions of the experts in the following way. At the beginning of ttiathe master
algorithm feeds the given observatian,, to all experts. The master then uses some
function of theN predictions produced by the experts to form its own predictipn At

the end of the trial the feedbadk, is shared with all experts. We prove worst-case bounds

on the number of mistakes made by the master when the number of mistakes made by the
best expert is bounded.

Generalizations of the above model, where the predictions of the experts and/or of
the master algorithm may be in the continuous raftgé], have been studied by Vovk
(Vovk, 1990), Littlestone and Warmuth (Littlestone & Warmuth, 1994), Cesa-Biagtchi
al. (Cesa-Bianchi, et al., 1995), and Kivinen and Warmuth (Kivinen & Warmuth, 1994). In
this paper we return to the simplest setting where all predictions and outcomes are boolean.
This is the problem solved by the basic Weighted Majority (WM) algorithm (Littleston &
Warmuth, 1994). Here we study the boolean case in more depth and devise a better al-
gorithm that we call the “Binomial Weighting” algorithm or BW. The worst case number
of mistakes that BW makes is smaller than the number of mistakes made by previously
known algorithms. In fact, if the number of experts is large enough and all predictions are
deterministic and boolean, then we show that BW has the smallest possible worst-case mis-
take bound among all master algorithms. In our analysis of BW we explore some elegant
combinatorial structures that might be applicable elsewhere.

The Weighted Majority algorithms cited above attempt to minimize the number of mis-
takes made as a function of the number of mistakes made by the best expert. They assign
to each expert a weight of the forif”, where(is a constant if0, 1) andm is the total
number of mistakes (or more generally the total loss) incurred by the expert s@ fares-
sential property is that the experts making many mistakes get their weights rapidly slashed.
The WM algorithm uses the weighted average of the experts’ predictions to form its own
prediction: It simply predicts if the weighted average is greater thigf2, and0 otherwise.

The new master algorithm BW uses its weights in a similar way to WM for predicting,
however, these weights are not in exponential form. Instead, they are tails of a binomial
sum. A further difference between WM and BW is the following. On each trial WM
predicts 1 if and only if the total current weight of the experts predicting 1 is larger than
the total current weight of the experts predicting 0. BW, instead, predicts 1 if and only if
the total updated weight resulting from the outcome being 1 is larger than the total updated
weight resulting from the outcome being 0.

This binomial weighting scheme is motivated by a version spatgument. The mistake
bound of the Weighted Majority algorithm approximates the mistake bound of the BW
algorithm in the same way that Chernoff bounds approximate sums of binomial tails. We
show that the gap between the mistake bounds of the Weighted Majority algorithm and our
new algorithm can be arbitrarily large.

Finally, a perhaps subtler difference between exponential weights and our new scheme
is that each expert’s weight in the latter scheme depends not only on the current mistake
count of the expert, but also on the current mistake count of the master.

We show that our algorithm has the best possible worst-case mistake bound when the
number of experts is very large compared to the loss of the best expert. This lower bound
analysis is based on a relation between our prediction problem and Ulam’s searching game

ON-LINE PREDICTION AND CONVERSION STRATEGIES 73

with a fixed number of lies (Spencer, 1992, Ulam, 1977). We also present a second lower
bound argument for our prediction model. This second argument uses a probabilistic
construction to prove that both the BW and the tuned Weighted Majority algorithm are
asymptotically optimal. That is, the ratio between the mistake bound of either algorithm
and the best possible worst case mistake bound goes to 1 as the miinolb@xperts or

the lossk of the best expert go to infinity. An equivalent lower bound has been previously
obtained by Vovk (Vovk, 1990) using arguments from coding theory.

We use the ideas behind the BW master algorithm to devise a method (which we call a
conversion strategyto make prediction algorithms robust against noise. The conversion
strategy feeds different feedbacks to several copies of the same prediction algorithm. If the
noise level is low then one copy will get noiseless data, enabling the conversion strategy
to make good predictions. Our upper bound has slightly better constants than the one
independently obtained by Auer and Long (Auer & Long, to appear), and is close to the
lower bound given by Littlestone and Warmuth (Littlestone & Warmuth, 1994).

It remains open whether binomial weights also lead to improved master prediction algo-
rithms for the case when the prediction of the master is allowed to be in the continuous
interval [0, 1]. In this more general setting mistake bounds are replaced by bounds on the
total absolute loss. There are master prediction algorithms for this problem (Vovk, 1990,
Cesa-Bianchi, et al., 1995) using exponential weights, whose mistake bounds are exactly
half of the corresponding mistake bounds in the boolean case. However, our attempts to
construct a continuous prediction algorithm that achieves half (plus possibly a constant) the
loss of the BW algorithm have so far been unsuccessful.

The paperis organized as follows. In Section 2 we presentthe new algorithm BW, compare
it against WM, and prove general lower bounds. In Section 3 we introduce two conversion
strategies: one based on binomial weights and one based on exponential weights. Section 4
is devoted to conclusions.

Notation.

The setX represents the set of possible observations{@nt} the two possible outcomes.
We usg X x {0,1})" forthe set of all finite sequences ovéf x {0, 1}) of nonzerolength
ands for a sequencé(z, 1)): (of unspecified length) iiX x {0,1})" of observations
and outcomes. L&t denote the natural numbers including 0. The notatibnfor any
n € N, represents either a sequence of lengtr the lengthn prefix of a longer sequence
s. The correct interpretation will be clear from the context.

An expertis any function mappingX x {0,1})* x X to {0, 1}. Inthis paper we treat ex-
perts in an on-line fashion. On thh trial, each experk makes the predictioR (st —!, ;)
wherez, € X is the current observation asti~! is the sequence of observation/outcome
pairs from the previous — 1 trials. At the end of the trial the expert is given the feedback
y: € {0,1} for the current trial (and’ for the next trial is created by appendifig;, v;)
to s~1). We say that exper® either is wrong, makes a mistake, or is incorrect when its
prediction at triak, E(st~!, x,), is different fromy;.

Also, we usedy(y, z) to denote the Hamming distance between any two boolean
sequencey and z of equal length. For the sum of binomials, we use the notation

(2 def SF, (") for all integersm andk, using the conventiof”,) = 0 whenm

74 N. CESA-BIANCHI, ET AL.

or k negative. We conventionally sél?) = 0 wheni > m or when eithern or i is
negative. We will often make use of the well-known combinatorial identity

(sq z> - <q§_ z‘l) - (gq ;11) (1)

that holds for all nonzero integegsand all integers. We denote the binary logarithm by
“log” and the natural logarithm byifi”. Furthermore, letd () denote the binary entropy
function, H(z) = —xzlogx — (1 — z)log(1 —), defined for all0 < z < 1 (note that
H(0)=H(1) =0andH (%) =1).

2. Master Algorithms for Combining the Predictions of Experts

In this section we introduce a master algorithm that sequentially predicts boolean sequences
by combining the predictions of a set of experts. Throughout the section, we assume that
a boundk on the number of mistakes made on the sequence by the best expert in the set is
available and known to the master algorithm.

For any expert? and for any sequence € (X x {0,1})" of instances and outcomes
we denote the number of mistakes (i.e. total loss) of expeon sequence by Lg(s).
Also, if £ is a set of experts, we udg:(s) for the minimumL g (s) over the expert& € £.
We usually make the assumption tlat(s) < k for some constari known to the master
algorithm. We point out that our master algorithms are domain independent, using the
information provided by the sequence of instanggs; only to obtain the predictions of
the experts.

Our goal is to solve the following problem:

Suppose a set of N experts is available and the task is to predict in an on-line fashion
the bitsyy, y2, . ..,y of some sequence = (z1,y1), (x2,y2), ..., (z¢,ye) in a set

of sequenceX® C (X x {0, 1})Z. Suppose also that an upper boundn the loss of

the best expert i€ is known, i.e. for eacts € ¥, Lg(s) < k. How can a master
algorithm combine the experts’ predictions so that its worst case number of mistakes is
minimized?

If the master algorithm knew which expdtt € £ made onlyk mistakes, then it could
simply predict the same way that expérdoes. However, the “good” expert (or experts)
is not known in advance.

In the fortunate case whefe= 0, the master algorithm knows that one of the experts
predicts perfectly ors. In this case the well-known Halving algorithm (Angluin, 1988,
Bardzin & Freivalds, 1972) can be used. On each trial the Halving algorithm predicts the
same way as the majority of those experts that have never made a mistake (the consistent
experts). The number of consistent experts is reduced by at least a factor of two each time
the Halving algorithm makes a mistake, so the master makes atlogast mistakes on
any s where one of theéV experts always predicts correctly.

We now present a simple master algorithm called the Version Space algorithm that will
be used to motivate the Binomial Weighting (BW) algorithm. To do this we make the

ON-LINE PREDICTION AND CONVERSION STRATEGIES 75

simplifying assumption that the length of the sequence of instaicesknown as well.
This assumption will be removed shortly.

Since the master algorithm knows that the best expert makes attmos$tmistakes, it
can use the following trick. The master algorithm expands each expert into a set of variants
so that some variant of some expert predicts perfectly, and then uses the Halving algorithm
on the variants. If expe makesexactly;j mistakes on some sequencef length/ then
expertE can be expanded into a collection(6) variants containing a perfect variant. Each
variant in the collection predicts ds on ¢ — j of the trials and predicts with the opposite
of E's predictions on the othef trials. Thus expertr is expanded into a collection of
(f) variants, including one that chang&% predictions on exactly those trials wheke
predicts incorrectly.

For our problem, the master algorithm knows that at least one d¥Vtbgperts makes at
mostk incorrect predictions, but the master algorithm knows neither which expertis the best
nor the exact number of mistakes made by the best expert. However, the master algorithm
can expand each expert into a collection(géfc) variants. The union of these collections

contains at mostV () variants and is guaranteed to contain at least one variant that
predicts correctly on alf trials. Our Version Space algorithm runs the Halving algorithm
on the union of these collections, and has a worst case mistake bolupdoft log (fk)
(when the boundg on the number of trials ankl on the number of mistakes made by the
best expert are known in advance).

Intuitively, the Version Space algorithm uses all the knowledge it has about the experts
and the sequences, which is that there is one expert that makes gt miztakes on the
sequence. It does not know which expert will be best, in what trials the best expert will
make its mistakes, or even how many mistakes the best expert will make (other than the
upper boundk). Since the goal of the algorithm is to minimize the number of mistakes
that it makes in the worst case, it has to treat all of the scenarios that are possible under the
assumptions equally.

Observe that the version space at the beginning ofttcah be represented by one weight
per expert. The weight of an expert is simply the number o('ﬁ%) variants that are

consistent with the sequence so’*falf expert E makes at most mistakes on thé trials
and has madg¢ mistakes in trials 1 through then expertt can make at most — j more
mistakes in the remaining— ¢ trials. Thus the weight off on thet + 1st trial should be
(f,:j), which is exactly the number of variants created frahthat are consistent. (The
initial weight of each expert i,)).

Thus the Version Space algorithm can be implemented by manipulating binomials repre-
senting the weights (number of consistent variants) of the experts. If ekgeas madeg
mistakes in the first trials, then during triat + 1 expertE votes with weight(fk‘fj) for

its own prediction and with weigr(t<kff;+1)) for the opposite prediction. Note that these
votes correspond to the numberiek variants that are consistent with alprevious trials
and agree (or do not agree, respectively) with the predictiafi.oflso, expertE’s total
weight is split between the two choices sir(gé:j) + (<;f:f_1) - (ngtf;).

This implementation of the Version Space algorithm totals the votes for outéame
outcomel and predicts with the majority. At the end of each triathe Version Space

76 N. CESA-BIANCHI, ET AL.

algorithm updates the weights of the experts to reflect the outcome on thatridh
addition, the valug, is given to all the experts since their future predictions might depend on
the past sequence. The Version Space algorithm, which runs the Halving algorithm directly
on theN(fk) variants, and the implementation which manipulates binomial weights for
each expert, clearly make the same predictions.

The Binomial Weighting (BW) algorithm is similar to the Version Space algorithm using
weights, but the BW algorithm uses another trick that removes the requirement that the
algorithm knows?, the length of the sequence. This trick also makes the upper bound
on the number of mistakes made by the BW algorithm independefit ®here are two
versions of the Halving algorithm: one that discards all inconsistent experts in each trial
and one that does this only in trials when the Halving algorithm makes a mistake (such
algorithms are called “conservative” by Littlestone (Littlestone, 1989)). Both versions of
the Halving algorithm have the same worst case mistake bdugav(), so nothing is lost
by making the Version Space algorithm conservative. The Binomial Weighting algorithm
is the implementation of the conservative Version Space algorithm with binomial weights
and is described in Figure 1.

Because the BW algorithm is conservative, we do not need a variant that perfectly pre-
dicts the outcome. It suffices to have only those variants whose mistakes occur when
the BW master algorithm predicts incorrectly. Since the BW algorithm discards vari-
ants only when the master makes a mistake, such a variant will never be discarded.
Thus the BW algorithm considers onl@}rz,’j) variantd of each expert, wheren =

max {q €N : g<logN +log (fk)} as in Figure 1. It is easy to show that BW makes

at mostm mistakes. Assume to the contrary that it makes- 1 mistakes. Since at least

one of theN experts makes at moktmistakes, at least one of the("* ') variants is con-
sistent with then + 1 outcomes where BW made mistakes. On the other hand, the number
of consistent variants drops by a factor of at least two each time BW makes an incorrect
prediction. Thus the number of consistent variants after BW makes1 mistake is at

least one and at moaf (") /2™ L. Itfollows thatl < N (") /2m+! and equivalently

m+1 <log N + log ("fkl), contradicting the definition of: in Figure 1.
This analysis gives us the following theorem:

THEOREM 1 For all £ € N, all nonempty set€ of experts, and all sequenceas e
(X x {0,1})T; if Lg(s) < k, then the total number of mistakes of BY¥Von s is at most

max{qGN : g <logN —+ log <<qk>} , (2)

whereN > 0 is the number of experts iy

We now describe a variant of algorithm BW, called B{gee Figure 2), that has the
same worst-case mistake bound proven in Theorem 1. However, for many sequences of
examples the new algorithm BWhakes fewer mistakes than the original algorithm. The
current weight of an expeif’ is now (Q;ctlj), wherej is the number of mistakes @ in
all previous trials and not just in the trials in which the master made mistakes as well. The

value ofm is recomputed at the beginning of each trial. This value will decrease by at least

ON-LINE PREDICTION AND CONVERSION STRATEGIES 77

Master Algorithm BW
Input: A set of NV experts€ and a nonnegative integkr

1. Letm:= maX{q €N : g<logN +log (<qk)}

2. Setthe initial weight of each expert([ﬁ‘jkl), and setn’, the number of mistakes made
by the master, to 0. B

3. Foreachtrial =1,2,...

(A) Foreach expert € &:
Let 5 be the number of previous trials where bdihand the master made incor-

m4+1—m’

rect predictions. Then expeH has current weigh(Sk) and votes for its

own prediction with weigh ’Z;:"j/) and with weight(<’Z:ﬁl) for the opposite
prediction. o o

(B) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case
of a tie).

(C) Get the correct predictiog .

(D) If a mistake occurred, then increment and update the weight of each expert to
the weight with which it voted for correct bit.

Figure 1. The Binomial Weighting algorithm.

one after all trials in which the master made a mistake, because the total weight after such a
trial is at most half of what it was before the trial (decreasinby at least one corresponds

to increasingn’ in BW). The value ofm can never increase but it might also decrease
after trials in which the master made no mistakes. Again it can be shown by induction that
the number of mistakes from any trial onward is at most the value sbmputed at the
beginning of that trial.

2.1. Comparison with Weighted Majority

In this section we compare the performances of the BW and Weighted Majority (WM)
algorithms. The WM algorithm has a parameteg [0, 1). An expertE votes for its own
prediction with weight3’, wherej is the number of mistakes made by expgiin the past,

and for the opposite predictidnvith weight 37+1.

Both master algorithms predict 1 if and only if the experts predicting 1 outWetyh
experts predicting 0. The weights used by the BW algorithm are binomial tails whereas the
WM algorithm uses exponential weights of the foffh We often refer tgs as the “update
factor” of the WM algorithm because an expert's weight gets multiplied@stwhen the
expert predicts incorrectly. As one would expect, the choicé gfeatly affects how the
WM algorithm performs.

78 N. CESA-BIANCHI, ET AL.

Master Algorithm BW '
Input: A set of NV experts€ and a nonnegative integkr

1. Foreach expett € £ set the mistake budgél; equal tok.
2. Foreachtrial =1,2,...

(A) Letm := max{qu : g <log (ZEeS (SZE)>}

(B) For each experk € &:
ExpertE has current weigh(ﬁ,‘;}) and votes for its own prediction with weight

(<,) and with weight(_,"™) for the opposite prediction.

(C) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case
of a tie).

(D) Getthe correct prediction,.

(E) Decrease the mistake budgkt;, of all experts that predicted incorrectly in this
trial by 1.

Figure 2. The Modified Binomial Weighting algorithm.

In our setting the master algorithms are given two paramebtérshe number of experts
and a bound: on the number of mistakes made by the best expert. We are interested in
worst case bounds on the algorithm’s performance as functioNsasfd k.

For any master algorithm, define the worst case number of mistaké€ 4 (N, k) as:

WCA(N, k) et max [number of mistakes ofi (£, k) on s].

max
Eof Nexperts S:Lg(8)<k

Furthermore, denote the performance of the best master algorithRw, &), so

WC(N,E) Y min WC4(V, k).
algorithmsA
We will show in Subsection 2.3 that if the number of experts is large enough then the BW
algorithm is (essentially) optimal. That is, for ahy> 0, there existsV, such that for all
N > Ny

WCgw(N, k) < WC(N, k) + 1.

We can only prove the above fof;, = 9(22’“). However we show in Subsection 2.2 that
BW is asymptotically optimal, i.e. the ratt&W Cgw (N, k) /WC(N, k) goes to 1 wherdV
or k goes to infinity (see Theorem 3).

Comparing the BW and WM algorithms is complicated by the fact that WM'’s mistake
bound depends on how the update fagfois chosen (as a function ¥ and k). For
B € [0,1), let WM” denote the WM algorithm that chooses the update faétoFrom

ON-LINE PREDICTION AND CONVERSION STRATEGIES 79

Littlestone and Warmuth (Littlestone & Warmuth, 1994) we have the following mistake
bound for the WM algorithm

logN—&—klog%

WCwys (V. k) < 5
10g m

3)

Since we will be frequently using this upper boundWi@ s (N, k), we define

1

oy, k) 22 D @
og m

Let 5* be the value of3 (as a function ofN and k) that minimizes upN, k, 5). Vovk
(Vovk, 1990) gives an implicit formula fo*. An explicit approximation tgs* is given
in Cesa-Bianchet al. (Cesa-Bianchi, et al., 1995). Withset to this approximation, they
showthatupN, k, 5) < 2k+2vkln N+log N. We showthatufV, k, 5*) ~ WC(NV, k)
wheneverN or k goes to infinity (see Theorem 3).

Although both upN, k, 5*) and WCgw (V, k) have the same leading term whéh
and/ork is large, there can be significant differences between them. We show below that
our bound on the BW algorithm is always at least as good as the known bounds on the
WM algorithm, i.e. thatWCpw (N, k) < up(N, k, 8*) for all choices of N andk (see
Theorem 2). However, as we shall discuss below, at least for small valiéstbé upper
bound on the WM algorithm, U@V, k, 5*), is weak and misleading.

LetWM* be the WM algorithm that uses update fagtvandWM ™ be the WM algorithm
that chooses as a function ofV andk so thatWCyyyis (i) is minimized. Unfortunately,

we don't know how to efficiently compute the value @fused byWM™. The value of
WCym+ (IV, k) is much smaller thaRVCy\+ (N, k) for some choices oV andk. Itis

even conceivable th&V Cyyy;+ (IV, k) is smaller tharlWWCpgw (IV, k) for someN, k pairs,
although this disagrees with our intuition.

To make the weakness of inequality (3) concrete, consider the case when there are three
experts (V = 3). Itis easy to see th&W (3, k) = 2k + 1, which is the best possible. Also
WCwms (k) = 2k + 1 whenevel < 8 < 1/2. However, the value of that minimizes
up(3, k, 8) approaches 1 wheN = 3 andk becomes large. In fact, ¢ &, 5*) grows as
2k + Q(vE). Thus the bound u@, k, 3*) overestimates the number of mistakes made by
WM by an (additive)2(v/k) term. Intuitively, a reason for this is that whenis large
then two poorly performing experts can outweigh the good expert and cause the master to
make unnecessary mistakes.

The main difference between the WM and BW algorithms is how the weights are updated.
The WM algorithm uses a fixed update factor throughout the entire learning process. The
update factord can be written ag~", wheren > 0 has the natural interpretation as a
learning rate. When is small,j is large, and the WM algorithm learns slowly. Whers
large, 3 is small and the WM algorithm rapidly slashes the weights of poorly performing
experts. The disadvantage of a high learning rate is that the algorithm might discount
experts too quickly, causing its predictions to be dominated by only a few experts.

When the BW algorithm changes an expert’s weight fr@i‘g;”_';rl) to (gg:;”_l) then
this can be seen as multiplying the expert’s weight by an update factor that depents on

80 N. CESA-BIANCHI, ET AL.

the number of mistakes made so far by the master algorithm (as wglktlas number of
mistakes made by the expe,, andk). These update factors used by BW become less
drastic as the number of mistakes made by the master increases (and the upper index of the
binomial coefficients decreases). This represents a kind of annealing schedule performed
on the learning rate (see e.g. (Aarts & Korst, 1989) for examples of annealing): when the
master knows nothing the learning rate is relatively high and as the master learns the learning
rate decreases in order to preserve the previously acquired knowledge. Although one could
use any of a number @afd hocheuristics for “cooling down” the learning rate, we have seen
that the binomial weights are theoretically justified by the version space argument.
Our belief is that the single update factor usediByl* (N, k) attempts to approximate
the sequence of update factors use®By (N, k). In addition to the update relationships
between the two algorithms, our proof techniques provide further evidence for this belief.
Both the optimization of WM’s update fact@ras a function ofV andk (Lemma 1) and the
proof that the bound fotWM* is always worse than the BW bound (Theorem 2) use tech-
nigues similar to those used to prove Chernoff bounds for binomial tails (Chernoff, 1952).
We now proceed to compare the bounds on the WM and BW algorithms, beginning with
an examination of thg* minimizing upg N, k, 3). Here we re-derive the implicit form of
B* given by Vovk (Movk, 1990). Recall thafl denotes the binary entropy.

LEMMA 1 (SEE ALso (Vovk, 1990)) Forall N > 2, forall £k > 0, and for all g €

[0,1); if m = k(14 B)/3 (so thatm > 2k and 3 = —£), then the following are

equivalent:

g QUPlV. k, B)
. 5

k
T ORI

SO!

c. m> up(N,l@L),and
m—k

d. m>logN+mH <£),
m

where the functionpis defined in (4). Also, there is exactly ané > 2k for which the last

inequality is an equality and the correspondifigis the uniqgue minimum afp(N, k, 3).

The proof of this Lemma is shown in Appendix B.

Lemma 1 shows that, whelN andk are fixed, the unique solutiom* to m = log N +

mH (£) s the minimum value of upV, k, 3). Althoughm* (ands* = —£—)is afunction
of NV andk, we suppress this dependence to simplify our notation. Alsoi m* andg =

—k_ thenm is an upper bound on @, k, 3) > WCyyys (IV, k). Since we are computing
integer-valued mistake bounds, it suffices to find arfye R such thatm’| = |m*|. Note
thatm > log N + mH(£) whenm > m* andm < log N + mH (£) whenm < m*.
Therefore we can find an appropriat€ by doing binary search. Sinc& C(N, k) >

2k + |log N | (as proven by Littlestone and Warmuth (Littlestone & Warmuth, 1994)) and

ON-LINE PREDICTION AND CONVERSION STRATEGIES 81

m* < 2k+2vkIn N +log N as shown by Cesa-Biana#ial.(Cesa-Bianchi, et al., 1995),
the search can be limited to the rar[@é + |log N|,2k + 2vkIn N + log N|. Thus the
binary search takes at maStlog k + log log N) time.

Our experience indicates that* tends to be close to the right edge of this range. For
N = 3, m* is within 1 of 2k + 2vkIn N + log N. For arbitraryN the right boundary
seems to be at mostg N greater thann*. However these considerations are based on
numerical plots and have not been verified analytically.

We now show that BW beats the bound obtained by minimizing the upper bound for
WMP*. We need a preliminary lemma that is easily derived from the Binomial Theorem.

LEMMA 2 Forallm,k e Nandallo < g <1,if k <mthen

m (1+p)™

< >~ 7
(s k) =T ©
Recall thatm* = up(N, k, 5*) for g* = ﬁ is the minimum of upN, &, 3) over all

B € [0,1). Similarly, letq* be the largest integersuch thay < log N + log (.4,). While
m* is the upper bound on Weighted Majority derived from inequality ¢3)is the upper
bound on the Binomial Weighting algorithm in Theoremy1,(ike m*, implicitly depends
on N andk).

THEOREM 2 For all nonnegative integers and positive integer#v, if ¢* is the largest
integerg such thaty < log N + log (<qk) thenWCgw (N, k) < ¢* andg* < up(N, k, 5),
forall 3 € [0,1). -

Proof: The fact thatWCpw (N, k) < ¢* follows from Theorem 1. LeB be any real in
[0,1). By Lemma 2 the solution tg = log N + log (<qk) is never larger than the solution
mgtom = log N +mlog(1 +) — klog 3. Since solving form yields

log N + klog +
my = ———5—2 = up(N, k,),
log 43

this proves the theorem.]

As mentioned above, whe¥ = 3 the worst case performance WM™ (which uses the
best choice ofy, rather than thg* minimizing the bound) equalg‘. Furthermore, the gap
between these two and* grows as2(v/k). If N is large compared tb, we believe that
the upper bounar* is much closer toVCyy\+ (N, k). However, even whetV is large,
q* can be significantly less than*.

Pick anyk > 1. If N satisfie$

4k 4k+1
27 <N 2

4k\ — 4k+1
(<) ("<k)
theng* = 4k. With a bit of algebra (and Stirling’s approximation) it can be shown that
m* is at leastdk + 5GM=L " |n other words, whenV is about2**/(#"), the mistake

82 N. CESA-BIANCHI, ET AL.

bound on BW of Theorem 1 is at Iea@l‘% better than the best known bound for the
Weighted Majority algorithm. Although our bounds on the BW algorithm are better than
the ug NV, k, 5*) bounds on the WM algorithm, asymptotically the two bounds have the
same leading term. This is shown in the following section.

2.2. Asymptotic performance of the algorithms

This subsection shows that both BW aidV[* are asymptotically optimal in the worst case.

The proof uses a probabilistic argument to show the existence of “hard” sets of experts.
Using these hard sets of experts, an adversary can force any prediction algorithm to make
a mistake on each trial proving the desired lower bound. We use the nofatiog; when

lim; ., fi/g; = 1. We define the following functions to serve as lower bounds

def q q
= M < —
low(N, k) max{qu g <log N + log << k) log <1+ln (< k))}’
Low(N, k) % max(low(N, k), 2k + log N).
We now state the two results of this section.

THEOREM 3 For any integersV > 2 andk > 0, there exists a sef of N experts such
that the following holds for any deterministic master algoritdmthere exists a sequence
s of trials such thatL¢ (s) < k and A makes at leadtow(V, k) mistakes ors.

The above lower bound is then used to show that BWWAid* are both asymptotically
optimal.

THEOREM 4 For any sequencé(N;, k;)}, py Of pairs of positive integers, i¥; > 2 for
all 7 andlim;_, o, IN; = oo or lim;_, k; = oo, then asi — oo,
LOW(Ny, ki) ~ WCgw (Ny, ki) ~ WCwni+ (Ni, ki) ~ up(N;, ki, 57)
k;
up(Nhklvﬁl*) - kz

Before proving Theorem 3, we need some definitions and lemmas. The first lemma is
from Littlestone and Warmuth.

wheres; =

LEMMA 3 ((LITTLESTONE & WARMUTH, 1994)) ForanyintegersV > 2andk > 0,
there exists a se&t of V experts such that the following holds for any deterministic master
algorithm A: there exists a sequeneeof trials such thatl¢(s) < k and A makes at least

2k 4 log N mistakes.

The above lemma proves the first lower bound used in the definition of Low. The second
lower bound is proven using a covering argument. For any positive integed any
nonnegative integek < ¢, a k-covering of theg-dimensional boolean hypercube is a
subsets of {0, 1}? such that for any € {0, 1}? there is gp € B such thatly (p,v) < k.

If in the on-line prediction setting the experts’ predictions are solely a function of the trial

ON-LINE PREDICTION AND CONVERSION STRATEGIES 83

number, then each expert can be viewed as a sequence of bits. Furthermofepisseh

experts is &-covering for some subsét, , t2, . . . , t, } of trials if the set of the sequences of
lengthq representing the predictions of the experts in the trigls,, . . . , ¢, is ak-covering
of {0,1}4.

Now we give a technical lemma showing that some coverings are not too large. We
adapt a nonconstructive argument of Alon and Spencer from (Alon, Spencero%,Br@92,
Theorem 2.2, page 6).

LEMMA 4 Forall N > 1andforallk > 0, if m = low(N, k), then there is &-covering
of {0, 1}™ of size at mosiV.

Proof: We prove the lemma using a probabilistic argument. Ret {0,1}™ be chosen
randomly so that the evenrt € R occurs with probabilityp > 0 (to be specified later)
independently for any € {0,1}™. Let R’ be the subset of0, 1}™ containing all points
notk-covered byR. ClearlyRU R’ is ak-covering of{0, 1}™. Observe that any belongs

to R’ ifand only if for anyw € R, dg (2, v) > k. ThisimpliesPr(z € R') = (1 —p)(£k),
since there ard”}) corners of them-dimensional boolean hypercube with Hamming
distance at most from z (z itself included). From the above it is easy to compute the
expectation of the random variallg| + | R/|.

E[|R| + |R] = 27p + 27 (1 — p) ().

Now setp = % Then

<k

—

2m

IN

ln(;%c) + exp (— In (<mk>>] (6)

In (2]
E(R|+|R| = 2[e
1

where inequality (6) holds sinde-x < e~*forall z > 0. Thus, if N > 2™ Hhin()g“) then

<k
them-dimensional boolean cubefiscovered by a set of siz¥. Solving this inequality for
myields thatm < log N +log (7},) —log(1+1In (})), or equivalently thatn < low(N, k)
ensures that the:-dimensional boolean cube hag-&overing of sizeV.]

Proof of Theorem 3: In view of the lower bound stated in Lemma 3 it suffices to prove
a second lower bound of I, k) mistakes. We use Lemma 4 to do this. Choose a
sequence(z; }, py of distinct observations. Choose integéys > 2 andk > 0. Let

m = low(N, k). By Lemma 4, there exists a s&bf IV experts, whose predictions depend
only on the trial number, such thétis ak-covering for the firsin prediction trials. Now

84 N. CESA-BIANCHI, ET AL.

notice that, if€ is a k-covering for the firstn trials, an adversary can foree mistakes
on any deterministic prediction algorithm. The adversary simply chooses the sequence
y of outcomes, of lengthn, such thaty; is the opposite of the algorithm’s prediction on
the ¢th trial. Sincef is a k-covering of{0,1}™, for any such sequenag of outcomes
there is some expert ifi which makes at most mistakes onx1,y1), .-, (T, Ym)-
]

Proof of Theorem 4: By Theorem 3 we know that LoV, k) is a lower bound on the
number of mistakes for any deterministic master algorithm.

Letw = {(N;, ki)},.n be a sequence as in the statement of the theorem. Since by
Lemma 1 and Theorem 2

Low(N;, ki) < WCaw (i, ki) < up(Ny, ki, 37)
and
Low(NV;, k;) < WCwwm+ (N3, ki) < up(Ny, ks, B5)

it is sufficient to show that
Low(Ni, ki)

lim =1. 7
8 Up(V,, e) ")
The proof of (7) is shown in Appendix C.]

2.3. Lower bounds based on Ulam’s game

In this section we give lower bounds on the performance of prediction strategies. We show
that for any fixed number of mistakésof the best expert and for any prediction algorithm,
there exists a st of experts and a sequengsuch thatc = L¢(s) for which the number

of mistakes made by the prediction algorithm is at least as large as the number of mistakes
made by BW.

We start by introducing some notation that lets us give a precise statement of our lower
bound. We then describe Ulam’s game with lies and its relation to our prediction problem.
Finally, we show how Spencer’s results (Spencer, 1992) can be used to prove our lower
bound.

In all of the following discussion we shall think &f the upper bound on the number of
mistakes made by the best expert, as being fixed.Jlletq) be the following sequence of
numbers indexed by

J(k,q) = 29/ (<qk>.

Itis easy to check that(k,q + 1) > (5/4)J(k, q), for anyq > 3k + 2, thus the sequence
J(k, q) increases (at least) exponentially.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 85

THEOREM 5 For every nonnegative integérthere exists an intege¥,;, such that for all
N > N the following holds:
If g is the integer such thaf(k,q) < N < J(k,q + 1), then

1. WCpw(N, k) < WC(N, k) + 1.
2. IfJ(k,q) +2¥ < N, WCgw(N, k) = WC(N, k).

Observe that the upper bound on algorithm BW is always guaranteed to be within one
mistake of the optimal algorithm whe¥iis large enough. Also, since the size of the segment
[J(k,q), J(k,q+ 1)] increases exponentially with asq increases the set of values s
where the second case holds (i.e. the lower bound is off by one from BW's upper bound)
becomes an insignificantly small fraction of the possible valued’for his shows that BW

is very close to optimal for large values of. The gap of one wheiV < J(k,q) + 2%

arises from complicated number-theoretic considerations. In Appendix A we show how
algorithm BW can be modified so that it is completely optimal for lakgeThe weakness

of this lower bound construction is that the threshaigl above which the lower bound
holds is rather large, on the order® . This double-exponential dependenceioarises

from our use of Spencer’s results (Spencer, 1992).

Before we give the proof of Theorem 5, we briefly describe Ulam’s game with a fixed
number of lies and show how this game relates to chip games and to the problem of
combining the predictions of experts.

In the searching game introduced by Ulam (see (Ulam, 1977)) there are two players: a
choosef(also called Carol) andartitioner (also called Paul). A game is defined by three
nonnegative intege®, k, andq that are known to both players. Carol is assumed to select
a secret number from the set{1,..., N}. Paul's goal is to find out what this number is
by asking Carol questions of the form “Isin S?”, whereS is any subset of1,..., N}.

Carol is required to answer either “yes” or “no”. However, she is allowed to lie (i.e. give
the incorrect answer to Paul’s question) ugtimes? We say that Paul wins thgv, k, q)
game if and only if he can always identify Carol’s secret number after at gropststions,
regardless of Carol's strategy.

The interesting fact is that there is a common abstraction of Ulam’s game with lies and
of our problem. The abstraction can be seen as the following chip game (for more work on
chip games, see (Aslam & Dhagat, 1991)). We think of each number in thé,set, N}
as a “chip” and considet + 1 (disjoint) subsets of these chips, which we call “bins”,
and denote byBy, ..., B;. At each point of the game, the big; contains all the chips
that correspond to a numbere {1,..., N} with the property that ifc is the number
chosen by Carol, then of the answers that Carol gave so far have been lies. Thus the
union of all the bins contain those choiceswthat are consistent with the boukdn the
number of lies that Carol is allowed to make. Essentially, it is sufficient to describe each
configuration reached during the game by the number of chips in each bin. We denote by
I’ = (I},...,1j) the configuration of the chip game after at thh trial, wherel; is a
natural number denoting the number of chipBin For example, the initial configuration
is alwaysI® = (N, 0,...,0).

When Paul asks “lg in S ?”, his question partitions the chips into two sets, thosg in
versus those outside. If Carol answers “no” her answer constitutes a lie with respect to

86 N. CESA-BIANCHI, ET AL.

the numbers irt. This translates to advancing each chip corresponding to a numiSer in
from its current bin to the next bin (e.g. from bi®y to B;1). If a chip corresponding to

a number inS is already in the last by, it is discarded as there is no i), ;. If Carol
answers “yes”, then those chips corresponding to numbers tbane advanced.

Clearly Paul cannot know which number Carol has chosen as long as the union of the bins
contains at least two chips. Thus Carol’s goal is to keep two chips in the union of the bins
for as long as possible. Paul wins g, &, ¢) iff there is a strategy for choosing partitions
guaranteeing that aftgrsteps there is at most one chip remaining in the union of the bins.

We can think of the prediction problem as a “prediction game” where the predictor is
playing against an adversary that picks both the predictions generated by the experts, and
the outcome$8 We restrict our attention to those adversary strategies that force the prediction
algorithm to make a mistake on each and every trial for as long as possible. This means
until one expert has mademistakes and every other expert has made moreithaistakes,
the adversary chooses the feedback so that the prediction algorithm makes a mistake on
every trial. From this point on, the predictions of the single best expert are guaranteed to be
without mistakes, and by copying the predictions of this expert the master algorithm will
correctly predict the remainder of the sequence. This restriction is helpful to map to the
prediction game into a chip game, and restricting the adversary in this way does not reduce
its power since we are able to obtain a lower bound that essentially matches the upper bound
of the BW algorithm.

We can easily relate this “prediction game” to a chip game. Each chip corresponds to
an expert and the biis;, for 0 < j < k, contains those chips corresponding to experts
that have made exactly mistakes on previous trials. Each iteration of the game starts
with the adversary partitioning the chips to two sets according to the predictions given
by the corresponding experts. The prediction algorithm then chooses its prediction, and
the adversary forces a mistake by generating an outcome opposite to the prediction. This
causes those chips corresponding to experts whose predictions were mistaken to advance
one bin. Thus the prediction algorithm (indirectly) chooses which subset of the chips gets
advanced, so the prediction algorithm corresponds to Carol and the adversary corresponds
to Paul. The game ends when the configuratin®, . . ., 1) is reached, we shall refer to this
configuration as theerminalconfiguration. This is a slight difference from the chip game
that corresponds to Ulam'’s game withies. Another, much more significant difference, is
that the goals of the opponents have been reversed. In the chip game corresponding to the
prediction problem, Carol (the prediction algorithm) wantshortenthe game as much as
possible since the length of the game measures the number of mistakes that the prediction
algorithm is forced to make.

As the goals of Carol and Paul have been reversed, it would seem that their strategies for
playing the two games would be very different. Surprisingly, it turns out that the optimal
strategy for Paul is the same in the two games when the different ending condition is ignored.
If N > Ny then this optimal strategy Paul can force both games to have the same length,
regardless of the actions taken by Carol. In other words, if Paul uses this strategy then Carol
is unable to make the game neither longer nor shorter.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 87

This strategy for Paul has been developed by Spencer (Spencer, 1992), and is the basis of
the proof of Theorem 5. We shall briefly describe the strategy, give Spencer’s result, and
then use it to prove Theorem 5.

Spencer identifies the same binomial weights that are used in the BW algorithm as the
central quantities on which the strategies of both Carol and Paul are based. We shall denote
by W, (I) the weight associated with the configuratiband the integed, i.e.

k
q
W, (1) = ;Ii<§ k_z.).
Spencer gives a strategy for Carol. Under this strategy Carol advances those chips that keep
the future configurations as heavy as possible. The exact opposite choice is made by the
BW algorithm, which advances the heavier chips, resultinglighder configuration. This

makes intuitive sense, because Carol has opposite goals in the two games.

The main result of Spencer’s paper (Spencer, 1992) is the identification of a class of
“good” configurations. For each configuration in this class there exists a partition such
that both future configuration have equal weight, equal to half the weight of the current
configuration, and both configurations are either good or consist of a single chip. Thus,
starting from a good configuration, Paul can repeatedly partition the chips in such a way that
in each step the weight is halved until only a single chip remains. Itis clear that, by choosing
these partitions, Paul can completely neutralize Carol once one of the good configurations
is reached. The definition of the good configurations rests on the observation that the
weight associated with the chips in biy, is always 1, becausg?)) = 1. These chips
are appropriately referred to as “pennies”. Itis clear that if a configuration has a sufficient
number of pennies, and the total weight is even, then by moving pennies from one set of the
partition to the other one can equalize the weight of the two successor configurations. Paul's
strategy is to choose a partition whose two successor configurations are almost balanced
and then use pennies to balance them completely. The main theorem in Spencer’s paper
shows that if the initial configuration has a sufficient number of pennies, Paul can use this
technique repeatedly, without running out of pennies until a configuration with a single chip
is reached.

We now give the main result from Spencer’s paper in a form that fits our needs.

THEOREM 6 (SPENCER, 1992) For any numbefk > 0 of bins, there exist finite integers
c(k) and go(k) such that the following holds for afl > go(k): if 1° = (10,...,I)is an
initial configuration such thafy > c(k)g* and W, (I°) = 29, then there exists a strategy
for Paul such that, independent of the choices made by Carol, a configui&tisreached
such thaty"F_ I = 1andW,_,,, (I™) = 29",

In other words, Paul can guarantee that the total weight is exactly halved at each step,
until only a single chip is left.

Proof of Theorem 5: The proof is divided into two parts, we first show thaf\ifis large
enough then from the initial configuratid = (N, 0, ...,0) Paul can reach, ik steps, a
configuration that meets the conditions of Theorem 6. In the second part we show that the
final configuration reached in Theorem 6 guarantees the bound given in the theorem.

88 N. CESA-BIANCHI, ET AL.

Inthe proof we make use of the idea that Paul “marks” chips as useless. If a chip is marked
on some particular trial, then this chip is placed arbitrarily in the partitions generated by Paul
on subsequent trials. We shall prove that Paul can delay reaching a terminal configuration
even when only the unmarked chips are considered. Itis clear that if the marked chips were
also considered, then reaching the terminal configuration would be delayed for at least as
long, which proves the lower bound on the number of trials.

Initially, all IV chips are in binB,. It takes at least steps to get chips to biB;, and thus
make them into pennies. We shall devise a strategy for thekfirsals that is guaranteed
to give rise to a sufficient number of pennies at Mie trial. First, Paul marks some chips
so as to make the number of unmarked chips divisibl@%yClearly, less thag* chips
need to be marked. Ignoring the marked chips Paul generates the following partitions. The
(unmarked) chips in each bin are divided into two equal parts, one part from each bin is
placed in the first set of the partition, and the other part is placed in the second. It is easy
to check that, independently of Carol’'s actions, such partitioning of the unmarked chips is
possible fork steps. It is also simple to see that aftetrials exactly a fraction o2 —* of
the unmarked chips reach bis), and become pennies.

Let ¢ be the integer such that(k,q) < N < J(k,q + 1). From (1) it is clear that the
weight that is associated with the unmarked chips is divided by two at each step. Thus,
independently of Carol’s choices, the weight of the configuration aftdeps satisfies

Wo_r(IF) > 27F(N — 2) <§qk). (8)
To apply Theorem 6 we need that the remaining weight (a&ftsteps) of the unmarked
chips is a power of two. We first find an approprigtsuch thatV;(1*) > 24.

By the definition ofg, J(k,q) < N < J(k,q+ 1). If N is large enough theii(k, q) —
J(k,q—1) > 2" andthusV > J(k,q—1)+2*. Thisimplies that v —2%)(%,!) > 20!
and thus by inequality (8}V,—,—1(I*) > 2¢7%=1. |t follows that if IV is large enough
then we can always chooge= ¢ — k — 1. However ifN > J(k, q) + 2*, then by the same
derivation we getV,_(I*) > 29" andwe canse =g — k .

We now wish to apply the results of Theorem 6 to the configurakforwhose weight
satisfiedV; > 29. However, in order to obey the conditions of the theorem we have to mark
some more chips in order to make the weight of the configuration satigfy*) = 29.
We do this marking carefully, so that afterwards we still have enough unmarked pennies
to apply the theorem. We mark chips using the following simple procedure: we mark
nonpenny chips until we cannot mark a nonpenny chip without redugifig) below24.
We then mark enough pennies to reduce the weight toAs the heaviest chips (those in
By) weigh(%) < (3¢)*, we need to mark at mog3)* pennies. Taking into account both
the initial marking of less tha®* chips and this additional marking phase, we get that the
number of unmarked pennies is at legst* (N — 2 +1)] — (3¢)* > 27*N — (3¢)% — 2.

On the other hand, in order to apply Theorem 6 we need atd@asgt® unmarked pennies.
This is satisfied iR~ N — (3§)* — 2 > ¢(k)¢*. As for any fixed value of:;, ¢ and thusj
is O(log N), the last condition is satisfied for evely > N, for a large enougtvy,.

We can thus apply Theorem 6 with the initial configuration being the unmarked chips in
the kth configuration, that we denote ¥. The weight of this configuration i/;(1*) =

ON-LINE PREDICTION AND CONVERSION STRATEGIES 89

24, The theorem guarantees that Paul can find partitions so that afterssosteps a
configuration/*+™ is reached such th@fzo IF™ = 1andW;_,, (I™) = 29~™. Thus
only a single chip will be left. It is easy to verify that as the weight of the chiZ#is™ it
must be in binB;,_ 4_,,). After anotheig — m steps the single chip will be in the last bin
and the game is over.

Finally, we sum up the number of trials, or mistakes, that Paul can force on Carol. We have
k trials before getting the pennies,trials using the Spencer’s strategy, d@ndm mistakes
at the end. Summing these terms and using the definitignaf get that Paul can always
force atleast — 1 mistakes and iV > J(k, q) +2* then Paul can force at leagiistakes.
]

3. Conversion strategies

In this section we show how the ideas behind the BW algorithm can be used to modify
prediction algorithms so that they can tolerate malicious noise. Assume we are given a
prediction algorithmA that makes at mogt mistakes on any sequence in someXet

(X x {0,1})*. We assume that algorithrhmakes at most mistakes even ifit is presented

with asubsequenacaf any sequence iB. Formally, we require that is subsequence closed.

Any deterministic prediction algorithm can be converted to an algorithm that changes its
state only when its prediction is incorrect. This is achieved by resetting the statafter

each trial in whichA predicts correctly to the state df before the trial. This conversion
does not increase the worst case number of mistakes on the subsequence closdtiset
converted algorithm is callezbnservativéLittlestone, 1989). For the rest of this section we
shall always assume that the set of sequences is subsequence closed and that the prediction
algorithm is conservative.

Algorithm A is allowed to perform arbitrarily badly if given an instance/outcome sequence
that is not inX. For example, it5 = (X x {0})* U (X x {1})* (i.e. all sequences where
the outcome is held constant) then the algoritAmvhich always predicts with the first
outcome seen makes at most one mistake when given a sequéhcddanvever, if the first
label is corrupted by malicious noise then all subsequent predictions made by algdrithm
will be incorrect.

Here we show how to convent into another algorithm that performs well on sequences
in X that are corrupted by noise. In particular, for anwe can build an algorithm that
performs well on those sequences which can be created from a sequéhlog ambitrarily
changing up to- examples. We usE’ to denote this set of noisy sequences. As the above
example indicates, algorithd may make arbitrarily many mistakes on sequences’in
Furthermore, the sequencesihmight have different outcomes for the same instance and
algorithmA might not even be defined on this larger set of sequences. In that case we extend
the definition ofA by assigning it the default prediction 0 and restarting it at its initial state.
Thus we assume throughout thas prediction and successor state are always defined.
In this section we use the methods developed in Section 2 to construct master algorithms,
calledconversion strategiesvhose mistake bounds increase slowly as a function of

90 N. CESA-BIANCHI, ET AL.

As in Section 2, we use a version space argument and expamo a set of variants so
that at least one variant will be correct on all trials where the conversion strategy makes
a mistake. However, here the elements of the version space are somewhat dynamic as
they represent computations dfon sequences iR. In addition to discarding irrelevant
computations from the version space, the conversion strategy will also need to extend certain
computations by simulating on the current trial. Since the members of the version space
managed by the conversion strategy are somewhat dynamic, it may be a slight misnomer to
call it a version space. However “version space” does convey the proper intuition.

Since our conversion strategies are conservative we can concentrate on those trials where
the conversion strategy itself makes mistakes. Here weru® a bound on the number
of mistakes made by the conversion stratégie denote the mistake bound of algorithm
A on sequences iR, andr as the number of examples corrupted by noise.

We first outline theC',;,, conversion strategy that is based on binomial weights, and later
describe a second conversion stratégy,,, based on exponential weights. These strategies
are described in more detail in Sections 3.1 and 3.2 respectively.

A major difference between the conversion problem discussed here and the one addressed
in Section 2 is that with experts there were only two possibilities for each trial — the expert
was either correct or incorrect. Here we consitteee different cases. The first case is
when algorithmA correctly predicts the outcome. In the other two cases the prediction
is incorrect. In the second case the wrong prediction is due to the fact that the example
is corrupted by noise and in the third case the example is unchanged but the algorithm
makes a mistake in predicting the label. Therefore, instead of associating a bit string to
each member of the version space, g, strategy attaches a string of “trits” from the
set {0, noise mstk}. Each member of the version space is a stored state of algorithm
A together with a string = (71,...,7») € {0,noise mstk}™. These strings have an
interpretation like the bit strings of Section 2. If stdte 7) pair is in the version space
when the conversion strateg@¥,;,, makes itgth mistake, then the value ef represents the
following possibilities. The valué represents the possibility thatpredicted the label of
the example correctly. The valuesiseandmstkrepresent the possibility that predicted
incorrectly, where the cause for the incorrect prediction is attributed to noise or to a mistake
by A respectively.

Since algorithmA makes at most mistakes, each stringcontainamstkat mostk times.
Similarly, since we assume that at megif the trials are corrupted by nois&iseappears
at mostr times in each string. Therefore only some of &festrings in{0, noise mstk}™
are legitimate. In particular, if there agenonzero elements in a stringwill be between
0 andr + k. Furthermore, at mostand at leasj — k of the elements in the string will be
noise This gives us

size(r, k,m) défﬂrzk (Zn) K;J - (gj—jk:— 1)}

7=0
strings that must be considered. An examination of the term in brackets showszthist
symmetric in- andk, as expected. Furthermoreze(r, k,m) = O(m”+* (r 4 k)min(rk)),
The Cy;, conversion strategy starts with a version space contaBigryelements, each
with the initial state of algorithmd and a different legitimate string. The conversion

ON-LINE PREDICTION AND CONVERSION STRATEGIES 91

strategy manages the version space by predicting with the halving algorithm. However, it
is no longer quite so clear what this means.

Consider the situation after the conversion stratégy, has made — 1 mistakes and
sees instance € X. In this case each element of the version spasete) will be
using itst; to see if its variant ofd is correct, has a noisy trial, or makes a mistake. Each
variant will see howA (in statestatd predicts. If itst; is 0 then the variant predicts the
same way, otherwise the variant predicts with the opposite value. Conversion strategy
may update the version space after getting the outcome. If the conversion sttategy
predicted correctly then all variants are kept unchange@yif predicted incorrectly then
those variants also predicting incorrectly are discarded. In addition, Whgnpredicts
incorrectly those variants predicting correctly may be updated based onrtheitlues.
There are three cases, according to the value.of

1. Caser; = 0: This means that the variant predicted the outcome correctly. Sinse
conservative(Cy;,, leaves the state of the algorithifor this variant unchanged.

2. Caser; = noise This means that the prediction dfis incorrect but would have been
correct if the example was not corrupted by noise. As in the previous€Casdeaves
the state of the algorithm unchanged.

3. Caser; = mstk This means that the prediction dfis incorrect becausd has made
one of itsk allowed mistakes and that the example is not corrupted by noise. In this
caseCh;, updates the state of. This is done by simulatingi, starting from the old
state, on the example received in the current trial. The resulting stateeyflaces the
old state in the variant.

We show in Lemma 5 that:

1. On each trial wheré€,;,, makes a mistake, the size of the version space drops by a
factor of at least 2.

2. For any sequence i’ at least one variant is never removed from the version space
during the run of the master algorithm.

We need a few definitions before we can precisely state our bounds ofi,theon-
version strategy. For alh € N and for all pairss = ((z1,¥1),.--, (Zn,yn)) @and
u=((z],v})),...,(«),y,)) of sequencesifiX x {0,1})", we say that is anr-corrupted
version ofw if and only if (z;,y;) # («},y.) for at mostr indicesi, wherel < i < n.
We shall also use the notatidg (s, u) = r to indicate that is anr-corrupted, but not an
(r — 1)-corrupted, version ofc. Thus

do(s,u) ef min{r € N : s is anr-corrupted version ofs } .

We definedq (s, u) = o if the sequences differ in length or if they have an infinite number
of disagreements, and says a corrupted version af if do(s,u) is finite.

We will show in Section 3.1 that the conversion stratégy, achieves the following
bound.

92 N. CESA-BIANCHI, ET AL.

THEOREM 7 For all conservative, deterministic algorithms A, for all subsequence-closed
sets of sequencés C (X x {0,1})", and alls € (X x {0,1})7, if

o k> max{L,(u):u e X}and
e sis anr-corrupted version of some sequencelin

then the number of mistakes madethy, (r, k, A) on the sequenceis at most

max {g € N : ¢ <log(s1ze(r, k,q))} . 9)

In Theorem 9 we will show that the bound in (9)@Xr + k). Note also that th&;,
strategy needs to know the upper boukdmdr.

In Section 3.2 we describe a second conversion strategy that we céll.thetrategy.
The Cy, Strategy uses exponential weights (as used in the Weighted Majority algorithm)
and does not require advance knowledge @ind k. However one cannot optimize the
mistake bounds of’..,, without knowing these parameters. The following theorem gives
the mistake bound we prove for the conversion stratégy.

THEOREM 8 For all conservative, deterministic algorithms A, for all subsequence-closed
sets of sequencés C (X x {0,1})", and alls € (X x {0,1})7, if

e « andgj are nonnegative real numbers such that 5 < 1, and
e sis a corrupted version of some e ¥,

then the number of mistakes made(ty, (o, 3, A) on sequence is at most

do(s,u)log £ + La(u')log &
c(s,u)log 3 + La(u')log 3 | (10)

min macxx] 5
/ —_—
UexzuU'Cu Og1+a+5

whereu’ C u means that is any subsequence of

It is easy to verify numerically that by choosimg= 3 = 0.147, the upper bound for
Cexp displayed in (10) is at most

. li
min max 4.4035(dc (s, u) + La(u')).
Thus we get a reasonable bound that holds for all valués 0§, w) and L 4 (u').

However, if one wants to set and 5 so that the mistake bound ¢f.,, is optimized
then one needs to know upper bourtdsndr ondq (s, u) andL 4 (u'), respectively. The
case when or k is 0 is degenerate. Thus we assume that(r, k) > 1. The following
inequality was numerically checked using MAPLE, a software package for symbolic
computation,

rlog £ + klog 1
2 < f(rk)
log Ta7s

ON-LINE PREDICTION AND CONVERSION STRATEGIES 93

_ T _ k

f(r k) o 2(r + k) + 2y/rkIn(e — 1 + max(r, k) / min(r, k)) 4+ 2.807V/rk.

If » > k, then by dividing the inequality bl, we are left with an inequality in/k, where
r/k € [1,00). We plotted the difference between the left-hand side and right-hand side of
the latter inequality as a function ef k and checked the values of the difference and its
derivatives with respect to/k at the end points 1 ansb.

One can also show that there is no constantiependent of andk such that the mistake
bound ofCeyp, (With « and optimized) is at mos2(r + k) + eVrk.

Notice however thaC., has a worst-case mistake bound larger thap,: In much
the same way we proved Theorem 2 in Section 2.1 we can also prove the following (see
Section 3.2).

THEOREM 9 Forall k,r e Nandalla, 3 € [0,1), if a4+ 3 < 1, then

(11)

rlog 1 + klog%
max {q € N : q <log(siz(r, k,q))} < | —————"1 .

2
log 7573

To show an immediate application of Theorems 7 and 8 consider the special case when the
sety C (X x {0,1})" of uncorrupted sequences is the set of all sequences consistent with
some familyF of {0, 1}-valued functionsf on X. That is

YX=Yr= {<(l‘t,f($t))>t : f eF A <.’L‘t>t S X+}

This more restricted setting was studied by Littlestone (Littlestone, 1989) and Littlestone
and Warmuth (Littlestone & Warmuth, 1994) where they define the quantitieSFOpY,

i.e. the optimal worst-case number of mistakes over all sequence&fomnd Op{.F, r),

i.e. the optimal worst-case number of mistakes over-albrrupted sequences froR-.
Littlestone and Warmuth (Littlestone & Warmuth, 1994) show that(®@pt) > 2r +
Opt(F,0), but the problem of finding an equivalent upper bound is left open. By ap-
plying Theorem 7 (or the weaker Theorem 8) when= ¥ and the sub-algorithmt

is optimal, we obtain the upper bound Qptr) < 4.4035(r + Opt(F,0)), showing
Opt(F,r) = O(r + Opt(F,0)). Auer and Long (Auer & Long, to appear) independently
developed an algorithm essentially equivalent toGus, strategy:’

All of our conversion schemes use deterministic prediction algorithms. This means that
the algorithm’s prediction depends only on its current state and the observation. After
making its prediction, the algorithm enters a new state based on the observation and the
outcome. We denote the initial state of the prediction algorithnby; and usedgs to
denote prediction algorithrdl in stateS. When the observation is fixed, the next state
entered by algorithmi depends only on the outcome. We e (and.S*!) to denote the
(possibly identical) next state entered My after Ag receives observationand outcome
0 (or outcome 1 respectively). In the rest of this section we state and prove the mistake
bounds forChi, andCexyp.

94 N. CESA-BIANCHI, ET AL.

3.1. The conversion strateg¥';,

In this section we formally describe tli&,;,, strategy and prove its mistake bound.

TheC\,;, strategy uses a concise representation of the version space in much the same way
that theBW algorithm keeps a single binomial weight for each expert. In order to avoid
confusion with the states of the algorithm being converted, we call the states ©f,the
algorithmconfigurations Each configuration encodes the appropriate version space as well
as avalue (which we usually denetgindicating an upper bound on the number of mistakes
yet to be made by the conversion strategy. Thg, algorithm changes configurations only
when it makes a mistake.

The version space is encoded in a configuration as a (multi-)set of triples representing com-
putations of algorithmi on corrupted versions of subsequences of the past trials. More pre-
cisely, the version space is represented by a collection of tiifles, &), whereS is a possi-
ble state of algorithmil and the other two components are integers. Intuitivéigpresents
the maximum number of future examples that can be corrupted by noigémpdesents the
maximum number of mistakes made by algoritArm the remaining trials. Thusf is the
upper bound on the number of mistakes yet to be made by the conversion strategy, the single
triple
(S,r', k') represents

Z:é (i> K<ir’) B (< . 1ﬂ

different elements in the version space (8t) pairs forr € {0, noise mstk}c'). Itis
important to understand that the valuésk’, andc’ all start at the upper boundsk, and
m, respectively, and count down.

The initial configuration of theC);, conversion strategy contains the single triple,
(Sinit, 1, k) whereS;,,;; is the initial state of algorithral, r is the bound on the number of
noisy trials, and: is the mistake bound of on sequences iR. The initial configuration
of C;, also contains the mistake budtlet! = m + 1, 1 greater than the mistake bound
of Chin.

An important concept is theuccessorsf a configuration. For any possible stateof
algorithm A and anyr € X we useS®? andS*! to denote the states entered tyfrom
stateS after processing the single observation-outcome (aid) or (z, 1), respectively.
Given a configuratiod with mistake budget’, we define thesuccessor*:* andC*:!, of
configurationC; with respect to observatianin the following way.

Both successor configurations have mistake buelget. For each tripl€.S, r’, k')
in C;, consider the prediction olg on observation:.
If Ag predictsl, then

e configurationC®! contains the single triplgS, »’, k'), and

e configurationC®° contains the triplegS*° ' k' — 1) and (S, " — 1,k)
representing the possibilities of a incorrect predictionsgnd a noisy trial
respectively.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 95

Similarly, if Ag predictsO on observatior: then

e configurationC* contains the triplé S, ', k'), and
e configurationC®! contains the triple$S®1, v/, k' — 1) and(S,r" — 1, k').

We define the weight of a configuration to be the size of the version space represented
by that configuration. In particular, the weight. (S, r’, k') of the triple (S,’, k) in a
configuration with mistake budgetis

SO (o)

and the weight of a configuratiahy W, (C), is the sum of the weights of the triplesh
Triples (S, 7', k") where either’ < 0 or k' < 0 represent sequences disallowed by our
assumptions, and these disallowed triples are given weight 0. Deleting disallowed triples
from a configuration has no effect on the strategy’s predictions.

On each trial th&y,;,, conversion strategy in configuratiGreceives the new instanae
and computes the weights of the two successor statesandC®°. TheCy;, conversion
strategy predicts 1 if the weight 6f! is greater than the weight 6f-° and 0 otherwise.
If the Cy;y, strategy predicted correctly, it keeps the configuratiorif the C\;,, strategy
predicted incorrectly, then it changes its configuration febtmC®* whereb is the outcome
of the current trial.

A sketch of the conversion strate@y,;,, is given in Figure 3.1. The algorithifi,;,, can
be further improved in the same way that BiMproved BW (See Section 2). However
these changes do not improve the worst-case mistake bounds, and thus we chose not to
include them for the sake of the simplicity of the presentation.

The next result shows some useful properties of sequences of configurations.

LEmMA 5 For all conservative, deterministic prediction algorithms all subsequence
closed sets& C (X x {0,1})", and allr € IV, if

e k>max{La(u):uecX},
e s={((xs,5))in (X x {0,1})" is anr-corrupted version of a sequencedh and

e Cyisthe configuration with mistake budggt= g containing the single tripl€S;,,.;, r, k)
wheresS;,,;; is the initial state of4, and

o Cy,C,...,Cq is the sequence of distinct configurations generated by a ruth,gf
applied toA on the sequences

then

1. foreacht:O,l,...,,g —01, .
We,(Ct) = We, 1(CL7) + We, 1 (CEH7) = We,—1(Ciqn)
wherec, is the mistake budget 6§, and

2. foreacht =0,1,...,9, W,(C;) > 1;

96 N. CESA-BIANCHI, ET AL.

Strategy Cpin
Input: Two positive integers, k, and a prediction algorithm with initial statesS;,,;;.

1. Letg=m+ 1, where

m:=max{q €N : g <log(size(r, k,q))} (12)

2. Initialize configuratiorC, to have mistake budge = ¢ and contain the single triple
(Sinit, 7, k).

3. Foreachtriat =1,2...

(A) Get thetth observation,.
(B) Compute the successcﬂﬁj’f andij’f of the current configuratio6; ;.
(C) Predict withp € {0, 1} such that

We,_,—1(C7P) = max{We,_, 1(C/), We,_,—1(C{)}

(predict arbitrarily in case of a tie.)
(D) Get the outcome.

(E) If p # vy, then decrease the mistake budget and update the current configuration
by settingC, := C;*}*; if p = v, then keep the current configuration by setting
Ct = Ct—l-

Figure 3. Pseudo-code for the conversion stratégy,, .

The proof of Lemma 5 is given in Appendix D.

Proof of Theorem 7: Choosen, k € N and a sequence” € (X x {0,1})" that is an
r-corrupted version of some € ¥. Letm be the integer defined by formula (9) and,
assume to the contrary th@, (r, k, A) makes at least = m + 1 mistakes ors. Let/ be
the trial on whichCh;,, (1, k, A) makes itsgth mistake and”’ the mistake budget after the
¢th trial. We will show that
wo(cy < Wal&) (13
< 1. (14)

Lettq, to, ..., t, be the trials at which algorithifi,;, makes its firsy mistakes ands’ be
the associated subsequenceofSinceX is closed under subsequencesg Y. We apply
Lemma 5 to sequence’ and the associated sequerteC;,, ...,C;, of configurations
generated by the algorithm. By construction, the algorithm predicts on each (tiat

t < n) according to the heaviest successor of the current configurgtian The current

ON-LINE PREDICTION AND CONVERSION STRATEGIES 97

configuration is unchanged @\, predicts correctly. If the algorithm makes a mistake
on trial ¢, the successaf;"?* corresponding to the correct predictign becomes the
new current configuration. Because algoritbiy,, predicts on each trial according to the
heaviest successor, it follows from part 1 of Lemma5that ; (C;,) < W, (Co)/2 and that
We,~1(Ci,y) < We, (Cy,)/2, for2 < j < g, wherec; (for 1 < j < g — 1) is the mistake
budget ofC;,. This implies inequality (13). By definition of: in (9) and the fact that
g = m + 1 we derive inequality (14). Now part 2 of Lemma 5 shows that (C;,) > 1,
contradicting (14). Thu§',;, makes atmost = g—1 mistakes o, concluding the proof.

]

A good consequence of the fact th@;, is conservative is that the number of triplets
does not increase on trials whefg,;,, predicts correctly. However, it seems that the
number of triples kept by algorithify,;, can potentially double each tin@@,;,, makes an
incorrect prediction. We now show that this apparent worst-case behavior is not possible,
and that the maximum number of triples in any configuratiod'gf,(r, k, A) is bounded
by (., a) = O(m™in{"k}) wherem is the number of mistakes made BY;,, before

<min{r,k}

the configuration is reached.

TuEOREM 10 For all conservative, deterministic prediction algorithrds and all sub-
sequence closed séfsC (X x {0,1})", if

o k>max{La(u):ucX},
e s = ((x4,y:)) is anr-corrupted version of some sequencéin

e (yisthe configuration with some mistake budgetontaining the single tripl€S;,,;:, r, k)
whereS;,,;; is the initial state of4, and

e Cy,Cq,...,Cy is the sequence of distinct configurations generated by a rurh,of
applied toA on the sequences

then foreach < ¢ < m, configuratiorC; contains at mos([<mint{r k}) triples with nonzero
weight. -

Proof: We prove the theorem when= min{r, k}, the other case is similar. For all
t=0,1...,mand0 < i < r let M(¢) be the number of triplesS, ', k') € C; with
r’ = r —i. ThusMy(0) = 1 (for the initial configuration), and/y(i) = 0 for all i > 0.
Note that some triples counted M (r — ') might have 0 weight if theik’ < 0.

From the definition of successot®; (i) < M;(i) + M (i — 1). The unique function

f = f(t,1) satisfying
f(0,0) = 1,
f(0,7) = 0, for1<i<r,
fE+1,9) = f(t,9)+ f(t,i—1), fort > 0andl <4 <r,

is the binomial coefficient’). ThereforeM, (i) < (%) yielding that the number of triples
(S,r' k') inCy with 0 <’ < ris at most

98 N. CESA-BIANCHI, ET AL.

as desired.]

3.2. The conversion strateg¥exp

We now move on to the description of the conversion strafegy. WhereCl,;, was based

on binomial weightsC.,, uses exponential weights. The advantage of using exponential
weights is that the conversion strategy does not need to know the boands: thatCy;,
requires as inputs. However if one wants to optimize the mistake bou@g.pfso that it

is in the form2(r + k) plus a square root term, then knowledge:afndr is required for
Cexp as well. Analogously t@,,, the bound of..,, does not depend on the length of the
sequence to predict. The weighting scheme use@hy has two real parameters,and

B, suchthat < o, 3 < 1.

Here we define a configuration by a set of triples for different computations of algorithm
A. Unlike the description of strateg¥,;, given before, here a configuration does not
have a mistake count or mistake budget. However, as before each triple is of the form
(S,1,7) whereS is a possible state of algorith ands, j are both integers. For any fixed
0 < o, B < 1, the weighti,, 5(S) of the triple(S, 4, j) is the producty—?3~7. As before,
the weight of a configuratior}’,, 5(C), is the total weight of the triples id. The role
played here by the componeritandj in each triple is analogous to the role respectively
played by the components andk’ in the triple (S, r/, k") defining algorithmCl;y,.

We use essentially the same definition of successors as the one introduced in Section 3.1
for the strategy’},;, with only two differences. Namely, the mistake count is absent and a
triple is never removed since its weight never drops to 0. Note alsé,thean be negative.

A sketch of the conversion strateg¥.,,, using the above weighting scheme, is given in
Figure 4. The next lemma establishes some properties of such weighting schema.

LEmMA 6 For all conservative and deterministic prediction algorithrisand all subse-
quence closed seis C (X x {0,1})", if

e s = ((x¢,y:)) is anr-corrupted version of some sequence X,

o Cy,Cy,...,Cy is the sequence of distinct configurations generated by a rurtgf
applied toA on the sequence, and
* a,8€[0,1),
thenW,, 5(C,,) > adc(W:8) gLa(¥) ‘and for eacht = 1,...,n
14+a+
Wea g(C) < (25) Wa,5(Ce—1),

The proof of this lemma is an easy generalization of Littlestone and Warmuth'’s proof of
the worst-case bound for the Weighted Majority algorithm (Littlestone & Warmuth, 1994).

ON-LINE PREDICTION AND CONVERSION STRATEGIES 99

Strategy Cexp ?
Input: Two real numbersy, 3 such thad) < «, 8 < 1 and a prediction algorithm with
initial stateS;,,;:.

1. Initialize configuratiorf, to contain the single tripl€S;,,;;, 0, 0).
2. Oneachstep=1,2,...

(A) Get thetth observation,.

(B) Compute the successor configuratifis, andC;*"' of the current configuration
Ct—l .

(C) Predict withp € {0, 1} such that
Was(Cil) = max{Wa,s(Ci11), Wa,s(Ci1)}

(predict arbitrarily in case of a tie.)
(D) Getthe outcomg,.

(E) If p # y:, then update the current configuration by lettiyg:= C;*7*; or, if
P = Y, |etCt = Ct—l-

Figure 4. Pseudo-code for the conversion stratégy.,.

We now turn to the proof of the worst-case mistake bound for the conversion sttatggy

Proof of Theorem 8: Choose any sequence = ((x:,y:)) and chooseu € ¥. By
construction(.,, predicts on each steccording to the heaviest successor of the current
configuratiorC;. If a mistake occurs, then the succes38r/, corresponding to the correct
predictiony;, becomes the new current configuration. Moreover, again by construction
of Cexp, the current configuration is unchanged if the algorithm predicts correctly. We
can therefore apply Lemma 6 to the subsequesicE s determined by the sequence
t1,t2,...,ty Of the indices of the prediction trials whef&,, makes a mistake. Sinc¢e

is subsequence-closed, the subsequeiiad « that corresponds to these trials liesdin

By applying part 1 of the same lemma, and given that 5 < 1, we conclude that the
total weight of the current configuration decreases by a factor of atlé@gtg each time
Cexp Mmakes a mistake. Alsdq(s’,u') < de(s,u) and hence, i€, is the configuration
following the last prediction mistake made by, on s, part 2 of Lemma 6 implies that

Wa ﬂ(cfln) > Ozdc(s7’u’)ﬁLA (u))

Hence, assumin@.., («,) makesn mistakes ors and recalling that?, g(Co) =1,

<#) 2 Wa,ﬁ(ct) 2 adc(s,u)ﬁLA(u/).

100 N. CESA-BIANCHI, ET AL.

Solving form, recalling thatn is integer, yields

de(s,u)log L + LA(u')log%

m < 5
log a5

Sinces € (X x {0,1})" andu € X were chosen arbitrarily, the proof is concluded.
[|
We conclude this section by proving the last of the three theorems stated in Section 3.
We will need a preliminary lemma.
LeEmMA 7 Forall k,r,m € Nandforalla, 5 € [0,1),ifa+ 5 < 1andm > r + k then

3 (M)« e

=0

Proof of Lemma 7: By a double application of the Binomial Theorem we show

(1+a+ﬂ)mi(?)(aJrﬂ)iZakﬂrg(T)i(;). []

=0 1=0 7=0

Proof of Theorem 9: We shall upper bound the maximal value of a larger set.
rtk i rlog £ + klog 1
max{qGN : q§10gz<q> <<zk;>}< {“25 . (15)
o \M/\= log 1375

It is easy to see that + k is a lower bound on the number of mistakes of any master
algorithm. The left-hand side of (11) is an upper bound on the number of mistakes made
by Cyin, therefore it is larger than+ k. Thus we can apply Lemma 7 to (15) obtaining

r+k . r+k .
max{q eEN:¢< IOgZ (Z) (<Zk>} max{q eN: 20 < Z (3) (<zk>}
i=0 = i=0 =
(1+a+p8)
arﬂk
rlogé + klog% }

2
log trrarm

IN

max{qEN:qu
= max{qEN:q§

Vlogé + klog%J
— |-
log T

If we give Cexp, an additional input parametérsuch thate > maxqyex La(u’), the
strategy can exploit this information in order to minimize the number of states in each

ON-LINE PREDICTION AND CONVERSION STRATEGIES 101

configuration. In particularC., can discard from the current configuration each triple
(S,1,7), such thatj > k. By using this trick, we can show, analogously to what we did
for Cy;n in Theorem 10, that the maximum number of triples in each configuration of
Cexp(a, 8, A, k) is bounded by ((}')), wherem is the number of mistakes made 6y,

up to the current configuration.

Furthermore, as we mentioned above, the knowledge of bouwds: can be used to
optimize the parametersandg.

Note that both the conversion strategy;,, andC.,, are conservative inthe sense that they
only update their configuration when they make a mistake. At least one copy of algorithm
A receives only the subsequence of clean examples on which the conversion strategies
makes a mistake. Therefore we require that the mistake bound of algotitioids on all
subsequences of sequencekirThis is the reason we assumed that the set of sequ&nces
in Theorems 7 and 8 is subsequence-closed. We would like conversion strategies that do not
require this assumption. It seems that this is possible only for a mistake bound that increases
with the length of the sequence. If we somehow could givihe “correct” feedback in
trials in which the conversion strategy makes no mistake, then we could drop the assumption
and update the configuration in all trials. The simple method of using the prediction of the
conversion strategy as feedback does not work. This s illustrated by the following example.
Assume the original algorithm predicts 0 in the first trial and afterwards it simply predicts
always with the label of the first example. Now let the sequence of examples be labeled as
(0,1,1,1,---). The conversion strategy will correctly predict 0 in the first trial and feeding
0 to A will “spoil” A. If we want to update in each trial, then we need to simulate noise
and mistakes on all trials and this will lead to increased mistake bounds.

4. Conclusions

We have investigated the problem of on-line boolean prediction from two different view-
points. We first improved known results about strategies that predict deterministically
using the advice from a set of experts. These improvements are obtained using a weighting
scheme that uses Binomial coefficients rather than exponential weights of thegform
These binomial coefficients can be interpreted as counting the members of an appropriate
version space. In the expert setting the mistake bound based on binomial weights is never
larger than the mistake bound based on exponential weights. Furthermore, the advantage of
the binomial weights can be made arbitrarily large. Nevertheless both bounds can be shown
to have the optimum leading term using probabilistic techniques. We also prove that, for
an infinite subset of the possible problem parameters, the bound using binomial weights is
best possible. The proof of this fact relies on a new translation of our prediction problem
to Ulam’s game with lies.

Secondly, we introduced a novel approach for making on-line algorithms robust to noise.
We show how to convert an on-line prediction algorithm that is guaranteed to make &t most
mistakes when given an observation-outcome sequence from its domain into an algorithm
that works well when up te of the outcomes are corrupted by noise. The converted
algorithm has a conjectured mistake bound of

102 N. CESA-BIANCHI, ET AL.

2(r + k) + 2y/rkIn(e — 1 + max(r, k)/ min(r, k)) + 2.807V7rk

on any of the corrupted sequences (the conjecture is supported by numerical evidences.)
The best lower bound we know of & + k; tightening the gap between these bounds
remains an open problem.

Based on our experience, binomial weights seem to lead to better mistake bounds than
exponential weights. They have the advantage of being motivated by a version space
argument that leads to a deeper understanding of the on-line learning problem. The ex-
ponential weights seem to approximate the binomial weights and are sometimes easier to
use, especially when the number of mistakes made by the best expert is unknown (although
optimizing their mistake bounds requires knowledge of these parameters as well). Also
exponential weights can be used for designing randomized prediction algorithms. In the
case of exponential weights the worst-case expected number of mistakes of the randomized
algorithm is exactly half of the worst-case number of mistakes of the deterministic algo-
rithm (Littlestone & Warmuth, 1994, Cesa-Bianchi, et al., 1995). We were unable to find a
randomized binomial weighting algorithm that had an expected mistake bound significantly
smaller than the deterministic BW algorithm.

Acknowledgments

David P. Helmbold was supported by NSF grant CCR-9102635. Manfred Warmuth and
Yoav Freund were supported by ONR grant N00014-91-j-1162. Part of this research
was done while Nica Cesa-Bianchi was visiting UC Santa Cruz partially supported
by the “Progetto finalizzato sistemi informatici e calcolo parallelo” of CNR under grant
91.00884.69.115.09672, and the Institute for Theoretical Computer Science at the Graz
University of Technology (Austria).

Appendix A
A prediction algorithm that is strictly optimal for a large number of experts

As was shown in Section 2.3, the number of mistakes that the BW algorithm makes is within
one from optimal wherV, the number of experts, is large enough. In fact, we have shown
that, for most values oW, BW obtains strict optimality. In this section we describe a variant
of BW, which we call EBW (Enhanced Binomial Weighting), that achieves optimality in
the worst case faall sufficiently large values aV. This modification and its analysis is a
direct adaptation of a result of Spencer’'s ((Spencer, 1992), Section 3).

As we have seen in the proof of Theorem 5, the only slack which allows for the gap
between the upper and the lower bounds is in the way the game is played for tite first
trials. In these trials there are no pennies available to Paul and thus he may not be able to
split the chips into two sets of equal weight. When the weights do not split evenly, then
Carol can choose a next configuration whose weight is less than half of the current one.
From some starting configurations Carol can reduce the weight fast enough to “save” a
mistake. However, the value of chosen by the BW algorithm ignores this possibility of

ON-LINE PREDICTION AND CONVERSION STRATEGIES 103

saving a mistake. Thus, since itis using the “wrong” weights, BW might play suboptimally
and miss the opportunity to save a mistake. The solution is to refine the calculation of
used by the BW algorithm to account for the savings from when Paul is forced to split
unevenly. We call the resulting algorithm EBW, and (for large enaligthis strategy is

the best possible as there also exists a refined strategy for Paul that can force any algorithm
to make the exact same number of mistakes.

The key observations are that the weight of every configuration is a multiple of the greatest
common divisor (gcd) of the chip weights, and that aftet k£ trials all of the chips are
in bins0 throught. Thus, on the first trial, Carol can ensure not only that the weight goes
down by at least a factor of 2, but also that it is divisible by the gcd of the (new) weights of
the first two bins. After the second trial Carol can again reduce the weight by at least half,
in addition to being divisible by the (new) weights of the first three bins, and so forth.

We now describe the EBW algorithm. Recall step 1 in BW (Figure 1), in this step the
bound on the number of mistakes, is calculated. Algorithm EBW has an additional step
1*, between steps 1 and 2 of BW. In this step EBW checks if there will be enough unevenness
in the partitions to guarantee that at mast— 1 mistakes will be made. Specifically, it
computes a new variable,* that is equal to eithem or m — 1. The value ofm™* is an
improved upper bound on the worst case number of mistakes. The rest of the algorithm
stays almost the same, the only difference beingiiiais used instead of: in steps 2 and
3.

We now describe the computatiorvef in stepl*. First, the algorithm checks¥ —2% >
r2m/(Z,)1. Ifthe inequality holds, then itis known from Theorem 5 that the bound cannot
be improved andn* is set to ben. Otherwise, a reduction of one ermmightbe possible.

As observed above, the total weight of any configuration is a multiple of the gcd of the
weights of the chips. The algorithm computes these common divisors for each of the first
k configurationd < ¢ < k:

def m—1—1 m—1—1 m—1—1
aea((") (") (R20)

It then calculates the initial weight that correspondsite- 1

def m—1
Vo =N < <k) .
Using these values, the observations given above, and the fact that the algorithm can reduce

the total weight at each step by at least a factor of two, the algorithm calculates an upper
bound onW,,, _;(I*) for 1 <i < k:

e . . . Vie
Vid:fmax{]EN:jEVomOdAi, andj < 21}.

If V;, < 2™~1=F then the algorithm can guarantee at mast- 1 mistakes, andn* is set
tom — 1. If the condition does not hold, then* is set tom.
It remains to be shown that the number of mistakes made by EBW is atmricstd that
no other algorithm can make a smaller number of mistakes for large enough valies of
The proof of both of these claims is based on showing the the upper bdirds tight,
the proof is a direct translation of the proof of the theorem in section 3 of (Spencer, 1992).

104 N. CESA-BIANCHI, ET AL.

Appendix B
Proof of Lemma 1

Since UEN, k, 3) = (log N + klog §)/log 135 we have

Qup(N. k) k. up(N k)
B Bl (1+p8)Ing
Note thatln > 0 sinces € [0,1). So the equivalence between (a) and (b.) is easily

1+B
verified by setting the above derivative to 0, multiplying ®{ +) In —— 1+ﬁ, and solving

for 5. The equivalence between (b.) and (c.) is obtained by SubStItﬁtlﬁgﬁ into

(b.) and solving forn. To show equivalence between (c.) and (d.) we multiply (c.) by the
denominator of upy, k, £,

Usinglog 1+L =1+ log(1 — £) we get the inequality
m—k

m > log N — klog i —mlog(1—£> (B.1)
m—k m
whose right-hand side equatgs N + mH (£).

Note that2k < log N + 2kH(3), som < log N + mH(%) for m close to2k. Since
H(%) < 1for m > 2k, the left-hand side of (B.1) grows faster than the right-hand side
(as a function ofn). Thus there will be exactly one* wherem* = log N + m*H(w’f*).
From the equivalences it follows thatup/d5 evaluated af = * = m*’“ i
(* is the unique minimizer of upV, k, 3).

Appendix C
Proof of Equation (7)

Suppose for contradiction that the limit in (7) does not hold.
Since0 < Low(N;, ki) /up(Ni, ki, B7) < 1, there is a subsequence = {(N/, k) },

17 3
of w such thatim;_, W converges to some constant less than 1.

We now consider two cases based on the limiting behavigf tog N/ asi — cc.
The first case is whedk;/log N/}, fy has an accumulation point at 0 or infinity.
This means that there is an infinite subsequente= {(N/', k{')},py of w’ such that

lim; o0 &} /log N/ = 0 or lim;_, ki’ /log N/’ = oo. In either case we use the upper
bound on the function “up” proven in (Cesa-Bianchi, et al., 1995),

up(N, k, 3%) < log N + 2k + 2vkIn N (C.1)

to get
Low(N?, k!') log N/ + 2k

lim t 2

> lim
i—oo Up(N/' kY, B") — imoolog NI/ + 2k + 2,/k/ In N}

ON-LINE PREDICTION AND CONVERSION STRATEGIES 105

I 1+ 2k} /log N/ 1
im =
i—oo 14 2k /log N!' + 2./k!'/log N/’

Sincew” is a subsequence of this contradicts the assumption tlﬁw converges

N
to a constant strictly less than 1.
For the other case we assume that there are positive constant® such that

a<k/logN;<b (C.2)

for all 5. Thus bothN/ andk] go to infinity. For the remainder of the proof we only deal
with the sequence’ = {(N}, k) },.;y and thus we can simplify our notation by dropping
the primes.

Let m} denote upy;, k;, 5;). Recall from Lemma 1 that} > 2k; and thatn} is the
largest real solution to the equation

k
x=logN; +vH (;Z) :

Similarly, definem; as the largest real solution of the equation

x = log N; + log <<xk) — log (1 +1In (<xk>> . (C.3)

We will now show thatm; > (2 + %)ki. Sincelim;_. ., k; = oo, for large enough
we have(2 + 5)k; < k;i/b+ 2k; — 1 —log (1+ (2k; — 1)In2). Usinglog N; > k; /b
and (2}¢) = 225~ we obtain(2 + 4;)k; < log N; + log (2}) — log (1 +1In (i’;)) for
sufficiently largei. Next we observe that (a) the right-hand side of equation (C.3) increases
with 2 and (b) when is very large; is larger than the right-hand side of equation (C.3).

Therefore, ify < z < log N; +log () — log (1 +In (ggc)) thenz < m;. Applying
this withy = 2k; andz = (2 + &)k; proves that

N 1

when is sufficiently large.

Finally, definem; as the maximum o?k; + log N; andm,;. Note thatm,; is within 1 of
Low(N;, k;). As we are interested in asymptotics, we wsginstead of LowXNV;, k;). In
addition,

g < my < m} (C.5)

and, by (C.1) and (C.2)

1 1

106 N. CESA-BIANCHI, ET AL.

Sincek; — oo for i — oo, it follows from (C.4) thatn; — oo as well. We now examine
the asymptotic behavior af; in more detail.

m; = log N; + log (<mk> —log (1 +1In <<mk>)

log N + log (" > el (Sé)) [IOgNi o (")]
<ki/ logN; +log (Zy) =k

= log N; + log (j];) —o(1) {log N; + log (fflﬂz)} sincem; — oo
= (1-0(1)) [log N; + log (f};)] (C.7)
= (L—-o(1)) [logNz— +mH (;—ﬂ . (C.8)

To get (C.8) we use the identityg (}) = mH (k/m) — 5 logm + O(1), which holds
whenm goes to infinity andn /2k is bounded away from both 0 and 1/2 (Graham, Knuth &
Patashnik, 1989, exercise 9.42). Sirg¢m,; is bounded away from both 0 and 1/2 for
largei (see (C.4) and (C.6)), we have thd{k/m) is at least some constant depending
only ona andlog () = (1 — o(1))m; H (k; /).

Let f;(z) = log N; +z H (k;/x). From the definition ofn} we know thatn} = f;(m}).
Equation (C.8) means that for amy> 0 there exists somé. such that for alk > i,
m;(1+¢€) > fi(Mm;). Recall thatn; < m,; < m}. We need to show that,; ~ m.

To do this we first uniformly bound the derivatives of the functigig:) in some ranges.
Notice thatf!(z) = log(xz/(x — k;)). Thus for allx > 2k; + log N;,

2k; + log N; 1
/(o) <log o2 T80 e (14—~)
fi(z) <log k; +log N; — Og(+ 1+ki/logNi>

Sincek;/log N; > a we get thatf/(z) < 1 — ¢, for somec > 0 independent of.

Using the mid-point theorem, we can lower boyia@n;) in the following way: f; (m;) =
film?) — f1(8)(m? —m;) for somem; < 6 < m}. Using the bound on the derivative we
get that

filmy) > fi(m?) — (1 = ¢)(mf —m;) = c(m] —m;) + m,. (C.9

Onthe other handy;(14¢) > f;(m;),andf!(x) < 1forallz > 2k,. Asm; > m,; > 2k;,
(see (C.4)) we get that

fi(mi) < (1 +€)m;. (C.10)

Combining (C.9) and (C.10) we get thdin? — m;) + m; < (14 €)m;. This implies that
m?/m; < (c+ €)/c. As we can choosearbitrarily small, we get thaty; ~ m}.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 107

Appendix D
Proof of Lemma 5

To prove part 1 we show, for each triplé, ', k'), that the sum of the weights of the
successor triples equals the weight of the original. That is, if the exampleijsthen

Wct_l(S, T‘/, k/) + Wct_l(srt’yt,T/ —1, k/) + Wct_l(S, T/, E - 1)

Z () ()]

SN ()]
()
() ()
6
= () ()
() () - (5

Jj=

|

T

+
<. J,:b

’
T

+

<.
I
o

| +
. i\
+
x> O EN
N NI

+

o

L))]s

To prove part 2 choose a sequencen X and lets = ((x¢,y;)) be ar-corrupted version
of u. Letw be the subsequence sfcontaining all the pair$z,, y;) whereCl,;, makes
a mistake by predicting — y;. Letw be the subsequence ofobtained by deleting the
examples corrupted by noise. Finally, for each> 1 let p(¢t) < ¢ be the number of
uncorrupted examples ia’ (recall thatv! is the lengtht prefix of v), sot — p(t) is the
number of corrupted examples#h andw?(?) is the sequence obtained frarhby deleting
the corrupted examples.

Let C(v!) be the set of S, 7', k') triples in Cl,;,'s configuration immediately afte®!,;,
has seen the sequencke Recall thatC(v°) = {(Sinit, . k)}, and a triple(S, ', k') is
discarded from the configuration if either< 0 or &’ < 0.

To prove the statement in part 2 of the lemma it suffices to prove the following claim.

, there is a tripl€S, ', k') € C(v') such that:

108 N. CESA-BIANCHI, ET AL.

1. Sisthe state ofd(wP®),
2. 0 < k — k' is the number of mistakes made Hyon sequencev?*), and

3. 0<r—1" <t—p(t), the number of corrupted trials .

Proof of Claim: First note thatw is a subsequence af, so A makes at most mistakes
onw. Furthermorey is a subsequence efands contains at most noisy examples, so
contains at most noisy trials. Therefore both — k£’ andr — r’ are at least 0.

We now prove by induction onthat an appropriate triple is in the configuratioitv?).
For the base case considere= 0, and recall thap(0) = 0. There is only one triple,
(Sinit,r, k) in C(v°). Sincew? is the empty sequencd,(w®) = S;,i, andA makes no
mistakes on sequenee’. Thus all three conditions are satisfied by this triple.

For the inductive step assume some trifler’, k') € C(v?') satisfies the three conditions
of the claim. We now show that eithéf, r’, k’) or one of its successors (v ™!) also
satisfies the claim
Case 1 thet + 1st trial is a corrupted trial, sw?(**+1) = wP®), If A5 agrees with the
corrupted outcome, theflS, ', k') is also inC(vt*!), and the three parts of the claim
continue to hold. IfAs disagrees with the corrupted outcome thHéhr' — 1, k') is in
C(v'*1) and sincev’*! has one more corrupted trial thah, the three parts of the claim
also holds foiC'(vt+1).

Case 2 thet + 1st trial is not a corrupted trial, s0; 11 = wy)41 = Wyes1)- If As
predicts correctly om,,+)+1, then the triplg(S, ', k') remains in the configuration. Also,
sinceA is conservativeS = A(wP")+1) = A(wP**+1)) and the claim holds fof'(v**1).

If Ag predicts incorrectly then so doew?(")). Thus A makesk — k' + 1 mistakes
onwP+1) . Lete be the examplev, 1) and thusS® is the stated(wP(*+1). In this
situation, the triplg.S¢, »’, k' + 1) is in C(v**1!), satisfying the claim. [

Notes

1. Asimilar approach can be taken for learning the best combination of experts, although different forms of the
weights are used when the loss of the master is to be close to the loss of the best convex (Littlestone, Long &

Warmuth, 1995) or linear (Cesa-Bianchi, Long & Warmuth, 1993) combination of experts.

2. The notion of “version space” for learning algorithms was originally introduced by Tom Mitchell in (Mitchell,
1977).

3. A weighting scheme based on the sum of binomial coefficients was first introduced by Berlekamp (1968).

Expanding each expert info,) variants instead of ,") variants (wheren is defined as in Figure 1)

does not lead to the mistake boundmfstated in Theorem 1. For example, consider the case where there is
N = 1 expert guaranteed to make at mbst 1 mistake, son = 1. Assume the expert is expanded into just

(;’2) = 2 variants (one predicting as the expert and one predicting the other way), and the expert is correct on

the first trial. The master algorithm would see a tie vote and could predict as the variant and make a mistake.
Now only the (unmodified) expert is consistent, and the master will predict as the expert does. However, this
expert still has a mistake to make, and thus the master might make a total of two mistakes. Although the
number of consistent variants has been reduced to one (the original expert), the surviving variant may still
have mistakes to make. By consideri@@f) variants of each expert we guarantee that if only one variant

is consistent, then the expert producing that variant has already kmaittakes (and thus will be correct on

all future trials).

ON-LINE PREDICTION AND CONVERSION STRATEGIES 109

5. In the original algorithm expeff simply votes with weighs? for its own prediction. The more complicated
voting scheme given in the text is more similar to the voting scheme of the BW algorithm. Both variants of
the WM algorithm generate the same predictions.

6. The algorithms predict arbitrarily if the weights are tied.

7. These values are chosen to make the algebra tractable, rather than indicating a particular region of interesting
behavior.

8. An important point is that Carol does not have to “commit” to a specific numbahead of time. The
requirement is only that her choice of answers be such that at all times therezexis{d, ..., N} thatis
consistent with all but at moét of her answers.

9. In this section we completely ignore the instanegshat are given as inputs to the experts. Because we are
dealing with worst case lower bounds, we can assume that foSa@y &, there is always an observation
zg € X that causes the experts $hto predict 1, and the experts not.hto predict 0. Thus the adversary
can control the predictions of the experts by choosing the appropriate observation.

10. In a subsequent paper (Auer & Long, 1994) a randomized variant of their conversion strategy is introduced.
The worst-case expected number of mistake of their randomized strategy is significantly lower than the worst-
case mistake bound of (the deterministic stratedy), .

11. Recall from footnote D that using = m can lead to more tham mistakes.

12. An alternative way of arriving at the same prediction is the following. Given an instarezeh triple
(S,r’, k") votes with weighbf’“/[i’*’“/ for the prediction ofAg on the instance:.. The master algorithm
then predicts with the vote that got the larger total weight. When this method of prediction is used the successor
configuration has to be computed only when a mistake occurs.

References

Aarts, E. & Korst, J. (1989)Simulated Annealing and Boltzmann Machindshn Wiley and Sons.

Alon, N., Spencer, J.H. & EaE; P. (1992).The Probabilistic Method John Wiley and Sons.

Angluin, D. (1988). Queries and concept learnimMgachine Learning2:319-342.

Aslam, J.A. & Dhagat, A. (1991). Searching in the presence of linearly bounded erroPsodeedings of the
23rd ACM Symposium on the Theory of Computatiages 486—-493. ACM Press.

Auer, P. & Long, P.M. (to appear). Structural results about on-line learning models with and without queries.
Machine Learning

Auer, P. & Long, P.M. (1994). Simulating access to hidden information while learnindg?rdceedings of the
26th ACM Symposium on the Theory of Computatiayes 263-272. ACM Press.

Bardzin, J.M. & Freivalds, R.V. (1972). On the prediction of general recursive functiBosiet Math. Dok].
13:1224-1228.

Berlekamp, E.R. (1968)Error-Correcting Codes John Wiley and Sons.

Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R. & Warmuth, M.K. (1995). How to use
expert advice. To appear dournal of the ACM

Cesa-Bianchi, N., Long, P.M. & Warmuth, M.K. (1996). Worst-case quadratic loss bounds for a generalization
of the Widrow-Hoff rule. IEEE Transactions on Neural Network&?2): 604-619.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations.
Annals of Mathematical Statistic83:493-507.

Graham, R.L., Knuth, D.E. & Patashnik, O. (198@oncrete MathematicsAddison Wesley.

Kivinen, J. & Warmuth, M.K. (1994). Using experts for predicting continuous outcomesComputational
Learning Theory: Eurocolt '93. The Institute of Mathematics and its Applications Conference, $ereser
53, pages 109-120, Oxford: Oxford University Press.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.
Machine Learning2(4):285-318.

Littlestone, N. (1989). Mistake Bounds and Logarithmic Linear-threshold Learning Algorithnf®D thesis,
University of California at Santa Cruz.

Littlestone, N., Long, P.M. & Warmuth, M.K. (1995). On-line learning of linear functionrS8omputational
Complexity 5(1):1-23.

110 N. CESA-BIANCHI, ET AL.

Littlestone, N. & Warmuth, M.K. (1994). The weighted majority algorithninformation and Computatign
108:212-261.

Mitchell, T.M. (1977). Version spaces: A candidate elimination approach to rule learnind?rotreedings
International Joint Conference on Artificial Intelligenqeages 305-310, Cambridge, Mass.

Spencer, J. (1992). Ulam’s searching game with a fixed number ofTliesoretical Computer Sciencg5:307—
321.

Ulam, S. (1977).Adventures of a Mathematiciarscribners.

Vovk, V.G. (1990). Aggregating strategies. Rroceedings of the 3rd Annual Workshop on Computational
Learning Theorypages 372-383.

Received August 30, 1994
Accepted September 19, 1995
Final Manuscript July 15, 1996

