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Abstract Gene function prediction is a complex multilabel classification problem with sev-
eral distinctive features: the hierarchical relationships between functional classes, the pres-
ence of multiple sources of biomolecular data, the unbalance between positive and negative
examples for each class, the complexity of the whole-ontology and genome-wide dimen-
sions. Unlike previous works, which mostly looked at each one of these issues in isolation,
we explore the interaction and potential synergy of hierarchical multilabel methods, data
fusion methods, and cost-sensitive approaches on whole-ontology and genome-wide gene
function prediction. Besides classical top-down hierarchical multilabel ensemble methods,
in our experiments we consider two recently proposed multilabel methods: one based on the
approximation of the Bayesian optimal classifier with respect to the hierarchical loss, and
one based on a heuristic approach inspired by the true path rule for the biological functional
ontologies. Our experiments show that key factors for the success of hierarchical ensem-
ble methods are the integration and synergy among multilabel hierarchical, data fusion, and
cost-sensitive approaches, as well as the strategy of selecting negative examples.

Keywords Hierarchical multilabel classification · Data integration · Cost-sensitive
classification · Ensemble methods · Gene function prediction

1 Introduction

Multilabel learning (see, e.g., Tsoumakas and Katakis 2007 for a review) is an emerging
thread in machine learning research, as witnessed by the number of recent papers and work-

Editors: Grigorios Tsoumakas, Min-Ling Zhang, and Zhi-Hua Zhou.

N. Cesa-Bianchi · M. Re · G. Valentini (�)
DSI, Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Milan, Italy
e-mail: valentini@dsi.unimi.it

N. Cesa-Bianchi
e-mail: cesa-bianchi@dsi.unimi.it

M. Re
e-mail: re@dsi.unimi.it

mailto:valentini@dsi.unimi.it
mailto:cesa-bianchi@dsi.unimi.it
mailto:re@dsi.unimi.it


Mach Learn

shops on this topic (Zhang and Zhou 2007; Amit et al. 2007; Dembczynski et al. 2010a;
Zhang et al. 2010; Tsoumakas et al. 2010). The applications of multilabel classification
span a large range of real-world applications, such as music categorization, web search and
mining, semantic scene classification, directed marketing and functional genomics (Zhang
and Zhou 2006; Trohidis et al. 2008; Dimou et al. 2009).

Constraints between labels and, more in general, the issue of label dependence have
been recognized to play a central role in multilabel learning (Dembczynski et al. 2010b).
For instance, gene function prediction (GFP) is a complex multilabel classification prob-
lem where functional classes are structured according to a predefined hierarchy—a directed
acyclic graph in the Gene Ontology (The Gene Ontology Consortium 2000) or a forest of
trees in the Functional Catalogue (Ruepp et al. 2004). In this respect gene function prediction
can be regarded as a paradigmatic multilabel classification problem, where the exploitation
of a priori knowledge about the hierarchical relationships between the labels can dramati-
cally improve classification performance (Obozinski et al. 2008; Mostafavi and Morris 2009;
Cesa-Bianchi and Valentini 2010).

GFP is challenging for machine learning because of several reasons:

– Large number of functional classes: hundreds for Functional Catalogue (FunCat) or thou-
sands for the Gene Ontology (GO).

– Multiple annotations for each gene: since each gene may belong to more than one class
(sometimes to tens of classes) at the same time, the classification problem is multilabel.

– Hierarchical relationships between functional classes: labels are not independent because
functional classes are hierarchically organized; in general, known functional relationships
(such as taxonomies) can be exploited to incorporate a priori knowledge in learning algo-
rithms or to introduce explicit constraints between labels.

– Multiple sources of data: high-throughput biotechnologies make available an increasing
number of sources of genomic and proteomic data. Hence, in order to exploit all the
information available for each gene, we need learning methods that are able to integrate
different data sources.

– Complex and noisy data: data are usually complex (e.g., high-dimensional, large-scale,
graph-structured) and noisy.

– Unbalanced classes: typically functional classes are severely unbalanced, with positive
examples largely outnumbered by negatives.

– Definition of negative examples: since we only have positive annotations, the notion of
negative example is not uniquely determined, and different strategies of choosing negative
examples can be in principle applied.

– Different reliability of functional labels: functional annotations have different degrees of
evidence; that is, each label is assigned to a gene with a specific level of reliability.

Several machine learning approaches have been proposed to deal with the above issues.
Some take advantage of the intrinsic hierarchical nature of gene function prediction by
explicitly considering the relationships between functional classes (Eisner et al. 2005;
Blockeel et al. 2006; Shahbaba and Neal 2006; Vens et al. 2008). In particular, in or-
der to improve the multilabel classification performance on the overall functional tax-
onomy, ensemble methods hierarchically combine predictions of base learners, where
each base learner is trained on a specific functional class (Barutcuoglu et al. 2006;
Obozinski et al. 2008).

Other approaches focus primarily on the integration of multiple sources of data, since
each type of genomic data captures only some aspects of the genes to be classified, and a
specific source can be useful to learn a specific functional class while being irrelevant to
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others. In the literature, many approaches have been proposed to deal with this topic. For
example, functional linkage networks integration (Chua et al. 2007), kernel fusion (Lanck-
riet et al. 2004b), vector space integration (Pavlidis et al. 2002), and ensemble systems (Re
and Valentini 2010c).

Without taking into account the hierarchical relationships between the functional classes,
data integration exhibits serious inconsistencies due to the violation of the true path
rule, governing the functional annotations of genes both in the GO and in FunCat tax-
onomies (The Gene Ontology Consortium 2000; Ruepp et al. 2004). Similarly, hierarchical
approaches which do not consider different sources of data do not have enough information
to provide reliable predictions. Finally, it is well known that unbalanced classification prob-
lems, such as GFP problems, require cost-sensitive learning strategies to effectively predict
the examples belonging to the less represented classes.

Most of the proposed GFP methods consider only some of the aforementioned issues.
For instance, several methods provide multilabel classifications (Troyanskaya et al. 2003;
Tsuda et al. 2005; Xiong et al. 2006) or integrate multiple data sources (Lanckriet et
al. 2004b; Re and Valentini 2010c), yet they do not take into account the hierarchi-
cal relationships between classes. Other methods, instead, are hierarchical but disre-
gard the unbalance between positive and negative examples (Barutcuoglu et al. 2006;
Karaoz et al. 2004). In this respect, it becomes difficult to assess the impact of each issue on
the overall prediction performance.

In this work we perform an analysis of the specific contribution of each issue in
the context of GFP. In particular, we investigate whether hierarchical constraints em-
bedded in multilabel prediction can boost performance on GFP problems, and whether
data fusion or cost-sensitive techniques may lead to further significant improvements. In-
deed, in the context of automatic document classification hierarchical cost-sensitive ap-
proaches have been proven to enhance the classification performance with respect to
classical multiclass-multilabel flat methods (Cai and Hofmann 2004). More specifically,
the main aim of this paper is to study and quantify the synergy among learning strate-
gies, addressing specific aspects of the GFP problem. To this end, we integrate data fu-
sion methods based on kernel fusion and ensemble algorithms (Re and Valentini 2010c)
with hierarchical multilabel cost-sensitive algorithms (Cesa-Bianchi and Valentini 2010;
Valentini 2011). The resulting system is tested on genome and ontology-wide classifi-
cation of genes according to the FunCat taxonomy. Our experiments reveal the impact
of each learning component on the overall performance. Finally, we propose a new gen-
eral methodology for integrating hierarchical multilabel techniques, data fusion, and cost-
sensitive methods for the GFP problem.

In the next section the data fusion, multilabel hierarchical, and cost-sensitive methods
are introduced. Section 2 provides an overview of the machine learning methods applied to
GFP. Then extensive empirical results on real genome-wide and whole-ontology GFP prob-
lems are presented, together with a discussion on the synergic effects among the different
learning components. The paper is concluded summarizing the main findings and proposing
new research directions.

2 Related work

Historically, the first attempts to computationally predict the function of genes or gene prod-
ucts were based on algorithms able to infer similarities between sequences (Altschul et al.
1990; Altschul et al. 1997). Today this is one of the standard methods of assigning func-
tions to proteins in newly sequenced organisms (Juncker et al. 2009). Similarly, functional
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properties can be detected using global or local structure comparison algorithms between
proteins—see, e.g., Loewenstein et al. (2009) for a recent review. In this context, the in-
tegration of different sequence and structure-based prediction methods represents a major
challenge (Prlic et al. 2007).

2.1 Machine learning-based gene function prediction methods

Recently, several GFP methods, mostly based on a machine learning approach, have been
proposed. They can be schematically grouped in four main families

1. Label propagation methods
2. Methods based on decision trees
3. Kernel methods for structured output spaces
4. Hierarchical ensemble methods

This grouping is neither exhaustive nor strict, meaning that certain methods do not belong
to any of these groups, and others belong to more than one. It is worth noting that the term
ensemble is used in this paper in a very wide sense: indeed, we apply it to both learners
predicting different targets (such as in hierarchical ensemble methods), and to learners pre-
dicting the same task (such as in bagging or random forests).

Label propagation methods Also known in literature as network-based methods or func-
tional association or linkage networks, these methods usually represent each dataset through
an undirected graph G = (V ,E), where nodes v ∈ V correspond to gene/gene prod-
ucts, and edges e ∈ E are weighted according to the evidence of co-functionality im-
plied by data source (Marcotte et al. 1999; Vazquez et al. 2003). By exploiting “proxim-
ity relationships” between connected nodes, these algorithms are able to transfer annota-
tions from previously annotated (labeled) nodes to unannotated (unlabeled) ones through
a learning process inherently transductive in nature. Indeed, these methods are based on
transductive label propagation algorithms: they predict the labels of unannotated exam-
ples without using a global predictive model (Troyanskaya et al. 2003; Chua et al. 2007;
Mostafavi et al. 2008).

Label propagation algorithms adopt different strategies to learn the unlabeled nodes.
For example, simple “guilt-by-association” methods (Oliver 2000; McDermott et al. 2005),
methods based on the evaluation of the functional flow in graphs (Vazquez et al. 2003;
Nabieva et al. 2005), methods based on Hopfield networks (Karaoz et al. 2004), and meth-
ods based on Markov (Deng et al. 2004) and Gaussian Random Fields (Tsuda et al. 2005;
Mostafavi et al. 2008).

Bengio et al. (2006) showed that different graph-based algorithms can be cast into a com-
mon framework where a quadratic cost objective function is minimized. In this framework
closed form solutions can be derived by solving a linear system of size equal to the cardi-
nality of nodes (proteins), or using fast iterative procedures such as the Jacobi method (Saad
1996). A network-based approach, alternative to label propagation and exhibiting strong
theoretical predictive guarantees in the so-called mistake bound model, has been recently
proposed by Cesa-Bianchi et al. (2010b). This alternative method is extremely efficient: in
most cases training and prediction take both time sublinear in the network size.

Decision tree-based methods Clare and King (2003) proposed a hierarchical multilabel
classification decision tree to predict gene functions by extending the classical C4.5 decision
tree algorithm for multiclass classification (Quinlan 1986).
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Vens et al. (2008) showed that separate decision tree models are less accurate than a
single decision tree trained to predict all classes at once. In the context of the predictive
clustering tree framework (Blockeel et al. 1998), Blockeel et al. (2006) proposed an im-
proved version which they applied to the prediction of gene function in the yeast. Moreover,
Schietgat et al. (2010) showed that ensembles of hierarchical multilabel decision trees are
competitive with state-of-the-art statistical learning methods for DAG-structured prediction
of gene function.

Kernel methods for structured output spaces In this framework the multilabel hierar-
chical classification problem is solved globally: the multilabels are viewed as elements
of a structured space modeled by suitable kernel functions (Tsochantaridis et al. 2005;
Rousu et al. 2006; Lampert and Blaschko 2009). In particular, these methods treat struc-
tured prediction as a maximum a-posteriori prediction problem (Bakir et al. 2007). A struc-
tured Perceptron, and a variant of the structured support vector machine (Tsochantaridis et
al. 2005), have been implemented in the GOstruct system and successfully applied to the
prediction of GO terms in mouse and other model organisms (Sokolov and Ben-Hur 2010).
Structured output maximum-margin algorithms have been also applied to the tree-structured
prediction of enzyme functions (Astikainen et al. 2008; Rousu et al. 2006).

Hierarchical ensemble methods Several methods attempt to take advantage of the intrin-
sic hierarchical nature of GFP, explicitly considering the relationships between functional
classes (Eisner et al. 2005; Blockeel et al. 2006; Shahbaba and Neal 2006; Vens et al. 2008;
Jiang et al. 2008). Indeed, flat methods may introduce large inconsistencies in parent-child
relationships between classes, and a hierarchical approach corrects “flat” predictions im-
proving accuracy and consistency of the multilabel annotations of genes (Obozinski et al.
2008). In particular, hierarchical ensemble methods generally work via a two-step strategy:

1. Flat learning of the protein function on a per-term basis (a set of independent classifica-
tion problems)

2. Combination of the predictions by exploiting the relationships between terms that govern
the hierarchy of the functional classes.

In principle, any supervised learning algorithm can be used for step 1. Step 2 requires a
proper combination of the predictions made at step 1.

Based on this algorithmic scheme, Barutcuoglu et al. (2006) proposed an ensemble algo-
rithm that initially provides flat (possibly inconsistent) predictions for each term/class, and
then combine them through a Bayesian network scheme acting as a “collaborative” error-
correction step over all nodes. As an extension of this approach, two local strategies that take
into account the relationships between GO nodes and a composite ensemble method have
been proposed (Guan et al. 2008). Different strategies to hierarchically reconcile the output
of an ensemble of learning machines trained to predict separately each GO term have been
proposed by Obozinski et al. (2008): the results demonstrated that hierarchical multilabel
methods can play a crucial role in improving gene function prediction performances. The
multilabel hierarchical approaches studied in this paper belong to this research line (Cesa-
Bianchi and Valentini 2010; Valentini 2011).

2.2 Data fusion methods for gene function prediction

The integration of multiple sources of heterogeneous biomolecular data is the key to the
prediction of gene function at genome-wide level. Indeed, high-throughput biotechnolo-
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gies make available increasing quantities of biomolecular data of different types, and sev-
eral works pointed out that data integration plays a central role to improve the accuracy in
GFP (Friedberg 2006).

The main approaches proposed in the literature can be schematically grouped in four
categories (Noble and Ben-Hur 2007):

1. Functional association networks integration
2. Vector subspace integration
3. Kernel fusion
4. Ensemble methods

Functional association networks integration In functional association networks, differ-
ent graphs are combined to obtain the composite resulting network (Karaoz et al. 2004;
Chua et al. 2007). This network is then processed by a transduction algorithm that assigns all
missing labels. The simplest approaches adopt conjunctive/disjunctive techniques (Marcotte
et al. 1999), or probabilistic evidence integration schemes (Troyanskaya et al. 2003). More
recently, function specific composite networks have been constructed by weighting each
data source: Tsuda et al. (2005) solved this problem by simultaneously optimize the Gaus-
sian Random Fields applied to each data set and the weights associated to each network,
while Myers and Troyanskaya (2007) construct a combined network by applying a Naive
Bayes classifier. Another network-based approach models data fusion as a constrained lin-
ear regression problem (Mostafavi et al. 2008). Recently, the same authors showed that
better performances can be achieved by optimizing weights on subsets of related GO terms
exploiting the relationships between functional classes (Mostafavi and Morris 2010).

Vector space integration In vector space integration vectorial data are concatenated to
combine different data sources (Jardins et al. 1997). For instance, Pavlidis et al. (2002)
concatenate different vectors, each one corresponding to a different source of genomic data,
in order to obtain a larger vector that is used to train a standard SVM. A similar approach
has been proposed by Guan et al. (2008), but they separately normalized each data source in
order to take into account the data distribution in each individual vector space.

Kernel fusion Thanks to the closure property with respect to the sum and other alge-
braic operators, kernels provide another valuable research direction for the integration of
biomolecular data. Besides combining kernels linearly with fixed coefficients (Pavlidis et
al. 2002), one may also use semidefinite programming to learn the coefficients (Lanck-
riet et al. 2004b). As methods based on semi-definite programming do not scale well
to multiple data sources, more efficient methods for multiple kernel learning have been
recently proposed (Sonnenburg et al. 2006; Rakotomamonjy et al. 2007). Kernel fusion
methods, both with and without weighting the data sources, have been successfully ap-
plied to the classification of gene functions (Lanckriet et al. 2004a; Lewis et al. 2006;
Cesa-Bianchi et al. 2010a).

Ensemble methods Even if it seems quite natural to apply ensemble methods to genomic
data fusion (Noble and Ben-Hur 2007), only a few ensemble methods have been so far
applied to this task. Some examples include “late integration” of kernels trained on differ-
ent sources (Pavlidis et al. 2002), Naive Bayes integration of the outputs of SVMs trained
with multiple sources (Guan et al. 2008), and logistic regression for combining the out-
put of several SVMs trained with different biomolecular data and kernels (Obozinski et al.
2008).
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Recently, Re and Valentini (2010c) showed that simple ensemble methods, such as
weighted voting or Decision Templates (Kuncheva et al. 2001) give results comparable to
state-of-the-art data integration methods, exploiting at the same time the modularity and
scalability that characterize most ensemble algorithms. Moreover, ensembles of learning
machines are able to include new types of biomolecular data, or updates of data contained in
public databases, by training only the base learners associated with the new data, without re-
training the entire ensemble (Re and Valentini 2010a). Compared to kernel fusion methods,
ensemble methods are also more robust to noisy data (Re and Valentini 2010b).

3 Methods

In this section we describe the methods we applied to analyze the impact on the GFP prob-
lem of multilabel hierarchical strategies, data fusion, and cost-sensitive techniques. More
precisely, in Sect. 3.1 we introduce the basic notation used throughout the paper. In Sect. 3.2
we briefly describe the weighted linear combination and kernel fusion techniques analyzed
in this work. Next, we introduce three hierarchical classification methods based on ensem-
bles of learning machines: Hierarchical Top-Down (HTD), Hierarchical Bayesian (HBAYES),
and Hierarchical True Path Rule (TPR) ensembles. In Sect. 3.6 we introduce their cost-
sensitive counterparts. In the last Sect. 3.7 we briefly describe how we integrate hierarchical
multilabel, data fusion, and cost-sensitive techniques.

3.1 Basic notation

We represent a gene g with a vector x ∈ R
d having d different features (e.g., presence or ab-

sence of interactions with other d genes, or gene expression levels in d different conditions).
A gene g is assigned to one or more functional classes in the set Ω = {ω1,ω2, . . . ,ωm}
structured according to a FunCat tree T .1 The assignments are coded through a vector
of multilabels v = (v1, v2, . . . , vm) ∈ {0,1}m, where g belongs to class ωi if and only if
vi = 1.

In the FunCat tree T , nodes correspond to classes, and edges to relationships between
classes. We denote with i the node corresponding to class ωi . We represent by child(i) the
set of nodes that are children of i and by par(i) the parent of i, so that vpar(i) = 1 means
that the gene under consideration belongs to the parent class of i. The multilabel of a gene
g is built starting from the set of the most specific classes occurring in the gene’s FunCat
annotation; we add to them all the nodes on paths from these most specific nodes to the
root. This “transitive closure” operation ensures that the resulting multilabel satisfies the
true path rule, according to which if g belongs to a class/node i, then it also belongs to
par(i).

The hierarchical ensemble methods proposed in this paper train a set of calibrated clas-
sifiers, one for each node of the taxonomy T . These classifiers are used to derive esti-
mates p̂i(g) of the probabilities pi(g) = P

(

Vi = 1 | Vpar(i) = 1, g
)

for all g and i, where
(V1, . . . , Vm) ∈ {0,1}m is the vector random variable modeling the unknown multilabel of a
gene g.

1The root of T is a dummy class ω0, which every gene belongs to, that we added to facilitate the processing.
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Next we introduce: (1) data fusion techniques; (2) ensemble methods that infer a multi-
label assignment ŷ = (ŷ1, . . . , ŷm) ∈ {0,1}m based on estimates p̂1(g), . . . , p̂m(g); (3) their
cost-sensitive variants.

3.2 Data fusion techniques

Data integration is performed locally at each node/class of the FunCat taxonomy. We con-
sider two techniques: ensemble (weighted voting) and kernel fusion.

Given L different sources D1, . . . ,DL of biomolecular data, we train node classifiers ct,i

on the data set Dt , one for each class ωi, i = 1, . . . ,m. Let p̂t,i (g) be the estimate of the
probability P

(

Vi = 1 | Vpar(i) = 1, g
)

computed by the classifier ct,i .
A simple way to integrate L different data sources is via the weighed linear combination

rule (Kittler et al. 1998). The resulting ensemble estimates the probability that a given gene
g belongs to class ωi by a convex combination of the probabilities estimated by each base
learner trained on a different “view” of the data:

p̂i(g) = 1
∑L

s=1 Fs

L
∑

t=1

Ft p̂t,i (g) (1)

where Ft is the F-measure assessed on the training data for the t -th base learner. The choice
of the F-measure instead of the accuracy is motivated by the fact that gene classes are largely
unbalanced (there are fewer positive examples than negative ones). Given a gene g, the
decision ŷi of the ensemble about the class ωi is taken using estimates (1),

ŷi =
{

1, if p̂i(g) > 1
2 ,

0, otherwise
(2)

where output 1 corresponds to assigning class ωi to g.
Another popular method to combine different sources of data is kernel fusion (Lanckriet

et al. 2004b). Kernel fusion for data integration is based on the closure property of kernels
with respect to the sum and other algebraic operators. Given a pair of genes g,g′, and their
corresponding pairs of feature vectors x t ,x

′
t ∈ Dt , we implement a kernel averaging func-

tion Kave(g, g′) by simply averaging the output of kernel functions K1, . . . ,KL specific to
each data set,

Kave(g, g′) = 1

L

L
∑

t=1

Kt(x t ,x
′
t ) . (3)

In our experiments we integrated the different data sets by simply summing their normalized
kernel matrices. Then we trained the SVM using the resulting matrix. In this case we also use
probabilistic SVMs (Lin et al. 2007) in order to obtain estimates of the posterior probabilities
P(Vi = 1 | Vpar(i) = 1, g) for i = 1, . . . ,m.

3.3 Hierarchical Top-Down ensembles

The hierarchical Top-Down ensemble method (HTD) computes predictions in a top-down
fashion (i.e., assigning ŷi before assigning the label of any j in the subtree rooted at i).
The algorithm is straightforward: for each gene g, starting from the set of nodes at the first
level of the tree T (denoted by root(T )), the classifier associated to the node i ∈ T computes
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whether the gene belongs to the class ωi . If yes, the classification process continues recur-
sively on the nodes j ∈ child(i); otherwise, it stops at node i, and the nodes belonging to the
subtree rooted at i are all set to 0. In our setting we applied probabilistic classifiers as base
learners trained to predict class ωi associated to the node i of the hierarchical taxonomy.
Their estimates p̂i(g) of P

(

Vi = 1 | Vpar(i) = 1, g
)

are used by the HTD ensemble to classify
a gene g as follows

ŷi =

⎧

⎪

⎨

⎪

⎩

{p̂i(g) > 1
2 } if i ∈ root(T ),

{p̂i(g) > 1
2 } if i /∈ root(T ) ∧ {p̂par(i)(g) > 1

2 },
0 if i /∈ root(T ) ∧ {p̂par(i)(g) ≤ 1

2 }

where {x} = 1 if x > 0 otherwise {x} = 0. It is easy to see that this procedure ensures that
the predicted multilabels ŷ = (ŷ1, . . . , ŷm) are consistent with the hierarchy.

3.4 Hierarchical Bayesian ensembles

The ensemble method HBAYES provides an approximation of the optimal Bayesian classifier
w.r.t. the H-loss (Cesa-Bianchi et al. 2005)—see also (Cesa-Bianchi and Valentini 2010). H-
loss is a measure of discrepancy between multilabels based on a simple intuition: if a parent
class has been predicted wrongly, then errors in its descendants should not be taken into ac-
count. Given fixed cost coefficients c1, . . . , cm > 0, the H-loss �H (̂y,v) between multilabels
ŷ and v is computed as follows: all paths in the taxonomy T from the root down to each leaf
are examined and, whenever a node i ∈ {1, . . . ,m} is encountered such that ŷi �= vi , then ci

is added to the loss, while all the other loss contributions from the subtree rooted at i are
discarded.

In the evaluation phase, HBAYES predicts the Bayes-optimal multilabel ŷ ∈ {0,1}m for
a gene g based on the estimates p̂i(g) for i = 1, . . . ,m. By definition of Bayes-optimality,
the optimal multilabel for g is the one that minimizes the loss when the true multilabel V is
drawn from the joint distribution computed from the estimated conditionals p̂i(g). That is,

ŷ = argmin
y∈{0,1}m

E
[

�H (y,V ) | g ]

. (4)

The calculation of the empirical performances reported in Sect. 4 has been performed us-
ing the uniform cost coefficients ci = 1, for i = 1, . . . ,m. However, since with uniform
coefficients the H-loss can be made small simply by predicting sparse multilabels (i.e., mul-
tilabels ŷ such that

∑

i ŷi is small), in the training phase we set the cost coefficients to
ci = 1/|root(T )|, if i ∈ root(T ), and to ci = cj /|child(j)| with j = par(i) otherwise. This
normalizes the H-loss, in the sense that the maximal H-loss contribution of all nodes in a
subtree excluding its root equals that of its root.

Let {A } be the indicator function of event A. Given g and the estimates p̂i = p̂i(g)

for i = 1, . . . ,m, the HBAYES prediction (4) can be equivalently rewritten as follows—see
(Cesa-Bianchi et al. 2005) for details.
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HBAYES prediction rule

Initially, set the labels of each node i to

ŷi = argmin
y∈{0,1}

(

cip̂i(1 − y) + ci(1 − p̂i)y + p̂i{y = 1}
∑

j∈child(i)

Hj (̂y)
)

(5)

where

Hj (̂y) = cj p̂j (1 − ŷj ) + cj (1 − p̂j )ŷj + p̂j {ŷj = 1}
∑

k∈child(j)

Hk(̂y)

is recursively defined over the nodes j in the subtree rooted at i with each ŷj set
according to (5).
Then, if ŷi is set to zero, set all nodes in the subtree rooted at i to zero as well.

As shown in Cesa-Bianchi et al. (2006), ŷ can be computed for a given g via a simple
bottom-up message-passing procedure whose only parameters are the estimates p̂i . Unlike
standard top-down hierarchical methods—see Sect. 3.3, each ŷi also depends on the clas-
sification of its child nodes. In particular, if all child nodes k of i have p̂k close to a half,
then the Bayes-optimal label of i tends to be 0 irrespective of the value of p̂i . Vice versa, if
i’s children all have p̂k close to either 0 or 1, then the Bayes-optimal label of i is based on
p̂i only, ignoring the children. The intuition behind this behavior is the following: the esti-
mate p̂k is built based only on the examples on which the parent i of k is positive. Hence,
a “neutral” estimate p̂k = 1

2 signals that the current instance is a negative example for the
parent i.

3.5 Hierarchical True Path Rule ensembles

The True Path Rule (TPR) ensemble method (Valentini and Re 2009; Valentini 2011) is di-
rectly inspired by the true path rule that governs both GO and FunCat taxonomies. Citing the
Gene Ontology Consortium (2010): “An annotation for a class in the hierarchy is automat-
ically transferred to its ancestors, while genes unannotated for a class cannot be annotated
for its descendants”. For a given example x, considering the parents of a given node i, a
classifier that respects the true path rule needs to obey the following rules:

{

yi = 1 ⇒ ypar(i) = 1,

yi = 0 � ypar(i) = 0.
(6)

On the other hand, considering the children of a given node i, a classifier that respects the
true path rule needs to obey the following rules:

{

yi = 1 � ychild(i) = 1,

yi = 0 ⇒ ychild(i) = 0.
(7)

From (6) and (7) we observe an asymmetry in the rules that govern the assignments of
positive and negative labels. Indeed, we have a propagation of positive predictions from
bottom to top of the hierarchy in (6), and a propagation of negative labels from top to bottom
in (7). On the contrary negative labels cannot propagate from bottom to top, and positive
predictions cannot propagate from top to bottom.

According to these rules, in TPR ensembles positive predictions for a node influence in
a recursive way their ancestors, while negative predictions influence their offsprings. The
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ensemble embeds the functional relationships between functional classes that characterize
the hierarchical taxonomy: in a first step base learners are independently trained to learn each
specific class of the taxonomy. Then, their predictions are combined according to the true
path rule. More precisely, the base classifiers estimate local probabilities pi(g) that a given
gene g belongs to class ωi , and in a second step the ensemble provides an estimate pi(g)

of the “consensus” global probability pi(g). Let us consider the set φi(g) of the children of
node i for which we have a positive prediction for a given gene g:

φi(g) = {

j : j ∈ child(i), ŷj = 1
}

. (8)

The global consensus probability pi(g) of the ensemble depends both on the local prediction
p̂i(g) and on the prediction of the nodes belonging to φi(g):

pi(g) = 1

1 + |φi(g)|

⎛

⎝p̂i(g) +
∑

j∈φi (g)

pj (g)

⎞

⎠ . (9)

The decision ŷi (g) at node/class i is set to 1 if pi(g) > t , and to 0 otherwise (a natural
choice for t is 0.5). Note that the restriction to nodes belonging to φi(g) in the summation
of (9) depends on the true path rule: indeed only children nodes for which we have a positive
prediction can influence their parent. In the leaf nodes the sum disappears and (9) reduces
to pi(g) = p̂i(g). On the contrary, if for a given node ŷi = 0, then the algorithm propagates
this decision to the corresponding subtree.

The high-level pseudo-code of the TPR ensemble algorithm to predict the hierarchical
multilabel ŷ for a generic unknown gene g is given in Fig. 1. To simplify the notation,
pi(g), p̂i(g), ŷi (g) are denoted, respectively, with pi, p̂i , ŷi , since in any case we refer to
the same gene g whose labels ŷ need to be predicted.

The main external loop (rows 1–18) performs a bottom-up traversal of the tree, thus
assuring that all the offsprings of a given node i for which we have a positive prediction can
influence its prediction (row 9). The internal loop (rows 2–17) scans all the nodes at a given
depth. Note that if a node is a leaf (row 3), then the consensus probability pi is equal to
the local probability p̂i , while if a node is internal (rows 7–16), the set φi of the "positive"
children of i is determined (row 8) and then used to compute the consensus probability pi

according to (9). According to the true path rule, the algorithm sets the classes belonging to
the subtree rooted at i to negative, when ŷi is set to 0 (rows 13–16). The algorithm provides
both the multilabels ŷi and an estimate of the probabilities pi that a given example g belongs
to the class i = 1, . . . ,m.

3.6 Cost-sensitive methods

Functional classes are unbalanced, with negative examples typically outnumbering posi-
tives, and for this reason we need cost-sensitive techniques. Here we introduce cost-sensitive
variants of HTD, HBAYES and TPR hierarchical ensemble methods, which are suitable for
learning datasets whose multilabels are sparse (i.e., datasets whose classes are unbalanced).
It is worth noting that all the cost-sensitive methods use the same estimates p̂i of the “a pos-
teriori” probabilities: the only difference is in the way the cost-sensitive ensemble classifiers
are defined in terms of these estimates.
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Input:
– tree T of the m hierarchical classes
– set of m classifiers (one for each node) each predicting p̂i , i = 1, . . . ,m

begin algorithm
01: for each level k of the tree T from bottom to top do
02: for each node i at level k do
03: if i is a leaf
04: pi ← p̂i

05: if (pi > t ) ŷi ← 1
06: else ŷi ← 0
07: else
08: φi ← {j |j ∈ child(i), ŷj = 1}
09: pi ← 1

1+|φi |
(

p̂i + ∑

j∈φi
pj

)

10: if (pi > t ) ŷi ← 1
11: else
12: ŷi ← 0
13: for each j ∈ subtree(i) do
14: ŷj ← 0
15: if (pj > pi ) pj ← pi
16: end for
17: end for
18: end for
end algorithm.
Output: for each node i

– the ensemble decisions: ŷi =
{

1 if gene g belongs to node i,

0 otherwise
– the estimated probabilities pi that gene g belongs to the node i ∈ T

Fig. 1 True Path Rule multilabel hierarchical algorithm

HTD-CS This is a cost-sensitive version of the basic top-down hierarchical ensemble
method HTD whose predictions are computed in a top-down fashion (i.e., assigning ŷi before
the label of any j in the subtree rooted at i) using the rule ŷi = {p̂i ≥ 1

2 } × {ŷpar(i) = 1} for
i = 1, . . . ,m (we assume that the guessed label ŷ0 of the root of T is always 1). The variant
HTD-CS introduces a single cost sensitive parameter τ > 0 which replaces the threshold 1

2 .
The resulting rule for HTD-CS is then ŷi = {p̂i ≥ τ } × {ŷpar(i) = 1}. By tuning τ we may
obtain ensembles with different precision/recall characteristics.

HBAYES-CS The cost-sensitive variant of HBAYES, that we named HBAYES-CS, distin-
guishes the cost c−

i of a false negative (FN) mistake from the cost c+
i of a false positive (FP)

mistake. Using this distinction, (5) can be rewritten as

ŷi = argmin
y∈{0,1}

(

c−
i p̂i (1 − y) + c+

i (1 − p̂i)y + p̂i{y = 1}
∑

j∈child(i)

Hj (̂y)
)

(10)

where the expression for Hj(ŷ) gets changed correspondingly. We now parametrize the
relative costs of FP and FN by introducing a factor α ≥ 0 such that c−

i = αc+
i while keeping

c+
i + c−

i = 2ci . This allows to further rewrite (10) as

ŷi = 1 ⇐⇒ p̂i

⎛

⎝2ci −
∑

j∈child(i)

Hj

⎞

⎠ ≥ 2ci

1 + α
. (11)
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It is easy to see that by setting α = 1 we obtain the original version of the hierarchical
Bayesian ensemble and by incrementing α we introduce progressively lower costs for pos-
itive predictions. Hence, by incrementing the cost factor, we could expect that the recall of
the ensemble tends to increase, eventually at the expenses of the precision.

A global α parameter can be experimentally selected (e.g., by cross-validation on the
training data), but considering that α represents a factor to balance the misclassification cost
between positive and negative examples, we could also simply choose a cost factor αi for
each node i to explicitly take into account the unbalance between the number of positive n+

i

and negative n−
i examples, estimated from the training data:

αi = n−
i

n+
i

⇒ c+
i = 2

n−
i

n+
i

+ 1
ci = 2n+

i

n−
i + n+

i

ci . (12)

The decision rule (11) at each node then becomes:

ŷi = 1 ⇐⇒ pi

⎛

⎝2ci −
∑

j∈child(i)

Hj

⎞

⎠ ≥ 2ci

1 + αi

= 2cin
+
i

n−
i + n+

i

. (13)

TPR-W In the TPR algorithm there is no way to explicitly balance the local prediction p̂i(x)

at node i (9) with the positive predictions coming from the offsprings. By balancing the
local predictions with the positive predictions coming from the ensemble, we can explicitly
modulate the interplay between local and descendant predictors. To this end we introduce a
parent weight w, 0 ≤ w ≤ 1, such that if w = 1 the decision at node i depends only by the
local predictor, otherwise the prediction is shared proportionally to w and 1 − w between
respectively the local parent predictor and the set of its children:

pi = w p̂i + 1 − w

|φi |
∑

j∈φi

pj . (14)

We thus obtain a variant of the TPR algorithm, that we name weighted True Path Rule
(TPR-w) hierarchical ensemble algorithm by substituting rows 8 and 9 of the basic algorithm
(Fig. 1) with the following pseudocode:

φi ← {j |j ∈ child(i), ŷj = 1}
if (|φi | > 0)

pi ← w p̂i + 1−w
|φi |

∑

j∈φi
pj

else
pi(x) ← p̂i

By tuning the w parameter we can modulate the precision/recall characteristics of the re-
sulting ensemble. In this sense, TPR-W can be considered a cost-sensitive version of the TPR

ensemble. More precisely, for w → 0 the weight of the parent local predictor is small, and
the ensemble decision mainly depends on the positive predictions of the offsprings nodes
(classifiers). As a consequence, we obtain a higher hierarchical recall for the TPR-W ensem-
ble. On the contrary, w → 1 corresponds to a higher weight of the parent predictor; then
less weight is given to possible positive predictions of the children, and the decision de-
pends mainly on the local/parent base classifier. In case of a negative decision all the subtree
is set to zero, causing the precision to increase. Note that for w → 1 the behaviour of TPR-W

becomes similar to that of HTD.
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3.7 Integration of hierarchical multilabel, data fusion, and cost-sensitive techniques

The hierarchical ensemble methods combine the probabilistic output of the classifiers as-
sociated to each node of the tree. Hence, by replacing the classifiers trained on single
sources of data with classifiers trained on multiple sources of data, we immediately ob-
tain an integration of hierarchical multilabel algorithms with data fusion techniques. The
only requirement is that the base classifiers at each node provide an estimate p̂i(g) of
P(Vi = 1 | Vpar(i) = 1, g). For instance, we can supply as input to the hierarchical ensembles
the p̂i estimated through ensembles of classifiers trained on multiple sources of data, or with
SVMs trained on matrices obtained by summing kernel matrices specific for each data set.
This is summarized with the following two-step strategy:

1. Train a set of classifiers that estimate P(Vi = 1 | Vpar(i) = 1, g) for each node i = 1, . . . ,m

of the FunCat taxonomy. Each classifier is an ensemble of base learners, or a SVM trained
with multiple sources of data by kernel fusion methods (see Sect. 3.2).

2. Combine the predictions at each node to obtain the multilabel predictions according to
the hierarchical multilabels methods (both the basic and cost-sensitive variants) described
in Sects. 3.4, 3.5, and 3.6.

The resulting hierarchical multilabel predictions respect the “true path rule” and implement
a local combination of multiple sources of biomolecular data at each node of the FunCat
tree, while possibly using a cost-sensitive approach.

It is easy to see that the computational cost of the combination step of HTD, HBAYES and
TPR is linear w.r.t. the number of classes included in the hierarchy.

4 Experimental set-up

4.1 Data

We integrated six different sources of yeast biomolecular data, previously used for single-
source ontology-wide gene function prediction (Cesa-Bianchi and Valentini 2010).

The data sets include two types of protein domain data (PFAM BINARY and PFAM LOGE),
gene expression measures (EXPR), predicted and experimentally supported protein-protein
interaction data (STRING and BioGRID) and pairwise sequence similarity data (SEQ.
SIM.).

PFAM BINARY data are coded as binary vectors representing the presence or absence
of 4950 protein domains obtained from the Pfam (Protein families) database (Finn et al.
2008). An alternative enriched representation of the same data (PFAM LOGE) has been ob-
tained by replacing the binary scoring with log E-values computed by the HMMER software
toolkit (Eddy 1998). We merged the experiments of Spellman et al. (1998) (gene expression
measures relative to 77 conditions) with the transcriptional responses of yeast to environ-
mental stress (173 conditions) by Gasch et al. (2000) to obtain the gene expression (EXPR)
data set. Protein-protein interaction (PPI) data (BioGRID) have been downloaded from the
BioGRID database, that collects PPI data from both high-throughput studies and conven-
tional focused studies (Stark et al. 2006). Data are binary and represent the presence or
absence of protein-protein interactions. Other binary protein-protein interactions, represent-
ing interaction data from yeast two-hybrid assay, mass-spectrometry of purified complexes,
correlated mRNA expression and genetic interactions, have been collected in the STRING
data set (von Mering et al. 2002). Pairwise sequence similarity data (SEQ. SIM.) have been
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computed using Log-E values obtained by Smith and Waterman local pairwise alignments
between all pairs of yeast sequences.

We considered only yeast genes common to all data sets, and in order to get a not too
small set of positive examples for training, for each data set we selected only the FunCat-
annotated genes,2 and the classes with at least 20 positive examples, using the HCgene
R package (Valentini and Cesa-Bianchi 2008). This selection process yielded 1901 yeast
genes annotated to 168 FunCat classes distributed across 16 trees and 5 hierarchical levels.
We added a “dummy” root node to obtain a tree from the overall FunCat forest (Fig. 2).

4.2 Experimental tasks

In order to understand the potentially different impact of hierarchical strategies, data fusion
and cost-sensitive methods on the GFP problem, we performed several experimental classi-
fication tasks at genome and ontology-wide level (i.e., we considered all genes and all the
168 classes of the hierarchically structured multilabel classification problem):

(a) Comparison of “single-source” and data fusion techniques (kernel fusion and weighted
voting) using both FLAT and hierarchical methods (HTD, HBAYES and TPR);

(b) Assessment of the improvements achievable by: (i) multilabel hierarchical methods
vs. flat methods; (ii) cost-sensitive vs cost-insensitive strategies; (iii) synergic en-
hancements due to the concurrent application of multilabel hierarchical methods, cost-
sensitive, and data fusion techniques;

(c) Analysis of the precision-recall characteristics of the compared methods;
(d) Impact of the choice strategy for selecting negative examples.

As baseline method we adopted the annotation transfer method based on the best BLAST
hit (Altschul et al. 1990) of each query protein against the database of the available yeast
proteins.

Note that by FLAT ensembles we mean a set of base learners each one predicting a single
functional class, without any combination of the predictions that takes into account the hier-
archical structure of the classes. For both FLAT and hierarchical ensemble methods we used
linear SVMs with probabilistic output (Lin et al. 2007) as base learners.

About task (d), we tested whether training base learners with different strategies for
choosing negative examples may have an impact on the generalization capabilities of mul-
tilabel hierarchical methods. More precisely, in Sects. 5.1, 5.2 and 5.3 we adopted the fol-
lowing strategy to select negative examples for training:

Parent Only (PO) strategy. At each FunCat node the negatives are the genes that are not
annotated at the corresponding class, but are annotated at the parent class/node.

Then in Sect. 5.4 the same whole-ontology tasks have been performed using a strategy that
does not take into account the hierarchical structure of classes:

Basic (B) strategy. Negatives for a given class are simply examples not annotated for that
class.

2Our experiments build on annotations coded in the funcat-2.1 scheme, and funcat-2.1_data_20070316 data,
available from the MIPS web site (http://mips.gsf.de/projects/funcat).

http://mips.gsf.de/projects/funcat
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Fig. 2 FunCat trees to compare
F-scores achieved with data
integration (KF) to the best
single-source classifiers trained
on BIOGRID data. Black nodes
depict functional classes for
which KF achieves better
F-scores. (a) FLAT,
(b) HBAYES-CS, (c) TPR-W

ensembles

4.3 Performance assessment

Following the experimental set-up proposed by Lewis et al. (2006), we did not perform
model selection to select the best values for the parameters of the SVM base learners: we
simply set the regularization parameter C to 10. By performing model selection we could
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of course expect better results. However, our aim is not to achieve the best possible results,
but rather to analyze the impact and the synergy of different learning strategies for the GFP
problem.

In order to assess the generalization capabilities of the ensembles, we adopted “external”
5-fold cross validation techniques, while to select the threshold value τ for HTD-CS ensem-
bles, the values of α and w parameters for respectively HBAYES-CS and TPR-W ensembles,
we applied “internal” 3-fold cross-validation, using the F-score as evaluation criterion.

In the context of ontology-wide gene function prediction problems, where negative ex-
amples are usually a lot more than positives, accuracy is not a reliable measure to assess
the classification performance. For this reason we adopted the classical F-score to take into
account the unbalance of FunCat classes.

In order to better capture the hierarchical and sparse nature of the gene function predic-
tion problem, we also need specific measures that estimate how far a predicted structured
annotation is from the correct one. For instance, correctly predicting a parent or ancestor
annotation, while failing to predict the most specific available annotation should be “par-
tially correct”, in the sense that we can gain information about the more general functional
characteristics of a gene, missing only its most specific functions. For the purpose of cap-
turing these specificities of functional annotations, we should consider how much the entire
path from the most specific up to the more general annotation is correctly predicted or not.
To this end, we specialized to trees a hierarchical version of the F-measure (hierarchical
F-measure) originally proposed for graph-structured classes by Verspoor et al. (2006).

More precisely, for a given gene or gene product g consider the subtree G ⊂ T of the
predicted classes and the subtree C of the correct classes associated to g. For a leaf f ∈ G

and c ∈ C, let be ↑f and ↑c the set of their ancestors that belong, respectively, to G and C.
The hierarchical precision (HP) and hierarchical recall (HR) are defined as follows:

HP = 1

|�(G)|
∑

f ∈�(G)

|C ∩ ↑f |
| ↑f | and HR = 1

|�(C)|
∑

c∈�(C)

| ↑c ∩ G|
| ↑c|

where �( · ) is the set of leaves of a tree. The hierarchical F-measure (HF) is the harmonic
mean of the hierarchical precision and recall. It is easy to verify that HP, HR and HF have
values between 0 and 1. Note that these measures show how much each single example is
correctly predicted w.r.t. the hierarchy of the classes. By averaging across examples we can
obtain average HP, HR and HF.

A high average hierarchical precision is indicative of most predictions being ancestors
of the correct predictions, or in other words that the predictor is able to detect the most
general functions of genes/gene products. On the other hand, a high average hierarchical
recall indicates that most predictions are successors of the actual, or that the predictors are
able to detect the most specific functions of the genes. The hierarchical F-measure expresses
the correctness of the structured prediction of the functional classes, taking into account also
partially correct paths in the overall hierarchical taxonomy, thus providing in a synthetic way
the goodness of the structured hierarchical prediction.

As a final remark, we would like to outline that FunCat and GO ontologies can be trusted,
since they represent the classification of known functions of genes according to the results
of the scientific community at a given time, but at the same time they keep on evolving,
due to the new knowledge coming from the ongoing new studies in functional genomics,
where also the computational prediction of gene functions plays a central role. From this
standpoint, false positive predictions provided by computational methods can change, for
instance, in true positive predictions in future releases of both FunCat and GO ontologies.
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Table 1 Average per-class F-scores with FLAT, HTD, HTD-CS, HB (HBAYES), HB-CS (HBAYES-CS), TPR and
TPR-W ensembles, using single sources and multi-source (data fusion) techniques

METHODS FLAT HTD HTD-CS HB HB-CS TPR TPR-W

SINGLE-SOURCE

BIOGRID 0.2643 0.3759 0.4160 0.3385 0.4183 0.3902 0.4367

STRING 0.2203 0.2677 0.3135 0.2138 0.3007 0.2801 0.3048

PFAM BINARY 0.1756 0.2003 0.2482 0.1468 0.2407 0.2532 0.2738

PFAM LOGE 0.2044 0.1567 0.2541 0.0997 0.2847 0.3005 0.3160

EXPR. 0.1884 0.2506 0.2889 0.2006 0.2781 0.2723 0.3053

SEQ. SIM. 0.1870 0.2532 0.2899 0.2017 0.2825 0.2742 0.3088

MULTI-SOURCE (DATA FUSION)

KERNEL FUSION 0.3220 0.5401 0.5492 0.5181 0.5505 0.5034 0.5592

WEIGH. VOTING 0.2754 0.2792 0.3974 0.1491 0.3532 0.3987 0.4109

5 Results and discussion

In this section we analyze and try to quantify the synergy between the different learning is-
sues involved in GFP. In this context, by “synergy” we mean the improvement with respect
to a given performance metric (e.g., the F-score) due to the concurrent effect of two learn-
ing strategies. In particular, we detect a synergy whenever the combined action of the two
strategies causes the performance, under the considered metric, to be larger than the average
of the performances of the two strategies in isolation.

5.1 Impact of data fusion on flat and hierarchical methods

As a baseline for our functional prediction experiments, we performed a sequence
homology-based functional annotation transfer, using blastp (protein-protein BLAST)
(Altschul et al. 1990). For each queried protein we sorted the collected hits according to
the blast score normalized by the length of the alignment. Then we transferred to the query
sequence the functional annotations of the best scoring hit found in the database of the con-
sidered set of proteins. The F-score averaged across all the considered functional terms is
0.2224. It is worth noting that the transfer of the entire set of known functional annotations
from a protein to another introduces a bias in favour of BLAST because it prevents the in-
troduction of hierarchical inconsistencies, since the set of transferred functional annotations
are, by definition, hierarchically consistent w.r.t. the FunCat functional ontology.

Table 1 summarizes the results of the comparison including single-source and data in-
tegration approaches together with both flat and hierarchical ensembles. As a first observa-
tion, we note that the baseline BLAST-based method achieves results comparable with FLAT

SVM ensembles, but worse than FLAT SVM with data fusion methods, and significantly
worse than hierarchical ensemble methods with and without data fusion and cost-sensitive
techniques (Table 1).

Data fusion techniques improve average per class F-score across classes in FLAT en-
sembles (first column of Table 1), and significantly boost multilabel hierarchical meth-
ods (columns HTD, HTD-CS, HB, HB-CS, TPR, TPR-W of Table 1). Note that Kernel Fu-
sion largely improves on results achieved with any “single-source” ensemble methods,
while Weighted Voting results are sometimes worse than those of the best single-source
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Table 2 Wilcoxon signed-ranks test results to evaluate the statistical significance of the improvement of
data fusion techniques w.r.t. single data sources achieved with cost-sensitive multilabel hierarchical methods
(HBAYES-CS, HTD-CS and TPR-W). Results in boldface are in favour of ensembles using single data sources

BIOGRID STRING PFAM BIN. PFAM LOGE EXPR. SEQ. SIM.

HBAYES-CS

KERNEL FUSION � 0 � 0 � 0 � 0 � 0 � 0

WEIGHTED VOTING 2.3 × 10−4 5.6 × 10−07 2.2 × 10−15 6.3 × 10−6 1.3 × 10−15 3.8 × 10−13

HTD-CS

KERNEL FUSION � 0 � 0 � 0 � 0 � 0 � 0

WEIGHTED VOTING 9.5 × 10−2 6.9 × 10−12 � 0 � 0 � 0 � 0

tpr-w

KERNEL FUSION � 0 � 0 � 0 � 0 � 0 � 0

WEIGHTED VOTING 9.8 × 10−1 3.2 × 10−15 � 0 � 0 � 0 � 0

(BIOGRID) when hierarchical ensemble methods are applied (with FLAT and TPR ensembles
Weighted Voting improves on BIOGRID). These results seem to partially contradict previous
ones published in Re and Valentini (2010c), but note that in that work only the most general
classes at the first level of the FunCat hierarchy were classified, and no hierarchical methods
were applied.

The improvements achieved by data integration techniques are statistically significant
according to the Wilcoxon test (Table 2). With all cost-sensitive hierarchical ensembles,
Kernel Fusion performances are significantly better than any single-source approach (p-
value = 2.2 × 10−16). This is true also for Weighted Voting except for the BIOGRID data,
where results are in favour of the single-source data against all the cost-sensitive hierarchical
ensembles, even if the difference is significant only for HBAYES-CS ensembles (p-value =
2.3 × 10−4, Table 2).

Focusing on Kernel Fusion, Fig. 2 depicts the classes (black nodes) where Kernel Fusion
achieves better results than the best single-source data set (BIOGRID). It is worth noting that
the number of black nodes is significantly larger in HBAYES-CS ensembles (Fig. 2 b) and
TPR-W (Fig. 2 c) w.r.t. FLAT methods (Fig. 2 a). Moreover, considering the average F-score
across classes (Table 1), the relative improvement due to the application of Kernel Fusion
w.r.t. the best results achieved with a single source (namely, BIOGRID), even if statistically
relevant for FLAT (about 20%), is significantly larger for hierarchical ensemble methods
(between 30% and 50%).

It is well known that hierarchical multilabel ensembles largely outperform FLAT ap-
proaches (Guan et al. 2008; Obozinski et al. 2008), but these results also reveal a synergy
between hierarchical ensemble methods and data fusion techniques.

5.2 Analysis of the synergy between hierarchical multilabel methods, cost sensitive, and
data fusion techniques

According to previous works (Valentini and Re 2009; Cesa-Bianchi and Valentini 2010),
cost-sensitive approaches boost predictions of hierarchical methods when single-sources of
data are used to train the base learners. These results are confirmed when cost-sensitive
methods (HBAYES-CS, HTD-CS and TPR-W) are integrated with data fusion techniques,
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Fig. 3 Comparison of
hierarchical F-score, precision,
and recall among different
ensemble methods using the best
source of biomolecular data
(BIOGRID), Kernel Fusion (KF),
and Weighted Voting (WVOTE)
data integration techniques. HB
stands for HBAYES

Table 3 Wilcoxon signed-ranks test results (p-values) to evaluate the statistical significance of the improve-
ment of cost-sensitive w.r.t. non cost-sensitive multilabel hierarchical methods. Data integration method:
Kernel Fusion

FLAT HTD HBAYES TPR

HBAYES-CS (α = 2) � 0 5.9 × 10−04 1.1 × 10−14 5.3 × 10−5

HTD-CS (τ = 0.4) � 0 2.9 × 10−03 2.8 × 10−13 8.8 × 10−4

TPR-W (w = 0.7) � 0 9.8 × 10−11 2.2 × 10−16 2.8 × 10−9

showing a synergy between multilabel hierarchical, data fusion (in particular kernel fusion),
and cost-sensitive approaches (Fig. 3).

The improvements of per-class F-scores achieved by HBAYES-CS, HTD-CS and TPR-W

are statistically significant at 0.005 significance level (Wilcoxon test) w.r.t. their “vanilla”
counterparts and FLAT methods (Table 3). No significant difference can be detected be-
tween HBAYES-CS, HTD-CS and TPR-W. These results show that the adoption of hierar-



Mach Learn

Fig. 4 Per level average F-score,
precision and recall across the
five levels of the FunCat
taxonomy in HBAYES-CS,
HTD-CS and TPR-W ensembles
using Kernel Fusion data
integration. Number 1 to 5 refer
to levels: level 1 is the top level,
level 5 the bottom

chical strategies with embedded global cost-sensitive strategies is a key to improving GFP
performances.

It is worth noting that other approaches for learning unbalanced classes, i.e., undersam-
pling techniques or cost-sensitive SVMs (Morik et al. 1999), can be applied to predict gene
functions. These local methods could in principle be combined with the global cost-sensitive
approach of HTD-CS, HBAYES-CS and TPR-W to further improve prediction performances.

Per-level analysis of the F-score in HBAYES-CS, HTD-CS, and TPR-W ensembles shows
a certain degradation of performance w.r.t. the depth of nodes (Fig. 4), but this degradation
is significantly lower when data fusion is applied. Indeed, the per-level F-score achieved by
HBAYES-CS and HTD-CS when a single source is used consistently decreases from the top
to the bottom level, and it is halved at level 5 w.r.t. to the first level. On the other hand, in our
experiments with Kernel Fusion the average F-score at level 2, 3 and 4 is comparable, and
the decrement at level 5 w.r.t. level 1 is only about 15% (Fig. 5). Similar results are reported
also with TPR-W ensembles.

In conclusion, the synergic effects of hierarchical multilabel ensembles, cost-sensitive,
and data fusion techniques significantly improve the performance of GFP. Moreover, these
enhancements allow to obtain better and more homogeneous results at each level of the
hierarchy. This is of paramount importance, because more specific annotations are more
informative, and can get more biological insights about the functions of genes.

5.3 Analysis of the precision/recall characteristics of hierarchical multilabel methods

Since functional classes are unbalanced, precision/recall analysis plays a central role in GFP
problems, and often drives “in vitro” experiments that provide biological insights about
specific functional genomics problems (Friedberg 2006).
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Fig. 5 Comparison of per level
average F-score, precision and
recall across the five levels of the
FunCat taxonomy in HBAYES-CS

using single data sets (single) and
kernel fusion techniques (KF).
Performance of “single” are
computed by averaging across all
the single data sources

Table 4 Average per-class recall with FLAT, HTD, HTD-CS, HB (HBAYES), HB-CS (HBAYES-CS), TPR and
TPR-W ensembles, using the best single source (BIOGRID) and multi-source (data fusion) techniques

METHODS FLAT HTD HTD-CS HB HB-CS TPR TPR-W

BIOGRID 0.6143 0.2963 0.3749 0.2506 0.3709 0.5323 0.3814

KERNEL FUSION 0.6839 0.4512 0.5130 0.4105 0.5039 0.6343 0.5126

WEIGH. VOTING 0.5366 0.1818 0.3058 0.0899 0.2568 0.4559 0.2726

While FLAT ensembles achieve the overall best average per-class recall, among hier-
archical ensemble methods TPR obtains the best results in terms of average recall at the
expenses of a certain decrement in average precision (see Table 4). Nevertheless, the av-
erage precision in hierarchical methods is twice (and in several cases more than twice)
that of FLAT methods (see Table 5). Moreover, we can observe a synergy between hier-
archical methods and data fusion. For instance, HBAYES-CS with a Kernel Fusion strategy
increases precision from 0.275 to 0.770 w.r.t. FLAT methods trained with the best single
source data (BIOGRID). Likewise, HTD with a WEIGTHED VOTING fusion strategy in-
creases precision from 0.275 to 0.786 w.r.t. FLAT methods trained with BIOGRID (see
Table 5). Note that the precision of FLAT methods is too low to be practically relevant.
These results clearly show that FLAT methods are not suitable for such a complex multilabel
classification task.

Note that HP and HR measures are not applicable to FLAT methods, since their predic-
tions can be inconsistent with the class hierarchy. In any case, per-class average F-score and
precision show that hierarchical ensembles significantly outperform FLAT methods (Tables 1
and 5).

Considering hierarchical recall, TPR achieves the best results (Fig. 3). We believe that this
is possibly due to the bottom-up propagation of positive predictions in TPR (Sect. 3.5): sen-
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Table 5 Average per-class precision with FLAT, HTD, HTD-CS, HB (HBAYES), HB-CS (HBAYES-CS), TPR

and TPR-W ensembles, using the best single source and multi-source (data fusion) techniques

METHODS FLAT HTD HTD-CS HB HB-CS TPR TPR-W

BIOGRID 0.2751 0.6012 0.5084 0.6348 0.5364 0.3717 0.5460

KERNEL FUSION 0.3112 0.7270 0.6263 0.7700 0.6476 0.4802 0.6555

WEIGH. VOTING 0.4484 0.7863 0.7043 0.7081 0.7272 0.5799 0.7472

sitivity (recall) is improved, but at the expenses of a certain decay of hierarchical precision
(Fig. 3).

HTD ensembles show the best hierarchical precision except with Weighted Voting, where
hierarchical cost-sensitive methods perform better (Fig. 3). Here the propagation of nega-
tive predictions from top to bottom ensures that only “safe” positive predictions (accord-
ing to the hierarchical structure of the classes) are maintained. Hierarchical cost-sensitive
ensembles, which address the unbalance between positive and negative examples, show
quite comparable results in terms of precision and a recall significantly higher than HTD.
As a result, HBAYES-CS, HTD-CS, and TPR-W achieve good “intermediate” results for
both precision and recall, leading to the best results in terms of the hierarchical F-score
(Fig. 3).

Note also that while HTD-CS uses a top-down strategy, HBAYES-CS and TPR-W work
bottom-up. Moreover, while HBAYES-CS is theoretically well-founded (Sect. 3.4), HTD-CS

and TPR-W (Sect. 3.5) are heuristic methods. Despite these differences, there is no significant
discrepancy between their overall performance in terms of average per-class F-score and
hierarchical F-score. We believe that these results can be explained considering that the key
to improve prediction performance in this task is not the choice of a specific hierarchical
multilabel method, but rather the synergy between hierarchical multilabel, data fusion and
cost-sensitive strategies.

A more refined analysis in terms of precision/recall and per-level results reveals differ-
ences between methods that are relevant to this specific application context. For instance,
while the overall hierarchical precision and recall between HBAYES-CS and HTD-CS is quite
similar, TPR-W achieves a slightly higher recall and a slightly lower precision (Fig. 3). These
results can be explained through the bottom-up propagation of positive predictions that char-
acterizes both TPR and TPR-W, as outlined above in this section.

The scenario is different if we analyze the average precision across levels of the FunCat
taxonomy. Indeed, precision of HBAYES-CS and TPR-W at lower levels is higher than that of
HTD-CS (Fig. 4). Figure 6 shows that the black nodes representing FunCat classes for which
HBAYES-CS and TPR-W improves precision on HTD-CS are concentrated on the middle and
lower levels of the hierarchy. This is of paramount importance in real applications, when
we need to reduce the costs of the biological validation of new gene functions discovered
through computational methods.

Another advantage of HBAYES-CS and TPR-W is the fact that their precision/recall char-
acteristics can be tuned via a single global parameter. In HBAYES-CS, by incrementing
the cost factor α = c−

i /c+
i we introduce progressively lower costs for positive predic-

tions, thus resulting in an increment of the recall (at the expenses of a possibly lower
precision), In TPR-W, by incrementing w we reduce the recall and enhance the precision
(Fig. 7).
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Fig. 6 Ontology-wide FunCat
tree plot highlighting the nodes at
which the precision of the
cost-sensitive hierarchical
methods HBAYES-CS and TPR-W

is larger than the one obtained by
HTD-CS using Kernel Fusion to
integrate multiple sources of
data. (a) HBAYES-CS vs.
HTD-CS; (b) TPR-W vs. HTD-CS

Fig. 7 Hierarchical F-score, precision and recall as functions of global cost sensitive parameters.
(a) HBAYES-CS, (b) TPR-W

As for HBAYES-CS, observe that by setting the α parameter at each node to the ratio
of negative to positive examples for the corresponding class (Sect. 3.6), we attain results
comparable to those obtained by internal cross-validation of the global α parameter, thus
avoiding the corresponding computational overhead (results not shown).



Mach Learn

Table 6 Average per-class F scores with FLAT, HTD, HTD-CS, HB (HBAYES) and HB-CS (HBAYES-CS), TPR,
TPR-W, and TPR-W-T ensembles, using single sources and multi-source (data fusion) techniques and the Basic
strategy to select negatives

METHODS FLAT HTD HTD-CS HB HB-CS TPR TPR-W TPR-W-T

Single-source

BIOGRID 0.2714 0.3264 0.3601 0.3301 0.3102 0.2977 0.3230 0.3609

STRING 0.2490 0.2735 0.2604 0.1349 0.2270 0.2777 0.2811 0.2570

PFAM BINARY 0.1677 0.2013 0.2198 0.1660 0.1933 0.1983 0.1963 0.2245

PFAM LOGE 0.2699 0.3245 0.2767 0.1584 0.2941 0.2979 0.3252 0.3343

EXPR. 0.1782 0.2103 0.2430 0.2074 0.2045 0.1906 0.2074 0.2437

SEQ. SIM. 0.1775 0.2107 0.2410 0.1999 0.2050 0.1897 0.2072 0.2409

Multi-source (data fusion)

KERNEL FUSION 0.2940 0.3603 0.4089 0.3917 0.3431 0.3243 0.3568 0.4065

WEIGH. VOTING 0.3058 0.3572 0.4104 0.1266 0.3367 0.3365 0.3560 0.4240

5.4 Impact of the choice of different strategies for selecting negatives

In both GO and FunCat negative annotations are not typically available.3 Moreover, some
seminal works in functional genomics pointed out that the strategy of choosing negative
training examples does affect the classifier performance (Ben-Hur and Noble 2006; Lewis
et al. 2006).

In our experiments we used a strategy according to which negative examples for a class
must be annotated for the parent class (Parent Only or PO strategy). More precisely, for
a given class ωi corresponding to node i in the taxonomy, the set of negative examples is
Ni = {g : g /∈ ωi, g ∈ par(i)}. Hence, this strategy selects negative examples for training
that are in a certain sense “close” to positives.

To check whether an alternative strategy could significantly influence the performance
of flat and hierarchical methods, we repeated the same whole-ontology and genome-wide
experiments performed in the previous section, comprising the tuning of w, α and τ param-
eters, but this time choosing the set of negative examples simply as those genes g that are
not annotated for class ωi (Basic or B strategy), that is N ′

i = {g : g /∈ ωi}. It is easy to see
that Ni ⊆ N ′

i , hence this strategy selects for training a large set of generic negative examples,
possibly annotated with classes that are associated with faraway nodes in the taxonomy. Of
course, the set of positive examples is the same for both strategies.

If we compare results about average per-class F-score obtained with the B strategy (Ta-
ble 6) to those obtained with the PO strategy (Table 1), we observe that the B strategy wors-
ens the performance of hierarchical multilabel methods, while for FLAT ensembles there
is no clear trend. This is more apparent in Fig. 8, comparing the F-scores obtained with
B to those obtained with PO, using both hierarchical cost-sensitive (Fig. 8 (a)) and FLAT

(Fig. 8(b)) methods. Each point represents the F-score for a specific FunCat class achieved
by a specific method with B (abscissa) and PO (ordinate) strategy for the selection of neg-
ative examples. For each method we have 168 points corresponding to the 168 different
FunCat classes considered in the experiments. In Fig. 8(a) most points lie above the bisector

3More precisely, for some functional classes in both GO and FunCat we have a few negative annotations, but
not so many to be practically relevant.
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Fig. 8 Comparison of average per-class F-score between Basic and PO strategies. (a) Hierarchical cost-sen-
sitive strategies: HTD-CS (squares), TPR-W (triangles), HBAYES-CS (filled circles). (b) FLAT. Abscissa: per–
class F-score with base learners trained according to the Basic strategy; ordinate: per-class F-score with base
learners trained according to the PO strategy

independently of the hierarchical cost-sensitive method being used. This shows that hierar-
chical methods gain in performance when using the PO strategy as opposed to the B strategy
(p-value = 2.2 × 10−16 according to the Wilcoxon signed-ranks test). This is not the case for
FLAT methods (Fig. 8(b)).

These results can be explained by considering that the PO strategy takes into account
the hierarchy to select negatives, while the B strategy does not. More precisely, the PO
strategy trains base classifiers to distinguish local differences (i.e., examples that are negative
for a class and positive for the parent class), and hierarchical methods, which know the
taxonomy, can use the information coming from other base classifiers to prevent a local
base learner from incorrectly classifying “distant” negative examples. On the contrary, FLAT

methods have no information about the hierarchical structure of classes and cannot correct
local predictions, thus suffering from significantly higher false positive rates.

It is worth noting that even if we observe a degradation of performance in hierarchical
methods with the B strategy, their results are still better than FLAT, and a synergy between
hierarchical, cost-sensitive and data fusion approaches can be always observed (Table 6 and
Fig. 9).

Looking at the behaviour of hierarchical cost-sensitive methods trained with B strategy,
we noted that the best results of TPR-W have been obtained with relatively large values of
w (w > 0.7, but sometimes also with w = 0.9). In these conditions TPR-W tends to become
similar to HTD (apart from the bottom-up strategy), since decisions at each node mainly de-
pend on the local predictor associated to that node. Hence, observing that HTD-CS performs
significantly better than HTD (Table 6), we introduced a thresholded version of TPR-W, that
we named TPR-W-T (T stands for threshold). Analogously to HTD-CS, we optimized by
cross validation the best global threshold t applied to predict the class according to the rule
p̂i > t ⇐⇒ ŷi = 1 (Fig. 1). Results in the last column of Table 6 and in Fig. 9 show that
TPR-W-T significantly improves on TPR-W, achieving the best results among hierarchical
cost-sensitive methods when the B strategy is applied.
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Fig. 9 Comparison of
hierarchical F-score, precision
and recall, among different
ensemble methods using the best
source of biomolecular data
(BIOGRID), Kernel Fusion (KF),
and Weighted Voting (WVOTE)
data integration techniques, with
the Basic strategy to select
negatives

Regarding HBAYES-CS, its performance is slightly lower than the other cost-sensitive
hierarchical methods (Table 6 and Fig. 9) when using the B strategy for selecting negatives,
while with the PO strategy no significant differences can be detected between HBAYES-
CS and the other cost-sensitive hierarchical methods. These results are not surprising, since
the probabilistic model underlying HBAYES assumes that data are distributed according to
the PO strategy, while the other methods make no explicit assumptions, even if they take
advantage of this selection strategy.

The per-level precision/recall analysis in cost-sensitive hierarchical ensembles show that
the Basic strategy introduces a significant decrement of the F-score, and in particular of the
precision (Fig. 10), as we move down in the levels of the FunCat hierarchy. With the PO
strategy (Fig. 4), on the contrary, precision is reasonably sustained across levels (e.g., we
can observe a 17% reduction using PO, but a 68% reduction, moving down from level 1 to
level 5 and using the Basic strategy with TPR-W ensembles combined with kernel fusion data
integration). We need high precision, especially at the lower levels of the hierarchy, since
they correspond to the most specific and hence most informative classes from a functional
genomics standpoint. These results confirm that the correct choice of the strategy to select
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Fig. 10 Per level average
F-score, precision and recall
across the five levels of the
FunCat taxonomy in
HBAYES-CS, HTD-CS, TPR-W

and TPR-W-T ensembles using
Kernel Fusion data integration,
with the Basic strategy to select
negatives

negative examples for training is as important as the choice of the correct methods, and that
with hierarchical methods PO significantly improves on the Basic strategy.

6 Conclusions

In this work we investigated the relationships between different learning strategies involved
in GFP, a challenging multi-label classification problem characterized by constraints and de-
pendencies between labels, unbalance of classes, and by the availability of multiple sources
of data.

Our analysis shows and quantifies the synergy among heterogeneous data integration,
hierarchical multi-label, and cost-sensitive approaches. This synergy is the key to drive bio-
molecular experiments aimed at discovering previously unannotated gene functions.

In particular, the main findings of our work can be summarized as follows:

– There does exist a synergy between data integration and hierarchical multi-label methods.
Confirming previous results, data integration improves upon single-source approaches,
and hierarchical ensembles enhance multi-label FLAT methods. Nevertheless, the com-
bination of data integration and multi-label hierarchical methods achieves a significant
performance increment over both hierarchical and data fusion techniques alone, confirm-
ing a synergy between them.

– There does exist a synergy between hierarchical multi-label and cost-sensitive ap-
proaches. According to previous works, cost-sensitive approaches boost predictions of
hierarchical methods when individual data sources are used to train the base learners.
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With or without data fusion, hierarchical methods that take into account the unbalance
between classes significantly improve their “vanilla” counterparts, and multi-view ap-
proaches yield further enhancements.

– The combination of different learning strategies is more effective than the choice of a
specific learning method. Despite the fact that HBAYES-CS is theoretically well founded,
while HTD-CS and TPR-W are heuristic methods, there is no significant difference between
their overall results (in terms of average per-class F-score and hierarchical F-score). The
key to improve prediction performance is not the choice of a specific hierarchical multi-
label method, but the synergy between hierarchical multi-label, data fusion, and cost-
sensitive strategies.

– Synergic effects spread out across the levels of the hierarchy. The performance decrease
exhibited by HBAYES-CS, HTD-CS, and TPR-W as we move down the levels of the hierar-
chy is significantly reduced when data fusion is applied, thus resulting in better and more
homogeneous results at each level of the hierarchy.

– FLAT methods should not be applied to GFP. The overall F-score achieved by hierarchical
multi-label methods is always significantly higher than FLAT methods. In particular, the
precision of FLAT methods is too low to be useful in practice, especially with lower level
classes. As a consequence, such methods should not be applied to this task.

– Combining different learning strategies preserves precision across the levels of the hier-
archy. If we combine hierarchical multi-label learning strategies, data fusion and cost-
sensitive techniques, the decrease in precision at the low-level classes of the hierarchy is
significantly limited. This is of paramount importance when we need to reduce the costs of
the biological validation of new gene functions discovered through computational meth-
ods. This synergy is clear in HBAYES-CS and TPR-W, while in HTD-CS we observe a
less pronounced preservation of the precision across the levels of the hierarchy. Another
advantage of HBAYES-CS and TPR-W is the possibility of tuning their precision/recall
characteristics through a single global parameter.

– The strategy of choosing negative examples influences performance. The Parent Only
(PO) strategy to select negative examples in the training phase significantly improves the
performance of hierarchical multi-label methods, while the choice of the PO or Basic
seems to be not so influent when using FLAT methods.

Summarizing, our analysis suggests that multi-label methods for GFP should combine:
(a) hierarchical strategies to take into account the relationships between classes; (b) data
integration approaches to capture different functional characteristics of genes; (c) cost-
sensitive methods to address the unbalance between positive and negative examples for each
functional class.

According to these findings, we proposed a general methodology to integrate hierarchical
multi-label algorithms, data fusion, and cost-sensitive methods, that could be applied to
design new integrated approaches to the GFP problem.

The strategy of choosing negative examples for training also seems to play a central role
to improve the performance of GFP methods. Nevertheless, we need new theoretical and
experimental studies to investigate the impact of this issue on GFP.

Other important issues listed in the introduction of this paper are left for future investi-
gations. A possible research topic regards methods sensitive to the reliability of labels. They
could address the different evidence of association between genes and functional classes,
and their synergy with other learning issues involved in the GFP problem.

In conclusion, we believe that the analysis of the relationships and the quantification of
the synergy between these different items is the key to design new algorithms for combin-
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ing multiple learning strategies, and to solve a multilabel problem of great importance in
molecular biology.

Acknowledgements We would like to thank the anonymous reviewers for their comments and suggestions.
The authors gratefully acknowledge partial support by the PASCAL2 Network of Excellence under EC grant
no. 216886. This publication only reflects the authors’ views.

References

Altschul, S., Gish, W., Miller, W., Myers, E., & Lipman, D. (1990). Basic local alignment search tool. Journal
of Molecular Biology, 215, 403–410.

Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. (1997). Gapped blast
and psi-blast: a new generation of protein database search programs. Nucleic Acids Research, 25(17),
3389–3402.

Amit, Y., Dekel, O., & Singer, Y. (2007). A boosting algorithm for label covering in multilabel problems.
Journal of Machine Learning Research, W&C Proceedings, 2, 27–34.

Astikainen, K., Holm, L., Pitkanen, E., Szedmak, S., & Rousu, J. (2008). Towards structured output prediction
of enzyme function. BMC Proceedings, 2(Suppl 4:S2).

Bakir, G., Hoffman, T., Scholkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S. (2007). Predicting
structured data. Cambridge: MIT Press.

Barutcuoglu, Z., Schapire, R., & Troyanskaya, O. (2006). Hierarchical multi-label prediction of gene func-
tion. Bioinformatics, 22(7), 830–836.

Ben-Hur, A., & Noble, W. (2006). Choosing negative examples for the prediction of protein-protein interac-
tions. BMC Bioinformatics, 7(Suppl 1/S2).

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). Label Propagation and Quadratic Criterion. In O. Chapelle,
B. Scholkopf, & A. Zien (Eds.), Semi-supervised learning (pp. 193–216). Cambridge: MIT Press.

Blockeel, H., Bruynooghe, M., Dzeroski, S., Ramon, J., & Struyf, J. (1998). Top-down induction of clustering
trees. In Proc. of the 15th int. conf. on machine learning (pp. 55–63).

Blockeel, H., Schietgat, L., & Clare, A. (2006). Hierarchical multilabel classification trees for gene function
prediction. In J. Rousu, S. Kaski, & E. Ukkonen (Eds.), Probabilistic modeling and machine learning
in structural and systems biology, Tuusula, Finland. Helsinki: Helsinki University Printing House.

Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In Pro-
ceedings of the thirteenth ACM international conference on information and knowledge management,
New York, NY, USA, CIKM’04 (pp. 78–87).

Cesa-Bianchi, N., & Valentini, G. (2010). Hierarchical cost-sensitive algorithms for genome-wide gene func-
tion prediction. Journal of Machine Learning Research, W&C Proceedings, Machine Learning in Sys-
tems Biology, 8, 14–29.

Cesa-Bianchi, N., Gentile, C., Tironi, A., & Zaniboni, L. (2005). Incremental algorithms for hierarchical
classification. In Advances in neural information processing systems (Vol. 17, pp. 233–240). Cambridge:
MIT Press.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Hierarchical classification: Combining Bayes with
SVM. In Proc. of the 23rd int. conf. on machine learning (pp. 177–184). New York: ACM Press.

Cesa-Bianchi, N., Re, M., & Valentini, G. (2010a). Functional inference in FunCat through the combination
of hierarchical ensembles with data fusion methods. In ICML-MLD 2nd international workshop on
Learning from multi-label data, Haifa, Israel (pp. 13–20).

Cesa-Bianchi, N., Gentile, C., Vitale, F., & Zappella, G. (2010b). Random spanning trees and the prediction
of weighted graphs. In Proceedings of the 27th international conference on machine learning, Haifa,
Israel.

Chua, H., Sung, W., & Wong, L. (2007). An efficient strategy for extensive integration of diverse biological
data for protein function prediction. Bioinformatics, 23(24), 3364–3373.

Clare, A., & King, R. (2003). Predicting gene function in saccharomices cerevisiae. Bioinformatics,
19(Supp.2), II42–II49.

Dembczynski, K., Cheng, W., & Hullermeier, E. (2010a). Bayes optimal multilabel classification via proba-
bilistic classifier chains. In Proc. of ICML 2010 (pp. 1–10).

Dembczynski, K., Waegeman, W., Cheng, W., & Hullermeier, E. (2010b). On label dependence in multi-label
classification. In ICML-MLD: 2nd international workshop on learning from multi-label data, Haifa,
Israel (pp. 5–12).

Deng, M., Chen, T., & Sun, F. (2004). An integrated probabilistic model for functional prediction of proteins.
Journal of Computational Biology, 11, 463–475.



Mach Learn

desJardins, M., Karp, P., Krummenacker, M., Lee, T., & Ouzounis, C. (1997). Prediction of enzyme clas-
sification from protein sequence without the use of sequence similarity. In Proc. of the 5th ISMB (pp.
92–99). Menlo Park: AAAI Press.

Dimou, A., Tsoumakas, G., Mezaris, V., Kompatsiaris, I., & Vlahavas, I. (2009). An empirical study of multi-
label methods for video annotation. In Proc. 7th international workshop on content-based multimedia
indexing, CBMI 09, Chania, Greece.

Eddy, S. (1998). Profile hidden Markov models. Bioinformatics, 14(9), 755–763.
Eisner, R., Poulin, B., Szafron, D., & Lu, P. (2005). Improving protein prediction using the hierarchical

structure of the Gene Ontology. In IEEE symposium on computational intelligence in bioinformatics
and computational biology.

Finn, R., Tate, J., Mistry, J., Coggill, P., Sammut, J., Hotz, H., Ceric, G., Forslund, K., Eddy, S., Sonnhammer,
E., & Bateman, A. (2008). The Pfam protein families database. Nucleic Acids Research, 36, D281–
D288.

Friedberg, I. (2006). Automated protein function prediction-the genomic challenge. Briefings in Bioinformat-
ics, 7, 225–242.

Gasch, P., et al. (2000). Genomic expression programs in the response of yeast cells to environmental changes.
Molecular Biology of the Cell, 11, 4241–4257.

Gene Ontology Consortium (2010). True path rule. http://www.geneontology.org/GO.usage.shtml#
truePathRule.

Guan, Y., Myers, C., Hess, D., Barutcuoglu, Z., Caudy, A., & Troyanskaya, O. (2008). Predicting gene func-
tion in a hierarchical context with an ensemble of classifiers. Genome Biology, 9(S2).

Jiang, X., Nariai, N., Steffen, M., Kasif, S., & Kolaczyk, E. (2008). Integration of relational and hierarchical
network information for protein function prediction. BMC Bioinformatics, 9(350).

Juncker, A., Jensen, L., Perleoni, A., Bernsel, A., Tress, M., Bork, P., von Heijne, G., Valencia, A., Ouzounis,
A., Casadio, R., & Brunak, S. (2009). Sequence-based feature prediction and annotation of proteins.
Genome Biology, 10:206.

Karaoz, U., et al. (2004). Whole-genome annotation by using evidence integration in functional-linkage net-
works. Proceedings of the National Academy of Sciences of the United States of America, 101, 2888–
2893.

Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(3), 226–239.

Kuncheva, L., Bezdek, J., & Duin, R. (2001). Decision templates for multiple classifier fusion: an experimen-
tal comparison. Pattern Recognition, 34(2), 299–314.

Lampert, C., & Blaschko, M. (2009). Structured prediction by joint kernel support estimation. Machine
Learning, 77, 249–269.

Lanckriet, G., Gert, R. G., Deng, M., Cristianini, N., Jordan, M., & Noble, W. (2004a). Kernel-based data
fusion and its application to protein function prediction in yeast. In Proceedings of the pacific symposium
on biocomputing (pp. 300–311).

Lanckriet, G., De Bie, T., Cristianini, N., Jordan, M., & Noble, W. (2004b). A statistical framework for
genomic data fusion. Bioinformatics, 20, 2626–2635.

Lewis, D., Jebara, T., & Noble, W. (2006). Support vector machine learning from heterogeneous data: an
empirical analysis using protein sequence and structure. Bioinformatics, 22(22), 2753–2760.

Lin, H., Lin, C., & Weng, R. (2007). A note on Platt’s probabilistic outputs for support vector machines.
Machine Learning, 68, 267–276.

Loewenstein, Y., Raimondo, D., Redfern, O., Watson, J., Frishman, D., Linial, M., Orengo, C., Thornton, J.,
& Tramontano, A. (2009). Protein function annotation by homology-based inference. Genome Biology,
10, 207.

Marcotte, E., Pellegrini, M., Thompson, M., Yeates, T., & Eisenberg, D. (1999). A combined algorithm for
genome-wide prediction of protein function. Nature, 402, 83–86.

McDermott, J., Bumgarner, R., & Samudrala, R. (2005). Functional annotation from predicted protein inter-
action networks. Bioinformatics, 21(15), 3217–3226.

Morik, K., Brockhausen, P., & Joachims, T. (1999). Combining statistical learning with a knowledge-based
approach—a case study in intensive care monitoring. In Proceedings of 16th international conference
on machine learning (ICML), Bled (Slovenia). Morgan Kaufmann: San Mateo.

Mostafavi, S., & Morris, Q. (2009). Using the gene ontology hierarchy when predicting gene function. In Pro-
ceedings of the twenty-fifth conference on uncertainty in artificial intelligence, Montreal, QC, Canada.
Corvallis: AUAI Press.

Mostafavi, S., & Morris, Q. (2010). Fast integration of heterogeneous data sources for predicting gene func-
tion with limited annotation. Bioinformatics, 26(14), 1759–1765.

Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). GeneMANIA: a real-time mul-
tiple association network integration algorithm for predicting gene function. Genome Biology, 9(S4).

http://www.geneontology.org/GO.usage.shtml#truePathRule
http://www.geneontology.org/GO.usage.shtml#truePathRule


Mach Learn

Myers, C., & Troyanskaya, O. (2007). Context-sensitive data integration and prediction of biological net-
works. Bioinformatics, 23, 2322–2330.

Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., & Singh, M. (2005). Whole-proteome prediction of protein
function via graph-theoretic analysis of interaction maps. Bioinformatics, 21(S1), 302–310.

Noble, W., & Ben-Hur, A. (2007). Integrating information for protein function prediction. In T. Lengauer
(Ed.), Bioinformatics—from genomes to therapies (Vol. 3, pp. 1297–1314). New York: Wiley-VCH.

Obozinski, G., Lanckriet, G., Grant, C., M., J., & Noble, W., (2008). Consistent probabilistic output for
protein function prediction. Genome Biology, 9(S6).

Oliver, S. (2000). Guilt-by-association goes global. Nature, 403, 601–603.
Pavlidis, P., Weston, J., Cai, J., & Noble, W. (2002). Learning gene functional classification from multiple

data. Journal of Computational Biology, 9, 401–411.
Prlic, A., Down, T., Kulesha, E., Finn, R., Kahari, A., & Hubbard, T. (2007). Integrating sequence and struc-

tural biology with DAS. BMC Bioinformatics, 8(233).
Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2007). More efficiency in multiple kernel learning.

In ICML’07: proceedings of the 24th international conference on machine learning (pp. 775–782). New
York: ACM.

Re, M., & Valentini, G. (2010a). Integration of heterogeneous data sources for gene function prediction using
Decision Templates and ensembles of learning machines. Neurocomputing, 73(7–9), 1533–1537.

Re, M., & Valentini, G. (2010b). Noise tolerance of Multiple Classifier Systems in data integration-based
gene function prediction. Journal of Integrative. Bioinformatics, 7(3), 139.

Re, M., & Valentini, G. (2010c). Simple ensemble methods are competitive with state-of-the-art data integra-
tion methods for gene function prediction. Journal of Machine Learning Research, W&C Proceedings,
Machine Learning in Systems Biology, 8, 98–111.

Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical mul-
tilabel classification models. Journal of Machine Learning Research, 7, 1601–1626.

Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Guldener, U., Mannhaupt,
G., Munsterkotter, M., & Mewes, H. (2004). The FunCat, a functional annotation scheme for systematic
classification of proteins from whole genomes. Nucleic Acids Research, 32(18), 5539–5545.

Saad, Y. (1996). Iterative methods for sparse linear systems. Boston: PWS Publishing Company.
Schietgat, L., Vens, C., Struyf, J., Blockeel, H., & Dzeroski, S. (2010). Predicting gene function using hierar-

chical multi-label decision tree ensembles. BMC Bioinformatics, 11(2).
Shahbaba, B., & Neal, M. (2006). Gene function classification using Bayesian models with hierarchy-based

priors. BMC Bioinformatics, 7(448).
Sokolov, A., & Ben-Hur, A. (2010). Hierarchical classification of Gene Ontology terms using the GOstruct

method. Journal of Bioinformatics and Computational Biology, 8(2), 357–376.
Sonnenburg, S., Ratsch, G., Schafer, C., & Scholkopf, B. (2006). Large scale multiple kernel learning. Journal

of Machine Learning Research, 7, 1531–1565.
Spellman, P., et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccha-

romices cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273–3297.
Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. (2006). BioGRID: a general

repository for interaction datasets. Nucleic Acids Research, 34, D535–D539.
The Gene Ontology Consortium (2000). Gene ontology: tool for the unification of biology. Nature Genet.,

25, 25–29.
Trohidis, K., Tsoumahas, G., Kalliris, G., & Vlahavas, I. (2008). Multilabel classification of music into emo-

tions. In Proc. of the 9th international conference on music information retrieval (pp. 325–330).
Troyanskaya, O., et al. (2003). A Bayesian framework for combining heterogeneous data sources for gene

function prediction (in saccharomices cerevisiae). Proceedings of the National Academy of Sciences of
the United States of America, 100, 8348–8353.

Tsochantaridis, I., Joachims, T., Hoffman, T., & Altun, Y. (2005). Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.

Tsoumakas, G., & Katakis, I. (2007). Multi label classification: An overview. International Journal of Data
Warehousing and Mining, 3(3), 1–13.

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Random k-labelsets for multi-label classification. IEEE
Transactions on Knowledge and Data Engineering, 23(7), 1079–1089.

Tsuda, K., Shin, H., & Scholkopf, B. (2005). Fast protein classification with multiple networks. Bioinformat-
ics, 21(Suppl 2), ii59–ii65.

Valentini, G. (2011). True Path Rule hierarchical ensembles for genome-wide gene function prediction. IEEE
ACM Transactions on Computational Biology and Bioinformatics, 8(3), 832–847.

Valentini, G., & Cesa-Bianchi, N. (2008). Hcgene: a software tool to support the hierarchical classification of
genes. Bioinformatics, 24(5), 729–731.



Mach Learn

Valentini, G., & Re, M. (2009). Weighted True Path Rule: a multilabel hierarchical algorithm for gene func-
tion prediction. In MLD-ECML 2009, 1st international workshop on learning from multi-label data,
Bled, Slovenia (pp. 133–146).

Vazquez, A., Flammini, A., Maritan, A., & Vespignani, A. (2003). Global protein function prediction from
protein-protein interaction networks. Nature Biotechnology, 21, 697–700.

Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-
label classification. Machine Learning, 73(2), 185–214.

Verspoor, K., Cohn, J., Mnizewski, S., & Joslyn, C. (2006). A categorization approach to automated ontolog-
ical function annotation. Protein Science, 15, 1544–1549.

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S., Fields, S., & Bork, P. (2002). Comparative
assessment of large-scale data sets of protein-protein interactions. Nature, 417, 399–403.

Xiong, J., et al. (2006). Genome wide prediction of gene function via a generic knowledge discovery approach
based on evidence integration. BMC Bioinformatics, 7(268).

Zhang, M., & Zhou, Z. (2006). Multi-label neural network with applications to functional genomics and text
categorization. IEEE Trans. on Knowledge and Data. Engineering, 18(10), 1338–1351.

Zhang, M., & Zhou, Z. (2007). ML-kNN: A lazy learning approach to multi-label learning. Pattern Recogni-
tion, 40(7), 2038–2048.

Zhang, M., Tsoumakas, G., & Zhou, Z. (2010). In 2nd international workshop on learning from multi-label
data (MLD’10)—working notes, Haifa, Israel.


	Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
	Abstract
	Introduction
	Related work
	Machine learning-based gene function prediction methods
	Label propagation methods
	Decision tree-based methods
	Kernel methods for structured output spaces
	Hierarchical ensemble methods

	Data fusion methods for gene function prediction
	Functional association networks integration
	Vector space integration
	Kernel fusion
	Ensemble methods


	Methods
	Basic notation
	Data fusion techniques
	Hierarchical Top-Down ensembles
	Hierarchical Bayesian ensembles
	Hierarchical True Path Rule ensembles
	Cost-sensitive methods
	htd-cs
	hbayes-cs
	tpr-w

	Integration of hierarchical multilabel, data fusion, and cost-sensitive techniques

	Experimental set-up
	Data
	Experimental tasks
	Performance assessment

	Results and discussion
	Impact of data fusion on flat and hierarchical methods
	Analysis of the synergy between hierarchical multilabel methods, cost sensitive, and data fusion techniques
	Analysis of the precision/recall characteristics of hierarchical multilabel methods
	Impact of the choice of different strategies for selecting negatives

	Conclusions
	Acknowledgements
	References


