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A Numerical Implementation
of “Quantum Annealing”
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Abstract. “Quantum Annealing”, a variant of the Simulated Anneal-
ing algorithm, simulates the quantum tunnel effect to find approximate
solutions to the problem of minimizing a real function of boolean vari-
ables. More precisely, the procedure carries out a Markov chain whose
equilibrium distribution is associated with the ground state wave function
of a particular Schrédinger Hamiltonian. A numerical implementation of
the algorithm is presented and some applications are discussed. Exper-
imental results show that Quantum Annealing and Simulated Annealing
are comparable in terms of their performances even though significative
differences have been found in their detailed behaviour.

Keyworps: stochastic optimization / Schrédinger-Nelson dynamics / quan-
tum tunnelling / simulated annealing

1 Introduction

We present here an implementation of a recently proposed [1] stochastic meth-
od for finding approximate solutions of global combinatorial optimization
problems, namely problems concerning the search of global minima of an ob-
jective function V' : R — IR defined on a finite set R,

Roughly speaking, stochastic optimization algorithms set up a stochas-
tic process whose probability distribution concentrates on the global minima
of the objective function. However, in all finite-time implementations, these
methods usually provide only approximate solutions. In this case we may be
interested in finding the strategy producing the best results when compared
to other methods in the same period of time.
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A stochastic method which has been extensively applied is the Simulated
Annealing (SA) algorithm ([2], [3] and [4]). We briefly recall that SA relies
on Monte Carlo techniques to generate a Gibbs ensemble for a given physical
system at positive temperature. Interpreting the objective function V' as the
“energy” of such a system; in this Gibbs ensemble the equilibrium probability
for the occurrence of a given r € R is:

pe(r) = Zt-‘-') exp (-Vf:)) , (1.1)

‘where Z(c) is a normalization factor and ¢ is a control parameter proportional
to the temperature. This technique allows (at least in principle) the algorithm
to overcome the problem of being trapped in local minima of the function to
be minimized.

In [5] Hajek proved that the sequence of random variables X (t) associated
to the Metropolis chain of SA is such that

Jim Pr {(X)e R} =1 (1.2)
- (where R” is the set of the global minima of V) if and only if
d
C(t) > m (1.3)

where d”* is a constant factor depending on V. Similar results have also been
obtained by Holley and Stroock [6].

Quantum Annealing (QA) is a variant of the above algorithm based on
the observation that the quantum ground state of many Schrodinger Hamil-
tonians of interest can be described by a Gibbs ensemble in path space. More
specifically, QA carries out a Markov process whose stationary distribution
is associated with the ground state wave function of a particular Schrodinger
Hamiltonian. Unlike SA, the resulting transition rule is not local i.e., before
taking a transition to a neighbouring point, the QA procedure estimates a suit-
able average of the objective function on a region of the search space which is
randomly spread around the current point.

In Section 2 the domain of the problem is stated and the stochastic process
simulated by QA is defined. In Section 3 the physical motivations of the
approach are briefly recalled (for a detailed analysis of this point we refer
to the companion paper [1]). In Section 4 the algorithmical formulation is
described togheter with a brief discussion about the tuning of the parameters
involved. In Section 5 we compare the results obtained applying QA to hard
combinatorial problems with those obtained by SA. In particular, the test bed
problems considered are Graph Partitioning in the formulation of Johnson et
al. [7] and the problem of generating binary strings with low autocorrelation,
as described in [8]. Section 6 is devoted to conclusions and outlook.

2 Stochastic Formulation

We focus our attention on the search of global minima of a real-valued func-
tion V of n boolean variables (e;,€3,...,en) € Z5 = {—1,1}". A notion of
neighbourhood in Z7 can be easily formalized introducing, for 1 = 1,2,...,n,
the operators S; : Z' — Z7 such that

Si'(els - TR $£n) = (51: cee s Bl TELG B, ,Eﬂ) (2-1)

and defining the neighbourhood of any € € Z' as the set:

Re = 0 Sie. (2.2)

=1

The continous time, time homogeneous Markov process simulated by the
Quantum Annealing algorithm has a transition function of the general form

oo

o)=Y e W), (23)

r=0

the stochastic matrix M having elements of the form

Ec’-(e)ﬁ:;(i? if 37 s.t.e’ = Sje,

Mg gt 2= _ v g ¢M(Sks) . _ (2'4)
1 p gc; (c)-——%(s) ife =e,
0 otherwise.

for suitable positive parameters u and v. The coefficients ¢;(¢) (7 =1,2...,n)
satisfy the following conditions:

n

Sale) =1 (25)

k=1
For the sake of simplicity, we will henceforth choose

cj(e) 20, ¢jle) = ¢;(S;(e)),

cj(e) = [Re| =n7? (2.8)

for every € € Zy.
The function ), : Z§ — IR has the following definition:

buleo) o= Jim -(—;:E {exp (- j; ‘.V(s(r))dr) |e@) = so} @)
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where C; is a normalization factor.

The expectation E is calculated over the random paths e(r) having £ (the
point where 1, is being evaluated) as their initial state. The Markov process
generating these random paths on Z' has transition probabilities of the form

Pr(e(ro 1) = ¢ | elr0) = €} = po(r) = e (k) (29)

r=0
with
, . Leile) ife € R, 29
Ko {0 otherwise. (29)

For M to be a stochastic matrix the following condition on the parameters p
and v is sufficient:

p > v+ (Vinar — Vinin) v>0 (2.10)

where Vipaz and Vi, are, obviously, the maximum and minimum of V.
We remark that each transition of the QA process is determined by draw-
“ing long prospection chains from the current configuration and comparing
suitable averages of V along these prospections. In this respect, while in the
SA strategy a transition is decided locally, by choosing randomly a neigh-
bour and carrying out a simple Monte Carlo computation, here we explore
many configurations before actually performing a transition, so the strategy
is inherently non local.

3 Relation with Sirnulated Annealing

As discussed in [1}, equations (2.3) and (2.4) describe the ground state pro-
cess [9] associated with a “Schrédinger Hamiltonian” H, and equation (2.7)
describes, by a “Feyman-Kac formula”, its ground state wave function t,.

More preclsely, having introduced the Hilbert space ¥ of complex functions
on Z3 with scalar product

@l0) = > PE)ele) (3.1)

L1 1y

and the Pauli spin 1/2 operators

() (e) = ¥(e),
(o1()¥)(e) = ¥(S;5(¢)),
{oa(9)¥)e) = —ie;v(Si(e)),

(o3(5)¥)(e) = &;9(e),

(3.2)
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and having set

K, = 22(1 — o1(k)), - (3.3)
) k=1
H, is defined by
Hy: ¥ =X, b Hyp = K+ V. (3.4)

QA amounts therefore to substituting the original problem of minimizing V'
with the auxiliary problem of minimizing the quadratic form (¢ | H, ¢}, under
the condition (¢ |¢) = 1.

The relation between QA and the original optimization problem is de-
scribed by the inequalities:

Ey~ v < Voin < B, (3.5)
Vk>0: P({cez :V(e)—Vm;,,zk})<%, (3.6)

where P, is the probability measure

P,(A) =) wule), (3.7)

eEA

for every subset A of Z3' and E, the lowest eigenvalue of H,.

The comparison with SA is most easily carried out through the continous
time description of the Metropolis chain leading, in SA, to the eqilibrium
distribution

99(€) = 7 XP(-BV () (38)

This Metropolis chain is described by the transition function
e (t) = exp(~tL(B))_, (39)
where:
—n'lexp(—ﬂ(V(e') - V(e))"') if ' € R,
(L(B))e,er = ﬂ—liexp(_ ﬂ(V(s.sj _ V(s))+) ifel =, (3.10)
k=1

0 otherwise;

* denoting positive part.
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Because of the detailed balance condition

06(e) (L(8))_, = rale") (1(9))

X e

(3.11)

an intrinsic characterization in the sense of [9] of pg(e) is that p;" *(€) (to be

compared with 4, ) is the eigenvector, normalized to 1 in ¥, belonging to the
lowest eigenvalue of the Hermitian operator on ¥

AL i(g"(v{sk‘)‘v'['))-'—ﬂ N
et - (3.12)

_ SISV (o)| al(k)) ,

to be compared with

NE

H 1
U_ﬂ

(1- a1(k)) + -::V. (3.13)

-
Il

1

Notice that, while both Ag and H, /v reduce, in the trivial case v = 0, to

% ?(1 —a (k)), | (3.14)
=1

the deceivingly simpler form of H, /v corresponds via (2.7) to a much more
extensive prospection of the graph of V' before accepting proposed transitions.
In spite of the formal analogies stressed here, the two approaches correspond
in fact to adopting quite different physical metaphores for the optimization
process: thermal noise for SA, “quantum noise” for QA.

4 Implementation

:&chigving a finite-time implementation of the QA algorithm requires the spec-
ification and the tuning of a set of parameters governing the convergence of
the process. A possible set of such parameters is:

the number z of prospection chains drawn from each configuration,
the mean length m of each chain,

the value of the control parameter v,

the value of the control parameter u,

the stop criterion.
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Relying on the analogy between the ¢ parameter in SA and the v parameter
in QA, one could wonder whether an empirical scheduling of v would lead to
more accurate approximations. Actually, our schedule starts from eq. (3.5)
and from the idea of obtaining a feasible run-time task, which consists in
stating as target of the optimization process a value p% lower than the current
minimum V,,. This accounts for a dynamical scaling of V in V' = (V — a)/b
where a = Vir (100 — p)% and b = V;up%. Obviously, this scaling does not
affect the position of minima.

Once the value of 1, has been estimated for each neighbour S;(¢) of the
current configuration, the procedure must choose if and where to make a tran-
sition. Since the lack of transitions is undoubtely a loss of time, we avoided the
possibility of remaining in the current configuration by dynamically choosing
u# = p(e) so that, at every transition, m, . becomes 0.

Other improvements have been derived by empirical considerations. First,
note that the computation of an element of the matrix M defined in (2.4)
requires the drawing of 2 prospection chains from each neighbour of the current
configuration €. Since in most pratical applications the neighbourhood is
huge, we selected each time only a random subset of the neighbours of €. A
second improvement can be achieved by a more effective exploitation of the
quantum tunnel effect simulated by the the random motion originating the
prospection chains. When the value of V},, remains unchanged for more than
a fixed numbers of steps a tunnel is drilled; namely, the current configuration
is substituted with that found at the end of the last prospection chain drawn.

Finally, we obtained better results when QA was interleaved with a local
descent optimization procedure (LO). The modified algorithm first invokes LO
reaching a local minimum, then applies QA to improve that minimum. If no
improvements of V,,, are reported after a given amount of time, LO takes place
again starting from the tail of the last chain.

A further remark is about the stop criterion. While SA progressively
reduces the rate of transitions by decreasing the control parameter, so that
we can stop when the activity is almost ceased, QA makes a transition at
every step. Hence, no stop criterion is safe since relevant improvements in the
current solution have been often observed after a period of idleness. Therefore,
the only criterion we adopted is to stop the algorithm affer a given amount of
time corresponding to the computational resources allocated for the task.
Summarizing, an instance of QA is specified by the following parameters:

L: mean number of steps along a prospection chain.

5: number of the sampled prospection chains.

P: specifies the percentage of the neighbours of the current configuration
that will be selected as starting points of prospection chains,

I+ maximum number of transitions not affecting V,, before invoking the
Local_Optimization procedure.

T: maximum number of transitions not affecting V;,, before drilling a tunnel.
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R: the factor p% which dynamically fixes the scale of V.

Figures 1-3 show a pseudo-Pascal coding of the QA algorithm. Note that the
value of current V},, could change also while the subroutine Quantum_Transi-
tion is running if, as a prospection chain is being drawn, a configuration with
cost lower than V,, is met.

5 Numerical Results

The algorithm has been implemented in Pascal and run on a HP 9000/840.
The first test bed we considered is the Graph Partitioning problem in the
formulation given by Johnson et al. [7]. The formal statement of this problem
is the following:

Given a symmetrical n X n matrix A with elements a; ; € {0,1} and given a
positive constant «, find (e1,€3,...,€,) € Z]' minimizing the function:

Vier,e2,...,6n) = Z (a;( —s,])-f G(ZE.) (5.1)

1<i<j<n

For n even, interpreting &; ; = 1 (a; ; = 0) as the presence (absence) of an arc
between the vertices 1 and 7 of a graph, the minimum of V is reached when
the vertices are partitioned into two almost equally sized subsets such that the
number of arcs between them is minimal.

One hundred random istances of the problem have been generated, each
of them being a graph of 500 vertices with an arc drawn between two vertices
with probability p = 0.01. The parameter « in (5.1) was set to 0.05. For each
istance, QA and SA have been started from the same randomly chosen initial
configuration €o and run for the same fixed amount of time. The histogram in
Figure 4 shows the distribution of the costs of all the starting configurations.

Table 1 reports the parameters specifying both optimization processes.
The cooling schedule of SA was done according to the criteria of ref. [7]
based on extensive experimental work on Graph Partitioning. However, we
abandoned their stop rule and tuned instead the schedule so that the algorlt.hm
becomes “frozen” almost at the same time of QA.

Figure 5 summarizes the results of SA and QA on the 100 istances. Observe
that SA on average performs better than QA and the points where it is beaten
by QA are not concentrated on any particular region. On the other hand, the
performances of QA are only slightly worse than those of SA and, as it turns
out comparing Figures 6 and 7, QA is faster in reaching a good approximation.

As second test bed, the problem of generating pseudo-random binary

strings has been conmdered Following the formulation presented in [10] we
define

n—k n
Ri(e) =) eicize, V()= Rile)? (5.2)
i=1 k=1
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and look for (£1,€3,...,en) € Z§ maximizing the function:
2
n
F = . 5.3
©= e (53)

indicating the merit factor for the string being evaluated. As in the previous
case, we applied QA 100 times, requiring each time the generation of a 100
binary digits string.

Table 2 synthetizes the results of the test. We compare directly our results
with those reported in [10] for 100 runs of SA. In this case QA beats SA both
ag average and best values. We remark that at present there are no theorems
giving the value of the global maximum even if it is conjectured in [10] to be
in the range 6-12.

6 Conclusions

Coherently with the fact that QA has asymptotical properties different from
those exhibited by SA, experimental tests show that the two strategies behave
differently on the same problem instances. In the two test beds we considered,
both strategies reported one victory and one defeat each. The analysis of the
convergence rate showed that QA converges very fast to a good approximation
that is improved only slightly in the remaining time. On the contrary, the
convergence of SA is slower and more regular.

It has been experimentally verified that the first local optimization phase in
the QA strategy is not totally responsible for the very steep descent in the first
100 time steps. Hence, QA 1s globally more effective than SA, though only in
the early phase of the optimization process. This kind of behaviour leads to the
observation that QA seems to be more suitable than SA at least when we are
given a small amount of time. The basic question of selecting problems where
QA is definitively better than SA is probably related to structural properties
of the objective functions and will be matter of further studies.

The last point we would like to discuss is the development of parallel im-
plementations of the QA algorithm. The purely local transition rule of SA
allows implementations on distributed, fine-grained architectures like Boltz-
mann Machines [11]. In these models, each binary variable ; is associated
with a small processor element that can decide, with a relatively small com-
putational cost, if the variable has to be changed or not. On the other hand,
the true sequential nature of SA (which assures its convergence properties)
hampers parallel implementations on coarse-grained computers as has been
pointed out in [4] and [12].

For the QA algorithm the situation appears to be specular. The need of
exploring the region around the current configuration makes the transition
rule complex and non local. This, in turn, makes difficult to charge a single
small processor with the burden of deciding if the current configuration has
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to be changed. However, increasing the resources of each processor element,
so that it becomes able to carry out a whole prospection chain, makes more
realistic the perspective of achieving a parallel coarse-grained implementation
of QA without any corruption of its attractive mathematical properties.
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FIGURES

Procedure: Quantum_Annealing.
Begin
Choose a random initial configuration ;
Vi =V (e);
Repeat

Apply Local Optimization to the current configuration &;
1=0;7=0;
Repeat
Generate € by applying Quantum_Transition to €.
IfV(e') < Vi Then
Begin
Vi =V (€');
1:=0; =0
End;
Else
Begin
ti=141;
J=3+1
End;
If 1 > T Then
Begin
Drill a tunnel from ¢ to &;
J =0
End;
Until ¢ > I

Until time expires;
Output V,,;

Figure 1. Main procedure of the QA algorithm. It calls alternatively the two
subroutines Local Optimization and Quantum_Transition.
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Procedure: Local_Optimization.
Input parameters: ¢;
Begin
While there is an untested neighbour of € Do
Begin
Choose an untested neighbour €' of ¢;
IfV(e') < V(e) Then e :=¢;
End
Return &;

End

Figure 2. Subroutine of QA carrying out a local descent from the current
configuration. '

Procedure: Quantum_Transition.
Input parameters: ¢;
Begin
Compute pi(e) = v, (Sk(€)) with k varying over a percentage P of elements
in the set {1,2,...,n};
Cumulate all pi(€) on the unitary segment;
Choose a random number z € (0, 1);
€' := S;(&) where 7 is the least k such that z < p;(e);
Return ¢';
End

Figure 3. Subroutine of QA generating a transition from the current con-
figuration after having inspected a region around it by means of prospection
chains.
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Figure 4. Histogram of the 100 initial configuration values for the Graph
Partitioning problem.
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Figure 5. The small circles indicate the performance of QA w.ri. SA on
each instance of the Graph Partitioning problem. In particular, for each point
the x-axis denotes the outecome of the algorithm which performed the best on
that instance while the y-axis denotes the difference between the output of
QA and the output of SA.
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Figure 8, Values of Vin reached by QA on each instance of Graph Partitioning
after every 100 time steps.
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Tigure 7. Values of V, reached by SA on each instance of Graph Partitioning
after every 100 time steps.

Graph Partit.ioning' String Generation
L 200 50
S 4 2
v 0.05 0.05
P 0.05 0.05
1 10 10
T 5 5
R 1% 1%

Table 1. Choice of parameter values for QA for each test bed.

Average Best
LO 3.7 4.5
SA 4.8 54
QA 5.0 5.7

Table 2. Merit
100 runs each of

LW

o

m

factors for binary sequences of length 100 obtained during
LO, SA and QA. For each algorithm the average value and
the best value over the 100 runs are reported.




