
Mach Learn (2011) 83: 71–102
DOI 10.1007/s10994-010-5191-x

Learning noisy linear classifiers via adaptive
and selective sampling

Giovanni Cavallanti · Nicolò Cesa-Bianchi ·
Claudio Gentile

Received: 13 January 2009 / Revised: 13 April 2010 / Accepted: 26 April 2010 /
Published online: 20 May 2010
© The Author(s) 2010

Abstract We introduce efficient margin-based algorithms for selective sampling and filter-
ing in binary classification tasks. Experiments on real-world textual data reveal that our al-
gorithms perform significantly better than popular and similarly efficient competitors. Using
the so-called Mammen-Tsybakov low noise condition to parametrize the instance distribu-
tion, and assuming linear label noise, we show bounds on the convergence rate to the Bayes
risk of a weaker adaptive variant of our selective sampler. Our analysis reveals that, exclud-
ing logarithmic factors, the average risk of this adaptive sampler converges to the Bayes
risk at rate N−(1+α)(2+α)/2(3+α) where N denotes the number of queried labels, and α > 0 is
the exponent in the low noise condition. For all α >

√
3 − 1 ≈ 0.73 this convergence rate

is asymptotically faster than the rate N−(1+α)/(2+α) achieved by the fully supervised version
of the base selective sampler, which queries all labels. Moreover, for α → ∞ (hard margin
condition) the gap between the semi- and fully-supervised rates becomes exponential.

Keywords Active learning · Selective sampling · Adaptive sampling · Linear
classification · Low noise

Editor: Avrim Blum.

Preliminary versions of this paper appeared in the proceedings of NIPS 2002 (Margin-based algorithms
for information filtering), COLT 2003 (Learning probabilistic linear-threshold classifiers via selective
sampling), and NIPS 2008 (Linear classification and selective sampling under low noise conditions).
The authors gratefully acknowledge partial support by the PASCAL2 Network of Excellence under EC
grant no. 216886. This publication only reflects the authors’ views.

G. Cavallanti (�) · N. Cesa-Bianchi
DSI, Università degli Studi di Milano, Milano, Italy
e-mail: cavallanti@dsi.unimi.it

N. Cesa-Bianchi
e-mail: cesa-bianchi@dsi.unimi.it

C. Gentile
DICOM, Università dell’Insubria, Varese, Italy
e-mail: claudio.gentile@uninsubria.it

mailto:cavallanti@dsi.unimi.it
mailto:cesa-bianchi@dsi.unimi.it
mailto:claudio.gentile@uninsubria.it

72 Mach Learn (2011) 83: 71–102

1 Introduction

In the standard online learning protocol for binary classification the learner receives a se-
quence of instances generated by an unknown source. Each time a new instance is received
the learner predicts its binary label, which is then immediately disclosed before the next
instance is observed. This protocol is natural in many applications, for instance weather
forecasting or stock market prediction, because Nature (or the market) is spontaneously
revealing the true label after each learner’s guess. However, in many other applications ob-
taining labels may be an expensive process.

In order to address this problem, selective sampling has been proposed as a more realistic
variant of the basic online learning protocol. In this variant the true label of the current
instance is never revealed unless the learner decides to issue an explicit query. The learner’s
performance is then measured with respect to both the number of mistakes (made on the
entire sequence of instances) and the number of queries.

A natural sampling strategy is one that tries to identify labels which are likely to be
useful to the algorithm, and then queries those labels only. This strategy needs to combine
a measure of utility of examples with a measure of confidence. In the case of learning with
linear functions a statistic that has often been used to quantify both utility and confidence is
the margin.

In this work we follow the margin-based approach and define a selective sampling rule
that queries the label whenever the margin of the corresponding instance, with respect to the
current linear hypothesis, is smaller (in absolute value) than an adaptive threshold. Margins
are computed using a linear learning algorithm based on a simple incremental version of
regularized linear least-squares (RLS) for classification. This choice is motivated by the
fact that RLS margins can be given a natural probabilistic interpretation, thus allowing a
principled approach for setting the adaptive threshold.

We also investigate a slightly modified sampling criterion for solving online adaptive
filtering tasks. In adaptive filtering the true binary label of an instance is revealed only if
the learner makes a positive prediction. A natural application domain is document filtering,
where instances represent documents and a positive prediction corresponds to forwarding
the current document to a user. If a document is forwarded, then the user returns a binary
relevance feedback (whether the document was interesting or not), which is assumed to be
the document’s true label. If the document is not forwarded, that is the filter makes a negative
prediction, then its label remains unknown. Transforming our sampling rule into a filtering
rule is simple. Since querying corresponds to forwarding, which is in turn equivalent to a
positive prediction, the transformed rule forwards all instances with a positive margin getting
their true labels as feedback. Moreover, the rule also forwards all instances whose negative
margin is smaller than the same adaptive threshold used in selective sampling. By doing this,
all the labels of small margin instances are obtained at the price of making some mistakes
when forwarding instances with a negative margin.

1.1 Overview of results

The main goal of this research is the design of efficient algorithms with a good empirical
behavior in selective sampling and filtering tasks. The experiments on a real-world dataset
reported in Sect. 3 show that our algorithms compare favorably to other selective sampling
and filtering procedures proposed in the literature (Cesa-Bianchi et al. 2006a; Dasgupta et
al. 2005; Helmbold et al. 2000; Monteleoni and Kääriäinen 2007).

In order to complement these empirical results with theoretical performance guarantees,
we introduce in Sect. 4 a stochastic model defining the distribution of examples (X, Y). In

Mach Learn (2011) 83: 71–102 73

this model the label conditional distribution η(x) = P(Y = 1 | X = x) is a linear function
determined by the fixed target vector u ∈ R

d . Following a standard approach in statisti-
cal learning, we parametrize the instance distribution via the Mammen-Tsybakov condition
P(| 1

2 − η(X)| ≤ ε) = O(εα).
In the standard online protocol, where the true label is revealed after each prediction, we

prove in Theorem 1 that the fully supervised RLS converges to the Bayes risk at rate

˜O
(

n−(1+α)/(2+α)
)

.

We then prove in Theorem 2 that an adaptive variant of our selective sampling algorithm
converges to the Bayes risk at rate

˜O
(

n−(1+α)/(3+α)
)

with labels being queried at rate

˜O
(

n−α/(2+α)
)

.

When P(| 1
2 − η(X)| ≤ ε0) = 0 for a certain ε0 > 0 (the hard margin case), we show that

our sampling procedure converges to the Bayes risk at rate of order (lnn)/n with only a
logarithmic number of queries, a phenomenon first observed in Freund et al. (1997) and
also, under different and more general hypotheses, in Balcan et al. (2006, 2007), Castro and
Nowak (2008), Dasgupta et al. (2005), Hanneke (2007).

1.2 Related work

Problems related to selective sampling and, more generally, to active learning are well repre-
sented in the statistical literature, in particular in the areas of adaptive sampling and sequen-
tial hypothesis testing (see the detailed account in Castro and Nowak (2008)). In statistical
learning, the idea of selective sampling (sometimes also called uncertainty sampling) has
been first introduced by Cohn et al. (1990, 1994)—see also Lewis and Gale (1994), Muslea
et al. (2000).

Castro and Nowak (2008) study a framework in which the learner has the freedom to
query arbitrary domain points whose labels are generated stochastically. They prove risk
bounds in terms of nonparametric characterizations of both the regularity of the Bayes deci-
sion boundary and the behavior of the noise rate in its proximity.

The idea of querying small margin instances when learning linear classifiers has been
explored many times in different active learning contexts. Campbell et al. (2000), and also
Tong and Koller (2000), study a pool-based model of active learning, where the algorithm
is allowed to interactively choose which labels to obtain from an i.i.d. pool of unlabeled
instances. A landmark result in the selective sampling protocol is the query-by-committee
algorithm of Freund et al. (1997). In the realizable (noise-free) case, and under strong dis-
tributional assumptions, this algorithm is shown to require exponentially fewer labels than
instances when learning linear classifiers (see also Gilad-Bachrach et al. (2005) for a more
practical implementation). An exponential advantage in the realizable case is also obtained
with a simple variant of the Perceptron algorithm by Dasgupta et al. (2005), under the only
assumption that instances are drawn from the uniform distribution over the unit ball in R

d .
In the general statistical learning case, under no assumptions on the joint distribution of

label and instances, selective sampling (or, more generally, active learning) bears no such
exponential advantage. Indeed, Kääriäinen (2006) shows that, in order to approach the risk
of the best linear classifier f ∗ within ε, at least order of (η/ε)2 labels are needed, where η

74 Mach Learn (2011) 83: 71–102

is the risk of f ∗. A much more general nonparametric lower bound for active learning is
obtained by Castro and Nowak (2008).

The first active learning strategy for an arbitrary family F of classifiers in the general
statistical learning case is the A2 algorithm of Balcan et al. (2006). A2 is provably never
significantly worse than empirical risk minimization in passive learning. A precise charac-
terization of the convergence rate of A2 in terms of the disagreement coefficient, a quantity
defined in terms of F and the joint distribution of examples, is due to Hanneke (2007). An
algorithm that improves on A2 in terms of convergence rate has been proposed by Dasgupta
et al. (2008). Active learning under low noise conditions (such as the Mammen-Tsybakov
condition considered in this paper) has been studied by Balcan et al. (2007) in the linear
classification case, and by Hanneke (2009) for arbitrary hypothesis classes. In Sect. 5 we
discuss the relationship between our results and some of these works.

Note the none of the above algorithms is computationally efficient when learning lin-
ear classifiers in the nonrealizable case. In this work, where our goal is to design practical
algorithms, we achieve time-efficiency by assuming a specific label noise model—see the
discussion in Sect. 4. The good empirical behavior of the algorithms designed under this
noise model (Sect. 3) provides a reasonable empirical validation of the model itself.

Finally, we remark that the framework of learning with queries (see Angluin (2004) for
a survey) radically differs from ours, as in the former the learner can query the labels of
arbitrary instances of his choice.

2 The selective sampling and filtering algorithms

We consider the following online selective sampling protocol. At each step t = 1,2, . . . the
sampling algorithm (or selective sampler) receives an instance xt ∈ R

d and outputs a binary
prediction for the associated label yt ∈ {−1,+1}. After each prediction, the algorithm has
the option of “sampling” (issuing a query) to receive the label yt . We call example the pair
(xt , yt). If yt is observed, the algorithm can choose whether or not to update its internal
state using the new information encoded by (xt , yt). If the algorithm decides not to issue the
query, the current label yt remains unobserved.

In this respect we distinguish among three types of examples:

– Queried examples. Those examples (xt , yt) whose label yt has been queried.
– Stored examples. Those examples (xt , yt) that have been used by the algorithm for an

internal state update after their label yt was queried (hence stored examples are a subset
of queried examples).

– All remaining examples, i.e., those examples (xt , yt) whose labels yt remain unknown to
the algorithm.

Similarly, we define queried/stored instances, and stored labels.
The need for distinguishing between queried and stored examples will become clear in

the following section, when we introduce a mistake-driven sampling algorithm that stores
only those queried examples on which the current classifier makes a mistake. For now, we
focus on the non-mistake-driven margin-based selective sampler described in Fig. 1, and use

the words queried and stored interchangeably. The margin ̂�t = w	
t xt at time t is based on

the regularized least squares (RLS) estimator wt defined over the set of previously stored
examples. More precisely, let Nt be the number of examples stored in the first t steps, let
St−1 = [x′

1, . . . ,x′
Nt−1

] be the d × Nt−1 matrix of the instances whose label has been queried

Mach Learn (2011) 83: 71–102 75

Parameters: K > 0.
Initialization: weight vector w = 0; query counter N = 0.

At each time t = 1,2, . . . do the following:

1. Observe instance xt ∈ R
d ;

2. Predict the label yt ∈ {−1,+1} with ŷt = SGN(w	xt);
3. If (w	xt)

2 ≤ ‖xt‖2(K ln t)/N , then:

– query the label yt of xt ,
– increment N ,
– update w using (xt , yt) as in (1).

Fig. 1 The selective sampling procedure

before step t begins, and let yt−1 = (y ′
1, . . . , y

′
Nt−1

) be the vector of the corresponding labels.
Then

wt = (

I + St−1 S	
t−1 + xtx	

t

)−1
St−1yt−1 (1)

where I is the d × d identity matrix.1 Note that wt defined by (1) depends on the current
instance xt . The regularized least squares estimator in this particular form has been first
considered by Vovk (2001) and, independently, by Azoury and Warmuth (2001). In practice,
putting xtx	

t into the inverse matrix reduces the variance of ̂�t . In the sequel, we sometimes

write ̂�Nt−1,t instead of ̂�t to stress the dependence of ̂�t on the number of stored labels.
At each time step t the algorithm outputs a prediction SGN(̂�t) for the label of in-

stance xt . Then, the algorithm decides whether to issue a query to access the label yt based
on the margin ̂�t of the current instance, the number Nt−1 of stored examples, and the cur-
rent step number t . The intuition behind our sampling rule is the following: whenever our
confidence on the prediction made at time t falls below a properly chosen adaptive threshold,
that is when ̂�2

t ≤ ‖xt‖2(K ln t)/Nt−1, we ask for an additional label to refine our current
hypothesis. Note that the threshold vanishes as the number of stored examples grows.

Together with the selective sampler of Fig. 1, we investigate a margin-based procedure
for information filtering (or filter) described in Fig. 2—see Sculley (2008) for an account of
recent advances in online filtering. At each time t = 1,2, . . . the filter observes instance xt

and chooses whether or not to forward it according to its prediction about the relevance of xt .
We say that xt is relevant if its associated label yt is +1, and not relevant if yt = −1. If the
observed instance is deemed relevant, and thus forwarded, its true label yt is revealed to the
filter; otherwise, no information about the current instance is disclosed. An example wrongly
marked as relevant by the filter is called a false positive. Similarly, a relevant example that
is not forwarded is called a false negative. Hence, a filtering algorithm should only forward
truly relevant examples (so as to avoid false positives) and filter out only irrelevant ones (so
as to avoid false negatives).

The filtering algorithm of Fig. 2 is a simple adaptation of the selective sampler described
in Fig. 1. At each time step t our filter forwards instance xt only if the margin achieved
by its current weight vector wt is greater than an adaptive negative threshold, that is, if
̂�t ≥ −‖xt‖√(K ln t)/Nt−1. Whenever this condition occurs (note that in this case the sign
of the margin ̂�t matters), instance xt is forwarded and the true relevance label yt is re-
vealed to the algorithm, which then updates its current hypothesis through (1). As in the

1Adding the identity matrix I ensures the invertibility of I + St−1S	
t−1 + xt x	

t at the price of adding a bias

term to the margin estimator ̂�t (see Sect. 6.2).

76 Mach Learn (2011) 83: 71–102

Parameters: K > 0.
Initialization: weight vector w = 0; query counter N = 0.

At each time t = 1,2, . . . do the following:

1. Observe instance xt ∈ R
d ;

2. If w	xt + ‖xt‖√(K ln t)/N ≥ 0, then:

– forward xt ,
– receive yt ∈ {−1,+1} and increment N ,
– update w using (xt , yt) as in (1);

3. else discard xt .

Fig. 2 The filtering procedure

selective sampling rule, the filtering threshold which the margin is compared to vanishes at
rate 1/

√
Nt .

2.1 Computational issues

The estimator (1) can be stored in space �(d2), which we need for the inverse of matrix
I +St−1S

	
t−1. Moreover, using standard formulas for small-rank adjustments of inverses, we

can compute updates and predictions in time �(d2) as well.
The algorithms described in Figs. 1 and 2 can be also expressed in dual variable form.

This is needed, for instance, when we want to use the feature expansion facility provided
by kernel functions. In this case, the estimator (1) can be represented in space quadratic in
the number of stored labels (in addition, however, all stored instances have to be explicitly
maintained). The update time is also quadratic in the number of queries.

3 Experimental results

In this section, we present an empirical study of our algorithms and compare their perfor-
mance to the one achieved by other margin-based selective samplers and filters in real-world
scenarios. Unless stated otherwise our experiments were run on the first 20,000 newswire
stories (in chronological order) from the Reuters Corpus Volume 1 (RCV1, NIST 2004)
dataset. Every example in this dataset is encoded as a vector of real attributes computed
through a standard TD-IDF bag-of-words processing of the original news stories, and is
tagged with zero or more labels from the set of 102 Reuters news categories.

This text categorization setup is a natural framework for both selective sampling and
filtering algorithms. In the former setting, a large amount of (unlabelled) data is usually
available, as is typically the case for newswire stories, but it is expensive to have a human
feedback after each prediction. Analogously, in a news filtering service a feed of news arti-
cles from a wide range of different topics is typically available, and only a given subset of
these topics is of interest to the target recipient.

Following the common practice in text categorization applications, the classification per-
formance is evaluated using the F -measure 2RP/(R + P), where P is the precision (frac-
tion of correctly classified documents among all documents that were classified positive for
the given topic) and R is the recall (fraction of correctly classified documents among all
documents that are labelled with the given topic).

The experiments reported here involve algorithms employing both first-order and second-
order update steps. In this context, the term first-order refers to a Perceptron-like linear

Mach Learn (2011) 83: 71–102 77

classifier. We use the term second-order to denote linear classifiers based on incremental
versions of the RLS procedure (see, e.g., Azoury and Warmuth 2001; Cesa-Bianchi et al.
2005; Vovk 2001). In this respect, both our selective sampler and filter are second-order
procedures. All algorithms were evaluated using dual variable implementations and linear
kernels.

3.1 Selective sampling

We start by investigating how variants of our original selective sampling scheme in Fig. 1
perform in a typical selective sampling setting. Unless otherwise specified, all results pre-
sented here are averaged over the 50 most frequent categories. This initial investigation also
takes into account the impact of different parameter values on the final performance.

The following four variants were considered:

– The basic Selective Sampler (here referred to as SS). This is the algorithm outlined in
Fig. 1.

– A variant of SS, referred to as SSNCI (Selective Sampling Not Current Instance), that uses
the estimator wt = (I + St−1 S	

t−1)
−1St−1yt−1. Note that, unlike (1), the current instance

is not used for computing the prediction vector wt . When a dual variable representation is
adopted, this results in a prediction step that is linear (instead of quadratic) in the number
of stored examples. In fact, in dual variables wt = y	

t−1(I + S	
t−1St−1)

−1S	
t−1. Since xt

is not part of the weight vector wt , the vector y	
t−1(I + S	

t−1St−1)
−1 can be computed

just after each update, so that only Nt−1 inner products have to be carried out at each
prediction step. Although it is true that this algorithm is faster than SS and predicts the
same labels as SS whenever the stored examples are the same, it should be noted that the
magnitude of the computed margins are smaller, thus directly affecting the selection of
the examples to store.

– A mistake-driven version, here referred to as SSMD (Selective Sampling Mistake Driven),
of the basic selective sampler. This can be obtained by replacing Line 3 in Fig. 1 with

3′. If (w	xt)
2 ≤ ‖xt‖2(K ln t)/N then:

– Query yt ;
– If ytw	xt < 0 then increment N and update w as in (1).

When a small margin is detected this variant queries the current label. Then, only in the
case of sign disagreement, the current example (xt ,yt) is stored. Because this algorithm
works with a mistake-driven logic, the number of actual updates is much smaller than
the number of queried labels. Therefore, SSMD runs in practice much faster than all other
selective sampling variants. Note that in this version of the selective sampling algorithm
N should be interpreted as the number of examples actually stored, rather than the number
of queried labels, the former being typically much smaller than the latter.

– An adaptive sampling algorithm (here referred to as SSNL, Selective Sampling Next La-
bel). This variant queries the label of the next instance (rather than the current one) when-
ever the observed margin falls below the threshold value. This is the only variant of se-
lective sampling we have been able to analyze from a theoretical standpoint—see Sect. 5.

Evidence collected in the first series of experiments is summarized in Figs. 3 and 4.
In order to study how effective our sampling procedures are, two non-sampling baselines,
the Perceptron and the second-order Perceptron (Cesa-Bianchi et al. 2005) algorithms, here
referred to as PERC and SOP, respectively, are included in both figures. These two algorithms
are clearly designed for online classification setups where labels are revealed after each

78 Mach Learn (2011) 83: 71–102

Fig. 3 Evolution of F -measure (left) and fraction of queried labels (right). At each point the F -measure
is computed on the previous 2,000 examples as an average over the 50 most frequent categories. Each row
of plots illustrates the behavior of a different algorithm (SS, SSNCI and SSMD) for different values of the
parameter K . The standard Perceptron (PERC) and the second-order Perceptron (SOP) algorithms are included
for comparison

prediction step (i.e., in a fully supervised fashion). Figures 3 and 4 give evidence that both
SS and SSMD can be as effective as the fully supervised baselines, and yet use only a fraction
of the labels. In fact, they actually surpass the F -measure achieved by PERC and match the
one obtained by SOP when the parameter K is properly chosen.

For each algorithm two different plots are presented side by side. The one on the left
shows the progression of the F -measure while the plot on the right tracks the fraction of
queried labels. Both are computed as a function of the number of observed documents.
Figure 3 shows that SS is slightly more effective than SSNCI for the same value of K but has
otherwise the same behavior. In fact when the parameters are chosen in such a way that the
number of queried labels are similar, the corresponding F -measure curves tend to overlap.

Mach Learn (2011) 83: 71–102 79

Fig. 4 Behavior of the adaptive sampler SSNL. As in Fig. 3 each point is computed on the previous 2,000
examples as an average over the 50 most frequent categories. The standard Perceptron (PERC) and the sec-
ond-order Perceptron (SOP) algorithms are included for comparison

Fig. 5 F -measure obtained by different algorithms as a function of the number of observed labels. Each
F -measure value is computed based on the algorithm’s predictions output during a single run over 20,000
examples. Plots are obtained by repeatedly running each algorithm with different values of its parameter.
Trend lines are computed as approximate cubic splines connecting consecutive points. Both SS and SSMD

quickly converge to the F -measure obtained by the second-order Perceptron algorithm (SOP). On the other
hand, DKM and SSNL exhibit a much slower convergence rate

As previously hinted, SSMD queries many more labels than SS for the same value of the
parameter K . This is due to the fact that the threshold does not necessarily shrink when-
ever we query an example, since the mistake-driven mechanism prevents properly predicted
queried examples to be actually stored. This is also the reason why, in order to obtain com-
parable plots, we had to select a different range of values for K .

Finally, as expected, SSNL exhibits a less than ideal performance. Specifically, compar-
ing SS and SSNL makes evident that the former can actually detect and exploit informative
instances, thus effectively performing selective sampling, while the latter is only able to de-
tect the need for new information encoded in the labels. See Sect. 5 for a more thorough
discussion on this issue.

A more direct comparison among selective sampling variants is contained in Fig. 5 (left),
where we show how SS compares to SSMD and to SSNL. In the right part of Fig. 5 we com-
pare SSMD to other state-of-the-art algorithms, including the second-order version (here re-
ferred to as SOLE, Second-Order Label Efficient) of the label efficient classifier introduced
in Cesa-Bianchi et al. (2006b), and to the DKMPERC variant (Monteleoni and Kääriäinen
2007) of the DKM sampler (Dasgupta et al. 2005). Unlike the SS-series introduced in this

80 Mach Learn (2011) 83: 71–102

paper, the label efficient algorithms of Cesa-Bianchi et al. (2006b) involve an internal ran-
domization designed to cope with (adversarial) situations, when no assumptions are made
on the process generating the examples. Even though such algorithms are randomized, we
did not take averages over multiple runs since the results we obtained exhibited low vari-
ance. The DKM Perceptron is a recently proposed margin-based algorithm that queries labels
only when the observed margin is below a given time-changing threshold, and then per-
forms mistake-driven updates. The threshold value is halved whenever the algorithm sees
a certain number of consecutive correctly predicted examples whose margin is lower than
the current threshold. This number is the algorithm’s sole parameter. Whereas the original
version of DKM features an update rule whose learning rate depends on the margin of the
wrongly predicted instance, the version evaluated here uses the standard Perceptron update.
We found this version to perform better than the basic one, as also confirmed by Monteleoni
and Kääriäinen (2007).

Each point in the plots describes the F -measure achieved by a given algorithm run with
a certain value of its parameter (this parameter is K for SSMD, b for SOLE, and μ for DKM-
PERC—see, e.g., Monteleoni and Kääriäinen (2007) for an explanation of b and μ). Since
different parameter values result in different numbers of labels queried at the end of a run,
we chose to actually record on the horizontal axis the percentage of queried labels rather
than the parameter value. Trends were then obtained by running each algorithm with differ-
ent values of their parameters, each run thus resulting in a certain query rate and cumulative
F -measure. The plotted data show that when the number of observed labels rises above
some value, the F -measures achieved by SS and SSMD stop increasing, or increase at a
much reduced rate. It is reasonable to assume that in a selective sampling setup we are in-
terested in the behavior of an algorithm when the fraction of observed labels stays below
some threshold, say 10%. In this range SSMD outperforms all other algorithms. We also
observe that, because of its mistake-driven behavior, SSMD is much faster than the other
selective sampling variants. Under our test conditions DKMPERC proved ineffective proba-
bly because most tasks in the RCV1 dataset are not linearly separable. A similar behavior
was observed in Monteleoni and Kääriäinen (2007). In particular, DKMPERC is also outper-
formed by SSNL, as immediately evinced by superimposing Fig. 5 (left) and (right).

In the three subsequent figures (Figs. 6, 7 and 8) we focus on SSMD only, since it appears
to be the best selective sampling variant within our SS-series and, as such, the best candidate
for real-world applications.

Figure 6(a) describes the performance of the three algorithms SSMD, SOLE, and DKM-
PERC when their parameters are chosen in such a way that the fraction of observed labels
is around 5.0%, about the middle of the 0% to 10% range. The left plot shows that most
of the learning takes place on the first part of the dataset. In particular, SSMD exhibits the
shortest and most effective learning phase. In fact, its empirical performance turns out to be
essentially unaffected by observing progressively fewer labels. As for querying rates, we see
that the non-randomized algorithms have a higher rate on the first documents of the stream,
whereas SOLE keeps querying a fixed number of labels throughout the entire run.

The curves in Fig. 6(b) somehow complement those contained in Fig. 6(a). Here we
show how the F -measure and sampling rate of the evaluated algorithms change throughout
a run when their parameters are set so as each algorithm has a cumulative F -measure value
of 0.60 at the end of the run. This is the highest F -measure that can be achieved by the
worst algorithm evaluated in our tests. It clearly appears that whereas the learning curves
are similar, DKMPERC differs in the way it queries labels in order to achieve this common
behavior. Specifically, both SSMD and SOLE ask a smaller number of labels (overall), with
a slightly more intensive sampling rate for SSMD in the initial phase. On the other hand,

Mach Learn (2011) 83: 71–102 81

Fig. 6 F -measure achieved by different algorithms (left) and corresponding observed labels (right) when
their parameters are chosen in such a way that: (a) the fraction of queried labels after 20,000 examples is
around 5.0%; (b) the F -measure averaged over the predictions output on the last 2,000 examples is 0.60

Fig. 7 Correlation between the
number of stored examples and
the difficulty of each (binary)
task, as measured by the norm of
the SVM weight vector. Topics
are sorted by decreasing
frequency of positive examples

DKMPERC samples almost all labels in the initial stage of the run, and then slowly decreases
the rate.

Finally, in order to investigate how different problems influence storage and sampling
rate of SSMD, and in order to assess the impact of the number of positive examples on per-

82 Mach Learn (2011) 83: 71–102

Fig. 8 F -measure achieved on
different (binary) classification
tasks compared to the number of
positive examples in each topic,
and to the fraction of queried
labels. As in Fig. 7 topics are
sorted by decreasing frequency of
positive examples

formance, we report in Fig. 7 the number of stored examples on the different binary learning
tasks (those associated with each topic), and in Fig. 8 the corresponding F -measure and frac-
tion of queried labels. Data are gathered over the whole set of 102 categories. To account
for uncommon categories we extended the learning phase to the first 40,000 RCV1 stories.
In both plots topics are sorted by frequency with the most frequent topics appearing on the
left. We represent the difficulty of a learning task as the norm of the weight vector obtained
by running the C-SVM algorithm on that task.2 Figure 7 clearly shows that SSMD rises its
storage rate on problems that are more difficult. In particular, even if two different tasks
have largely different numbers of positive examples, the storage rate achieved by SSMD on
those tasks may be similar when the norm of the weight vectors computed by C-SVM is
nearly the same. On the other hand, Fig. 8 makes evident that the achieved F -measure is
fairly independent of the number of positive examples, but this independence is obtained at
the cost of querying more and more labels. In other words, SSMD seems to realize the diffi-
culty of learning infrequent topics and, in order to achieve a good F -measure performance,
it compensates by querying many more labels.

3.2 Filtering

We now examine the empirical performance of our filtering algorithm (Fig. 2). In a filter-
ing setting the interesting examples are usually a small fraction of the whole stream. For
this reason, the results we report are averaged over the 32 topics whose frequency in the first
20,000 newswire stories of the RCV1 dataset is between 1% and 5%. In Fig. 9 we separately
plot the precision and recall obtained by our filter for different values of parameter K . Each
point in the plots is computed on the previous 2,000 examples. Figure 9 (left) shows that
the recall does not considerably change throughout a run. In particular, as the value of K

increases (thereby widening the threshold area), the number of false negatives gets smaller
while achieving a higher recall. Instead, as K grows beyond 5 the number of false posi-
tives quickly outnumbers the true positives, and this prevents the filtering algorithm from
matching the precision curve obtained by the second-order Perceptron algorithm (SOP).

2The actual values were computed using SVM-LIGHT (Joachims 1999) with default parameters. Since the
examples in the Reuters Corpus Volume 1 are cosine normalized, the choice of default parameters amounts
to indirectly setting the parameter C to approximately 1.0.

Mach Learn (2011) 83: 71–102 83

Fig. 9 Recall (left) and precision (right) obtained by our filtering algorithm for various choices of the pa-
rameter K . Each point is computed on the previous 2,000 examples as an average over those topics whose
frequency is in the range 1%–5%

Fig. 10 Recall (left) and precision (right) obtained by different margin-based filtering algorithms. Each
point is computed on the previous 2,000 examples as an average over those topics whose frequency is in the
range 1%–5%. Results for the apple-tasting algorithms are averaged over three runs

In order to better understand the experimental behavior of our filtering algorithm, we
performed a comparative investigation by testing our filter against the “apple-tasting” algo-
rithm of Helmbold et al. (2000), and a straightforward adaptation to the filtering framework
of the label efficient classifiers (Cesa-Bianchi et al. 2006b). Both these filtering procedures
can be seen as standard classification algorithms with an additional mechanism specifically
designed to let them operate within the constraints set by the filtering protocol. The apple-
tasting approach prescribes that at each time step a prediction is issued using an underlying
classification algorithm, and a positive prediction is forced (independent of the prediction
output by the underlying classifier) with probability

√
(1 + m)/t , being m the number of

false positives occurred up to time t . On the other hand, a label efficient classifier can be
used as a filter by forcing a positive prediction whenever a label is queried. Keeping up with
the separation between first and second-order algorithms, we tested both procedures using
first-order and second-order Perceptron algorithms as the underlying classifiers. Therefore,
the following five filtering algorithms were considered (see Fig. 10):

– Our filtering procedure in Fig. 2 (FILTER);
– An apple-tasting filter with a first-order underlying classifier (FFOAT);
– An apple-tasting filter with a second-order underlying classifier (FSOAT);

84 Mach Learn (2011) 83: 71–102

– A label efficient filter with a first-order underlying classifier (FFOLE);
– A label efficient filter with a second-order underlying classifier (FSOLE).

In this experiment the parameters of FILTER and those of FFOLE and FSOLE are tuned.
The apple-tasting method, on the other hand, does not depend on input parameters. Results
plotted in Fig. 10 show that our filtering algorithm is by far superior to both apple-tasting
and label efficient filters: it achieves a much higher recall while being able to considerably
improve its precision as the number of observed documents increases.

4 Probabilistic model, Bayes classifier and regret

We now provide a formal framework within which we analyze a specific variant of the
selective sampling algorithm described in the previous sections.

First, we make assumptions on the source of the examples (xt , yt). We assume instances
xt are realizations of i.i.d. random variables Xt drawn from an unknown distribution on
the surface of the unit Euclidean sphere in R

d , so that ‖Xt‖ = 1 for all t ≥ 1. We also
assume that labels yt are generated according to the following simple linear noise model:
there exists a fixed and unknown vector u ∈ R

d , with Euclidean norm ‖u‖ = 1, such that
E[Yt |Xt = xt] = u	xt for all t ≥ 1, where Yt is used to denote the random label at time t .
Hence Xt = xt is labelled 1 with probability (1 + u	xt)/2 ∈ [0,1]. Note that SGN(f ∗), for
f ∗(x) = u	x, is the Bayes optimal classifier under the described noise model.

Note that the linear noise assumption is less restrictive than it appears. Indeed, all of our
learning algorithms can be reformulated in dual variables in order to learn functions from
any given reproducing kernel Hilbert space (RKHS) as opposed to vectors from R

d . When
working in a RKHS H , the noise model is defined through E[Yt |Xt = xt] = g(xt) where
g is any element of H such that g(Xt) ∈ [−1,1] w.p. 1. Hence, by suitably choosing H
we can approximate any nonlinear continuous noise functions.

In what follows, all probabilities P and expectations E are understood with respect to
the joint distribution of the i.i.d. data process {(X1, Y1), (X2, Y2), . . .}. We use Pt to denote
conditioning on (X1, Y1), . . . , (Xt , Yt). Let f : R

d → R be an arbitrary measurable function.
The instantaneous regret R(f) is the excess risk of SGN(f) with respect to the Bayes risk,
that is,

R(f) = P(Y1f (X1) < 0) − P(Y1f
∗(X1) < 0).

Let f1, f2, . . . be a sequence of real functions where each ft is measurable with respect to
the σ -algebra generated by (X1, Y1), . . . , (Xt−1, Yt−1),Xt . When (X1, Y1), . . . , (Xt−1, Yt−1)

is understood from the context, we write ft as a function of Xt only. Let Rt−1(ft) be the
conditional instantaneous regret Rt−1(ft) = Pt−1(Ytft (Xt) < 0)− Pt−1(Ytf

∗(Xt) < 0). Our
goal is to bound the cumulative (expected) regret

E

[

n
∑

t=1

R(ft)

]

= E
[

R0(f1) + R1(f2) + · · · + Rn−1(fn)
]

as a function of n, and other relevant quantities. Observe that, although the learner’s pre-
dictions can only depend on the observed instances and queried labels, the above regret is
computed over all time steps, including those time steps t when the selective sampler did
not issue a query.

As mentioned in previous sections, we consider algorithms that predict the value of Yt

through SGN(W	
t Xt), where Wt ∈ R

d is a dynamically updated weight vector which might

Mach Learn (2011) 83: 71–102 85

Initialization: weight vector w = 0.

At each time t = 1,2, . . . do the following:

1. Observe instance xt ∈ R
d ;

2. Predict the label yt ∈ {−1,1} with SGN(w	xt);
3. Query the label yt of xt ;
4. Update w using (xt , yt) as in (1).

Fig. 11 The online regularized least-squares classifier

be intended as the current estimate for u (when the data source is stochastic, the estimator wt

of Sect. 2 becomes a random variable Wt). We denote by ̂�t the margin W	
t Xt , whenever

Wt is understood from the context, and by �t the Bayes function f ∗(Xt). Thus ̂�t is the
current approximation to �t . Note that ̂�t is measurable with respect to the σ -algebra gen-

erated by (X1, Y1), . . . , (Xt−1, Yt−1),Xt . Sometimes ̂�Nt−1,t is used instead of ̂�t to stress
the dependence of ̂�t on the number of stored labels.

We model the distribution of the instances around the hyperplane u	x = 0, using the
popular Mammen-Tsybakov low noise condition:

Assumption 1 (Tsybakov 2004) There exist c > 0 and α ≥ 0 such that

P
(|f ∗(X1)| < ε

)≤ cεα for all ε > 0.

When the noise exponent α is 0 the low noise condition becomes vacuous. In order to
study the case α → ∞, one can use the following equivalent formulation (e.g., Bartlett et al.
2006, Lemma 9) of Assumption 1: There exist c > 0 and α ≥ 0 such that

P
(

f ∗(X1)f (X1) < 0
)≤ cR(f)α/(1+α) for all measurable f : R

d → R.

With this formulation one can see that α → ∞ implies the hard margin condition
|f ∗(X1)| ≥ 1/(2c) with probability 1.

In order to provide a proper assessment of our noise model, we introduce here (but defer
the proof to Sect. 6) a theoretical result that establishes a regret bound for a fully supervised
sampling algorithm. This algorithm, described in Fig. 11, predicts using RLS and queries
(and stores) the label of every observed instance. This result serves as a baseline against
which we measure the performance of the selective sampling algorithm. Note that the re-
gret bound is expressed in terms of the whole spectrum of the process correlation matrix
E[X1X	

1].

Theorem 1 Assume the low noise condition (Assumption 1) holds with exponent α ≥ 0 and
constant c > 0. Then the expected cumulative regret after n steps of the fully supervised
algorithm in Fig. 11 is bounded by

E

[

(

4c
(

1 + ln
∣

∣I + SnS
	
n

∣

∣

)

) 1+α
2+α

]

n
1

2+α .

This, in turn, is upper bounded by

[

4c

(

1 +
d
∑

i=1

ln(1 + nλi)

)]
1+α
2+α

n
1

2+α = O

(

(

d lnn
) 1+α

2+α n
1

2+α

)

.

86 Mach Learn (2011) 83: 71–102

In the above | · | denotes the determinant of the matrix at argument, Sn = [X1,X2, . . . ,Xn]
is the (random) matrix containing all instances, and λi is the ith eigenvalue of E[X1X	

1].

Remark 1 When α = 0 (corresponding to a vacuous noise condition) the bound of Theo-
rem 1 reduces to O(

√
d n lnn). When α → ∞ (the hard margin condition) the bound gives

the logarithmic behavior O(d lnn). Note that
∑d

i=1 ln(1 + nλi) is substantially smaller than
d lnn whenever the spectrum of E[X1X	

1] is rapidly decreasing. In fact, the second bound is
clearly meaningful even when d = ∞, while the third one only applies to the finite dimen-
sional case.

Remark 2 Fast rates of convergence (i.e., rates faster than n−1/2) have typically been proven
for batch-style algorithms, such as empirical risk minimizers and SVM (see, e.g., Bartlett et
al. 2006; Steinwart and Scovel 2007; Tsybakov 2004; see also Boucheron et al. 2005 for a
survey) rather than for online algorithms. A reference closer to our paper is Ying and Zhou
(2006), where the authors prove bounds for online linear classification using the low noise
condition (1), though under different distributional assumptions.

Remark 3 When divided by the number n of steps, the bound of Theorem 1 is of the order

n− 1+α
2+α . Despite the fact we do not have a lower bounding argument holding for our specific

label noise model E[Yt |Xt] = �t , we would like to stress that these convergence rates ac-
tually match, up to log-factors, the best known upper bounds holding under Assumption 1

(not involving labels Yt). Hence, we tend to consider the cumulative rate n
1

2+α in Theorem 1
as a good reference result to compare against.

Remark 4 The second bound in Theorem 1 makes explicit the dependence on the spectrum
λ1, λ2, . . . of the process correlation matrix E[X1X	

1]. As far as we can tell, this bound is
novel. In the analysis of the adaptive sampling algorithm in the next section, we will not
obtain such a clean dependence on the process spectrum.

5 Adaptive sampling

As mentioned in Sect. 2, there are two basic intuitions behind the selective sampler of Fig. 1.
First, the observation of small margin instances should lead to more queries. Indeed, we
know that the sampling rate should be roughly proportional to the squared inverse of the
typical margin. Second, queries should be prevalently issued on small margin instances, as
these belong to a high-noise region (where more samples are needed to correctly estimate
the sign of the Bayes optimal classification).

A formal analysis of selective sampling within the stochastic framework introduced in
the previous section should thus capture both of these intuitions. On the one hand, it should
show that the selective sampler is able to adaptively determine the correct sampling rate as
a function of the actual amount of noise in the source of data (quantified by the exponent α

in Assumption 1). On the other hand, the analysis should capture the advantage brought by
querying instances with a small margin.

Unfortunately, such a result for the sampler of Fig. 1 is not within reach of our analysis.
Indeed, the use of standard concentration results in our stochastic framework is impeded by
the fact that queried labels, when conditioned on their associated instances, are no longer
(conditionally) independent random variables. This fact prevents us from controlling bias
and variance of our estimator.

Mach Learn (2011) 83: 71–102 87

Parameters: λ > 0, ρt > 0 for each t ≥ 1.
Initialization: weight vector w = 0; query counter N = 0.

At each time t = 1,2, . . . do the following:

1. Observe instance xt ∈ R
d : ‖xt‖ = 1;

2. Predict the label yt ∈ {−1,1} with ŷt = SGN(w	xt);
3. If N ≤ ρt then schedule the storage of (xt , yt);
4. Else if (w	xt)

2 ≤ (128 ln t)/(λN) then schedule the storage of (xt+1,yt+1);
5. If (xt ,yt) is scheduled to be stored then:

– increment N ,
– update w using (xt , yt) as in (1).

Fig. 12 The adaptive sampling procedure (called “adaptive sampler” in the text)

In order to circumvent this key technical problem we slightly modify the sampling crite-
rion: We retain the same query condition as the algorithm in Fig. 1 but, at the same time, we
ensure that the stored labels are indeed a sequence of independent random variables. This is
done by considering an adaptive (rather than selective) sampler that queries the label of the
random instance received immediately after each small margin instance. As the analysis in
the next section shows, the adaptive sampler is able to learn on the fly a correct sampling rate
for the labels albeit without focusing its queries on the most informative instances. Indeed,
our adaptive sampling analysis measures the advantage of sampling at the rate at which
we observe small margins, whereas it says nothing about the advantage, confirmed by the
experiments, of querying precisely the small margin instances.

Finally, note that the trick of querying the next label for ensuring conditionally indepen-
dent label sequences cannot be applied to the algorithm for adaptive filtering of Fig. 2. In
fact, in the filtering setting querying a label implies that the corresponding instance is for-
warded to the user, and we cannot hope to prove good bounds for a filter that defers the
forwarding of requests (thus essentially forwarding randomly drawn instances). This is the
reason why the algorithm in Fig. 2 is evaluated only empirically, with no accompanying
theoretical statements.

We now turn to the description of our adaptive sampling algorithm. The algorithm, shown
in Fig. 12, queries all labels (and stores all examples) during an initial stage of length at least
(16d)/λ2, where λ denotes the smallest nonzero eigenvalue of the process correlation matrix
E[X1X	

1]. When this transient regime is over, the sampler issues a query at time t based on
both the query counter Nt−1 and the (signed) margin ̂�t . Specifically, if evidence is collected
that the number Nt−1 of stored labels is smaller than our current estimate of 1/�2

t , that is
if ̂�2

t ≤ (128 ln t)/(λNt−1), then we query (and store) the label of the next instance Xt+1.
Observe that once an example is scheduled to be stored, the algorithm cannot change its
mind on the next time step (because, say, the new margin now happens to be larger than the
current threshold).

Our algorithm is able to adaptively optimize the sampling rate by exploiting the ad-
ditional information provided by the examples having small margin. The appropriate rate
clearly depends on the (unknown) amount of noise α which the algorithm implicitly learns
on the fly.

Before turning to our main theoretical result, it is worth discussing some of the crucial
issues that the adaptive behavior brings about. First and foremost, by dropping the selective
sampling step we get around a technical problem which prevents the analysis of the sampler
of Fig. 1. On the other hand, it allows us to state a theoretical guarantee for a computationally
efficient algorithm and one that casts light on the closely related sampling counterpart. We

88 Mach Learn (2011) 83: 71–102

find the efficiency a key aspect of this algorithm. In particular, the issue of obtaining efficient
implementations of state-of-the-art selective sampling algorithms (e.g., Dasgupta et al. 2008;
Hanneke 2009) is, as far as we know, an open problem which is not a straightforward con-
sequence of published results. For instance, even when P (DIS(V)) and P (R) in algorithm
A2 are replaced by empirical estimates, we do not see how their computation can be gener-
ally carried out in an efficient way for all kinds of input distributions. In fact, as analyzed
in Dasgupta et al. (2008), Hanneke (2009), A2 seems to rely on a routine (denoted there by
LEARNH) which is unclear how to make it work efficiently. Efficiently maintaining (or even
sampling from) a version space which is possibly infinite-dimensional appears to be a com-
mon problem in all these papers. However, the fact that existing methods have no efficient
implementation (up to special cases) seems to follow from the more general perspective
these methods are taking, rather than being related to the selective vs. adaptive choice.

Theorem 2 Assume the low noise condition (Assumption 1) holds with unknown exponent
α ≥ 0, and assume the adaptive sampler of Fig. 12 is run with ρt = 16

λ2 max{d, ln t}. Then the
expected cumulative regret after n steps is bounded by

O

(

d + lnn

λ2
+
(

lnn

λ

) 1+α
3+α

n
2

3+α

)

whereas the expected number of queried labels (including the stored ones) is bounded by

O

(

d + lnn

λ2
+
(

lnn

λ

) α
2+α

n
2

2+α

)

.

The proof (given in Sect. 6) hinges on showing that ̂�t is an estimate of the true mar-
gin �t , and relies on known concentration properties of i.i.d. processes. In particular, we
show that our sampling algorithm is able to adaptively estimate the number of queries
needed to ensure a negligible regret when a query is not issued (more precisely, we show
that when a query is not issued at time t the regret increases by at most 1/t). Before turning
to the proofs, we would like to make a few remarks.

Remark 5 As expected, when we compare our semi-supervised adaptive sampler (Theo-
rem 2) to its fully supervised counterpart (Theorem 1), we see that the average instan-
taneous regret of the former vanishes at a significantly slower rate than the latter, i.e.,

n− 1+α
3+α vs. n− 1+α

2+α excluding log factors. Note, however, that the instantaneous regret of the
semi-supervised algorithm vanishes faster than the fully-supervised algorithm when both re-
grets are expressed in terms of the number N of issued queries. To see this consider first the
case α → ∞ (the hard margin case). Then both algorithms have an average regret of order
(lnn)/n. However, since the semi-supervised algorithm makes only N = O(lnn) queries,
we have that, as a function of N , the average regret of the semi-supervised algorithm is of
order N/eN whereas the fully supervised has only (lnN)/N . We have thus recovered the
exponential advantage observed in previous works. When α = 0 (vacuous noise conditions),
the average regret rates in terms of N become (excluding logarithmic factors) of order N−1/3

in the semi-supervised case and of order N−1/2 in the fully supervised case. Hence, there is
a critical value of α where the semi-supervised bound becomes better. In order to find this
critical value we write the rates of the average instantaneous regret for 0 ≤ α < ∞ obtaining

Mach Learn (2011) 83: 71–102 89

N
− (1+α)(2+α)

2(3+α) (semi-supervised algorithm) and N− 1+α
2+α (fully supervised algorithm). By com-

paring the two exponents we find that, asymptotically, the semi-supervised rate is better than
the fully supervised one for all values of α >

√
3 − 1. This indicates that adaptive sampling

is advantageous when the noise level (as modeled by the Mammen-Tsybakov condition) is
not too high.

Finally, we note in passing that under the assumption of prior knowledge on the noise
level α it would be possible to achieve a regret performance similar to the one given in
Theorem 2 by simply replacing the margin-criterion used in step 4 of Fig. 12 by a coin-
flipping mechanism whose bias is properly tuned as a function of α.

Remark 6 Hanneke (2009) shows for the algorithm A2 a tail bound on the instantaneous
regret after N queries of order N−(1+α)/2 irrespective of the label noise model. For all values

of 0 ≤ α < ∞ this is better than the instantaneous regret rate of N
− (1+α)(2+α)

2(3+α) implied by
Theorem 2. But as we already pointed out, no efficient implementation of A2 is known for
linear classification when working on arbitrary distributions over the instance domain.

Remark 7 Note that the adaptively adjusted margin threshold used by the algorithm of
Fig. 12 explicitly depends, through λ, on additional information about the data-generating
process. This additional information is needed because, unlike the fully supervised classifier
of Theorem 1, the adaptive sampler queries labels at random steps. This prevents us from
bounding the sum of conditional variances of the RLS estimator through ln |I + SnS

	
n |, as

we do when proving Theorem 1 (see Sect. 6). Instead, we have to individually bound each
conditional variance term via the smallest empirical eigenvalue of the correlation matrix,
and this causes the bound of Theorem 2 to depend (inversely) on the smallest process eigen-
value, rather than the whole process eigenspectrum as in Theorem 1. The transient regime
in Fig. 12 is needed precisely to ensure that this smallest empirical eigenvalue gets close
enough to λ.

Remark 8 Observe that the way it is stated now, the bound of Theorem 2 only applies to the
finite-dimensional (d < ∞) case. It turns out this is a fixable artifact of our analysis, rather
than an intrinsic limitation of the adaptive sampling scheme in Fig. 12. See Sect. 6.3.

Remark 9 We stress that it is fairly straightforward to add to the algorithm of Fig. 12 a
mistake-driven rule for storing examples. Such a rule prescribes that, when a small margin is
detected, a query is issued (and the next example is stored) only if SGN(̂�t = yt), i.e., when
the current prediction is wrong. This modification would make the algorithm more similar to
the algorithm SSMD empirically tested in Sect. 3. It is easy to adapt our analysis to obtain for
this algorithm the same regret bound as the one established in Theorem 2. However, in this
case we can only give guarantees on the expected number of stored examples. Although this
can be much smaller than the actual number of queried labels, it provides a good indication
of actual running times. We again refer the reader to Sect. 6.3.

6 Analysis

This section contains the proofs of Theorems 1 and 2.
We denote by {a} the indicator function of the event or predicate a, and we repeatedly

use simple facts related to indicator functions, such as {a ∨ b} = {a} + {b ∧ ¬a} ≤ {a} + {b}
and {a} = {a ∧ b} + {a ∧ ¬b} ≤ {a ∧ b} + {¬b}, where b is another predicate.

90 Mach Learn (2011) 83: 71–102

6.1 Proof of Theorem 1

The proof proceeds by relating the classification regret of the algorithm to its square loss
regret via a “comparison theorem”. The square loss regret is then controlled by applying a
known pointwise bound for the RLS regression function.

For all measurable f : R
d → R, introduce the square loss regret

Rφ(f) = E
[(

1 − Y1 f (X1)
)2 − (

1 − Y1f
∗
φ (X1)

)2]

along with its conditional version Rt−1,φ , where φ(z) = (1−z)2 and f ∗
φ is the Bayes optimal

function for the square loss.

Lemma 1 If Assumption 1 holds with exponent α ≥ 0 and constant c > 0, then for all
measurable f

R(f) ≤ (

4cRφ(f)
) 1+α

2+α .

Proof Note that the square loss φ(z) is classification-calibrated in the sense of Bartlett et al.
(2006) because it is differentiable in 0 and φ′(0) < 0, see Bartlett et al. 2006, Theorem 4. We
can therefore apply Theorem 10 in Bartlett et al. (2006) to φ obtaining, for all functions f ,

cR(f)
α

1+α ψ

(

R(f)
1

1+α

2c

)

≤ Rφ(f)

where ψ(z) = z2 is the transformation function associated with φ(z), see Bartlett et al. 2006,
Theorem 4. Solving for R(f) gives the desired result. �

Now, observe that, conditioned on (X1, Y1), . . . , (Xt−1, Yt−1), ̂�t = W	
t Xt is a determin-

istic (nonlinear) function ft : R
d → R. Hence we can write

n
∑

t=1

(

P
(

Yt
̂�t < 0

)− P
(

Yt �t < 0
)

)

= E

[

n
∑

t=1

Rt−1(ft)

]

≤ E

[

n
∑

t=1

(

4cRt−1,φ(ft)
) 1+α

2+α

]

(by Lemma 1)

≤ E

⎡

⎣n

(

4 c

n

n
∑

t=1

Rt−1,φ(ft)

) 1+α
2+α

⎤

⎦ (by Jensen’s inequality).

Further, it is easy to verify that in our probabilistic model f ∗(x) = u	x is Bayes optimal for
the square loss as well; i.e., f ∗

φ = f ∗. Hence

n
∑

t=1

Rt−1,φ(ft) =
n
∑

t=1

(

Yt − W	
t Xt

)2 −
n
∑

t=1

(

Yt − u	Xt

)2
.

Mach Learn (2011) 83: 71–102 91

The right-hand side is bounded pointwise (see, e.g., Cesa-Bianchi and Lugosi 2006, Theo-
rem 11.8) by 1 + ln |I + SnS

	
n |. Combining and simplifying yields

n
∑

t=1

(

P
(

Yt
̂�t < 0

)− P
(

Yt �t < 0
)

)

≤ E

[

(

4c
(

1 + ln
∣

∣I + SnS
	
n

∣

∣

)

) 1+α
2+α

]

n
1

2+α

i.e., the first bound in Theorem 1. Next, we take this bound and apply Jensen’s inequal-

ity twice, first to the concave function (·) 1+α
2+α of a real argument, and then to the con-

cave function ln | · | of a (positive definite) matrix argument. Observing that E[SnS
	
n] =

E[∑n

t=1 XtX	
t] = nE[X1X	

1] yields the second bound. The third bound derives from the
second one by using λi ≤ 1.

6.2 Proof of Theorem 2

We first introduce some preliminary results and formal definitions used in our analysis.
For any choice of s, (x′

1, y
′
1), . . . , (x

′
s , y

′
s) and xt , let Es,t [·] be the conditional expectation

Es,t [·] = E
[· ∣∣Nt−1 = s,X′

1 = x′
1, . . . ,X′

s = x′
s ,Xt = xt

]

.

Since the analysis of our algorithm relies on proving that, conditioned on the past s queried
labels, ̂�t is a good estimator of the corresponding margin �t , we need to consider both the
bias and the variance of ̂�t .

Let S = [x′
1, . . . ,x′

s], Y = (y ′
1, . . . , y

′
s), and Wt = (I + SS	 + XtX	

t)−1SY as in (1).
Recalling that Es,t [Y] = S	u we have

Es,t [̂�s,t] = Es,t

[

W	
t xt

]

= Es,t [Y]S	 (I + SS	 + xtx	
t

)−1
xt

= u	SS	(I + SS	 + xtx	
t)−1xt

= �t − u	(I + xtx	
t)
(

I + SS	 + xtx	
t

)−1
xt

= �t − Bs,t

where Bs,t = u	(I + xtx	
t)(I + SS	 + xtx	

t)−1xt is the (additive) bias. Note also that ̂�s,t

can be rewritten as

̂�s,t =
s
∑

k=1

Y ′
kZk

where Y ′
k is the label of instance X′

k and Z = (Z1, . . . ,Zs)
	 = S	(I + SS	 + xtx	

t)−1xt so

that ‖Z‖2 bounds the conditional variance of ̂�s,t . Bias and variance can be both bounded in
terms of quadratic forms. In particular, setting rs,t = x	

t (I + SS	 + xtx	
t)−1xt we can use,

e.g., Lemmas 7 and 8 in Cesa-Bianchi et al. (2006a) to conclude

|Bs,t | ≤
√

x	
t (I + SS	 + xtx	

t)−2xt + rs,t , (2)

‖Z‖2 ≤ rs,t . (3)

In turn, rs,t can be (crudely) bounded from above as follows:

rs,t = x	
t (I + S S	 + xtx	

t)−1xt

≤ x	
t (I + S S)−1xt

92 Mach Learn (2011) 83: 71–102

≤ ∥

∥(I + S S)−1
∥

∥

≤ 1

1 +̂λs

wherêλs denotes the smallest eigenvalue of the empirical correlation matrix SS	. Similarly,
the quadratic form x	

t (I +S S	 + xtx	
t)−2xt occurring in (2) can be bounded by (1 +̂λs)

−2.
Hence, we end up with

|Bs,t | ≤ 2

1 +̂λs

, (4)

‖Z‖2 ≤ 1

1 +̂λs

. (5)

These are the actual bounds on bias and variance we will be using throughout.
The following lemma is of preliminary importance for bounding the instantaneous re-

gret of our algorithm. This allows us to factor out a small margin term which is effectively
controlled by the Mammen-Tsybakov noise condition.

Lemma 2 Assume the low noise condition (Assumption 1) holds with exponent α ≥ 0 and
constant c > 0. Then, for all ε > 0 and all random variables ̂�t ,

P(Yt
̂�t < 0) − P(Yt�t < 0) ≤ cε1+α + P(̂�t�t ≤ 0, |�t | ≥ ε).

Proof We have

{Yt
̂�t < 0} − {Yt�t < 0} = {Yt

̂�t < 0, |�t | ≥ ε} − {Yt�t < 0, |�t | ≥ ε}
+ {Yt

̂�t < 0, |�t | < ε} − {Yt�t < 0, |�t | < ε}
where

{Yt
̂�t < 0, |�t | ≥ ε} = {Yt

̂�t < 0, Yt�t < 0, |�t | ≥ ε} + {Yt
̂�t < 0, Yt�t ≥ 0, |�t | ≥ ε}

≤ {Yt�t < 0, |�t | ≥ ε} + {̂�t�t ≤ 0, |�t | ≥ ε}.
Combining and taking expectations of both sides yields

P(Yt
̂�t < 0) − P(Yt�t < 0) ≤ P(̂�t� ≤ 0, |�t | ≥ ε)

+ P(Yt
̂�t < 0, |�t | < ε) − P(Yt�t < 0, |�t | < ε). (6)

Moreover, our label noise model implies

P(Yt
̂�t < 0, |�t | < ε) = P

(

Yt
̂�t < 0

∣

∣ |�t | < ε
)

P(|�t | < ε) ≤ 1 + ε

2
P(|�t | < ε).

Likewise,

P(Yt�t < 0, |�t | < ε) = P
(

Yt�t < 0
∣

∣ |�t | < ε
)

P(|�t | < ε) ≥ 1 − ε

2
P(|�t | < ε).

Finally, from Assumption 1 we get P(|�t | < ε) ≤ cεα . Combining as in (6) gives the claimed
result. �

Mach Learn (2011) 83: 71–102 93

The next lemma establishes a concentration property about the smallest eigenvalue of
the empirical correlation matrix towards the smallest eigenvalue of the correlation matrix
describing the underlying stochastic process. It easily follows from Blanchard et al. (2007),
Theorem 4.2 (see also the earlier reference results in Shawe-Taylor et al. (2005)).

Lemma 3 Let S be the d × s matrix [X1, . . . ,Xs], where X1, . . . ,Xs are i.i.d. samples from
a process whose correlation matrix E[X1X	

1] has minimal eigenvalue λ > 0. If s ≥ 16d

λ2 and
̂λs is the smallest eigenvalue of SS	, then

P

(

̂λs

s
<

λ

2

)

≤ e−λ2s/8. (7)

The final ancillary result we need is contained in the next lemma. This lemma (whose
proof is provided in the Appendix) is essential in that it allows to use large deviation bounds
on i.i.d. variables.

Lemma 4 Recall the adaptive sampling mechanism of the algorithm in Fig. 12. For each
i ≥ 1 let Ti + 1 be the time at which we query an instance for the i-th time and let
ZTi

= (XTi
, YTi

) be the example whose margin caused instance XTi+1 to be queried. Then
ZT1+1,ZT2+1, . . . are independent random variables distributed as Z1.

We are now ready to prove Theorem 2.
We start by applying Lemma 2 and then further manipulate the resulting terms:

n
∑

t=1

(

P(Yt
̂�Nt−1,t < 0) − P(Yt�t < 0)

)

≤ cnε1+α +
n
∑

t=1

P
(

�t
̂�Nt−1,t ≤ 0, |�t | ≥ ε

)

≤ cnε1+α +
n
∑

t=1

P (Nt−1 ≤ ρt)

︸ ︷︷ ︸

(I)

+
n
∑

t=1

P

(

̂�2
Nt−1,t ≤ 128 ln t

λNt−1
,Nt−1 > ρt , |�t | ≥ ε

)

︸ ︷︷ ︸

(II)

+
n
∑

t=1

P

(

�t
̂�Nt−1,t ≤ 0,̂�2

Nt−1,t >
128 ln t

λNt−1
,Nt−1 > ρt

)

︸ ︷︷ ︸

(III)

.

Term (I) bounds the regret on those steps t that trigger the storage of the current example
(because Nt−1 ≤ ρt). Term (II) bounds the regret on those steps on which we schedule a
query for the next example (because ̂�2

t is smaller than the threshold at time t) despite the
true margin �t is not small (because |�t | ≥ ε). Finally, term (III) bounds the regret on those
steps that do not trigger any queries at all (i.e., over the non-sampled examples). We proceed
by bounding the three terms separately.

94 Mach Learn (2011) 83: 71–102

In order to bound (I), we simply observe that N0 = 0, and Nt−1 ≤ ρt implies
Nt = Nt−1 + 1. Therefore

(I) = E

[

n
∑

t=1

{Nt−1 ≤ ρt }
]

≤ ρn (8)

just because ρn ≥ ρt for all t ≤ n.
To bound (II) we set

Lε =
n
∑

t=1

{

Nt−1 ≤ 128 ln t

λ̂�2
Nt−1,t

,Nt−1 > ρt , |�t | ≥ ε

}

so that (II) = ELε . Then, for any positive integer M , we can write

Lε ≤ M +
n
∑

t=1

{

Nt−1 ≤ 128 ln t

λ̂�2
Nt−1,t

,Nt−1 > ρt , |�t | ≥ ε,Nt−1 ≥ M

}

.

We proceed by applying t he union bound on each term of the sum,

{

Nt−1 ≤ 128 ln t

λ̂�2
Nt−1,t

,Nt−1 > ρt , |�t | ≥ ε,Nt−1 ≥ M

}

≤
t−1
∑

s=max{ρt +1,M}

{

s ≤ 128 ln t

λ̂�2
s,t

, |�t | ≥ ε

}

≤
t−1
∑

s=max{ρt +1,M}

({

s ≤ 4 × 128 ln t

λ�2
t

, |�t | ≥ ε

}

+
{

|̂�s,t | ≤ |�t |
2

, |�t | ≥ ε

})

≤
t−1
∑

s=max{ρt +1,M}

({

s ≤ 4 × 128 ln t

λε2

}

+
{

|̂�s,t − �t | ≥ |�t |
2

, |�t | ≥ ε

})

≤
t−1
∑

s=max{ρt +1,M}

({

s ≤ 4 × 128 ln t

λε2

}

+
{

|̂�s,t + Bs,t − �t | ≥ ε

2
− |Bs,t |

})

≤
t−1
∑

s=max{ρt +1,M}

({

s ≤ 4 × 128 ln t

λε2

}

+
{

|̂�s,t + Bs,t − �t | ≥ ε

4

}

+
{

|Bs,t | ≥ ε

4

})

.

We then treat the bias term {|Bs,t | ≥ ε
4 } through (4) and isolate the term referring to the

concentration of eigenvalues:

{

|Bs,t | ≥ ε

4

}

≤
{

2

1 +̂λs

≥ ε

4

}

≤
{

1

1 + λs/2
≥ ε

8

}

+
{

̂λs ≥ λs

2

}

≤
{

s ≤ 16

λε

}

+
{

̂λs

s
<

λ

2

}

.

Mach Learn (2011) 83: 71–102 95

This gives

Lε ≤ M +
n
∑

t=1

t−1
∑

s=max{ρt +1,M}

({

s ≤ 4 × 128 ln t

λε2

}

+
{

|̂�s,t + Bs,t − �t | ≥ ε

4

}

+
{

s ≤ 16

λε

}

+
{

̂λs

s
<

λ

2

})

. (9)

Now, if M ≥ 4×128
λε2 lnn = 512

λε2 lnn, then the first and the third term inside the double sum (9)
vanish (observe that s ≥ M in the inner sum). Thus, under this condition, we end up with

Lε ≤ M +
n
∑

t=1

t−1
∑

s=max{ρt +1,M}

({

|̂�s,t + Bs,t − �t | ≥ ε

4

}

+
{

̂λs

s
<

λ

2

})

.

We want to apply expectations to both sides of the last inequality. Lemma 4 states that
the queried examples (X′

1, Y
′
1), . . . , (X

′
s , Y

′
s) are a sequence of independent random variables

distributed as (X1, Y1). Hence, we drop the primes and simply write (X1, Y1), . . . , (Xs , Ys).
Since the process {(Xt , Yt) : t = 1,2, . . .} is independent we have that

P(Y1, . . . , Yt−1 | X1, . . . ,Xt−1) = P(Y1 | X1) × · · · × P(Yt−1 | Xt−1).

Hence Y1, . . . , Ys are independent when conditioned on the queried instances. Recalling (5),
we have

̂�s,t =
s
∑

k=1

YkZk and
s
∑

k=1

Z2
k ≤ rs,t ≤ 1

1 +̂λs

.

We thus apply Chernoff-Hoeffding bounds conditioned on X1, . . . ,Xs and Xt . This gives.

(II) ≤ M + E

⎡

⎣

n
∑

t=1

t−1
∑

s=max{ρt +1,M}

({

|̂�s,t + Bs,t − �t | ≥ ε

4

}

+
{

̂λs

s
<

λ

2

})

⎤

⎦

≤ M +
n
∑

t=1

t−1
∑

s=max{ρt+1,M}

(

E

[

2 exp

(

− ε2

32rs,t

)]

+ P

(

̂λs

s
<

λ

2

))

≤ M +
n
∑

t=1

t−1
∑

s=max{ρt+1,M}

(

E

[

2 exp

(

− ε2

32
(1 +̂λs)

)]

+ P

(

̂λs

s
<

λ

2

))

≤ M +
n
∑

t=1

t−1
∑

s=max{ρt+1,M}

(

2 exp

(

− ε2

32

(

1 + λs

2

))

+ 3P

(

̂λs

s
<

λ

2

))

≤ M +
n
∑

t=1

t−1
∑

s=max{ρt+1,M}

(

2 exp

(

−ε2λs

64

)

+ 3 exp

(

−λ2s

8

))

the last inequality deriving from an application of Lemma 3 (this lemma can be applied since
ρt ≥ 16d

λ2 and the queried instances are independent).

96 Mach Learn (2011) 83: 71–102

We further observe that our assumption M ≥ 512
λε2 lnn makes the first exponential inside

the double sum be at most 2/n8 (this is because s ≥ M in the inner sum), while our initial
assumption ρt = 16

λ2 max{d, ln t} for all t makes the second exponential be at most 3/t2 (due
to s > ρt). Thus, under the above assumptions on M and ρt ,

(II) ≤ M +
n
∑

t=1

t−1
∑

s=max{ρt +1,M}

(

2

n8
+ 3

t2

)

≤ M + 1 + 3 ln(n + 1). (10)

We now turn to the remaining term (III). We have, for any3 t ≥ 23,

{

̂�Nt−1,t�t ≤ 0,̂�2
Nt−1,t >

128 ln t

λNt−1
,Nt−1 > ρt

}

≤
{

|̂�Nt−1,t − �t | ≥ |�t |, |̂�Nt−1,t | >
√

128 ln t

λNt−1
,Nt−1 > ρt

}

≤
{

|̂�Nt−1,t − �t | ≥ 1

2

√

128 ln t

λNt−1
,Nt−1 > ρt

}

≤
t−1
∑

s=ρt+1

{

|̂�s,t − �t | ≥ 1

2

√

128 ln t

λs

}

≤
t−1
∑

s=ρt+1

({

|̂�s,t + Bs,t − �t | ≥ 1

4

√

128 ln t

λs

}

+
{

|Bs,t | ≥ 1

4

√

128 ln t

λs

})

.

Now, using (4) again, we can argue that

{

|Bs,t | ≥ 1

4

√

128 ln t

λs

}

≤
⎧

⎨

⎩

s <
16

λ

√

128 ln t
λs

⎫

⎬

⎭

+
{

̂λs

s
<

λ

2

}

. (11)

Since we are summing over s > ρt , it is easy to verify that s > ρt combined with t ≥ 23
certainly make the first term in the right-hand side of (11) vanish.

We sum over t = 23, . . . , n and take expectations. As before, we apply Chernoff-
Hoeffding bounds and Lemma 3. This results in the following chain of inequalities

(III) ≤
n
∑

t=23

t−1
∑

s=ρt+1

(

E

[

2 exp

(

− 4 ln t

λsrs,t

)]

+ P

(

̂λs

s
<

λ

2

))

≤
n
∑

t=23

t−1
∑

s=ρt+1

(

E

[

2 exp

(

− (1 +̂λs)4 ln t

λs

)]

+ P

(

̂λs

s
<

λ

2

))

≤
n
∑

t=23

t−1
∑

s=ρt+1

(

E

[

2 exp

(

− (1 + λs/2)4 ln t

λs

)]

+ 3P

(

̂λs

s
<

λ

2

))

3Note that Nt−1 ≤ ρt certainly holds when t ≤ 22.

Mach Learn (2011) 83: 71–102 97

<

n
∑

t=23

t−1
∑

s=ρt+1

(

2e−2 ln t + 3 exp

(

−λ2s

8

))

≤
n
∑

t=1

t−1
∑

s=ρt

(

2

t2
+ 3

t2

)

≤ 5 ln(n + 1). (12)

Combining together the bounds in (8), (10), and (12), and recalling the assumption on M ,
we obtain

n
∑

t=1

(

P(Yt
̂�Nt−1,t < 0) − P(Yt�t < 0)

)

≤ cnε1+α + (I) + (II) + (III)

≤ cnε1+α + ρn + M + 1 + 8 ln(n + 1)

≤ cnε1+α + 16

λ2
max{d, lnn} + 512

λε2
lnn + 1 + 8 ln(n + 1). (13)

We can now optimize (13) with respect to ε. The optimal ε is

ε∗ =
(

1024 lnn

λncα

)1/(2+α)

.

Substituting back gives desired regret bound.
The expected number of labels queried by the algorithm is bounded by (I) + EL0, being

L0 =
n
∑

t=1

{

̂�2
Nt−1,t ≤ 128 ln t

λNt−1
,Nt−1 > ρt

}

.

This can be treated similarly as before. Using Assumption 1 we can write

EL0 ≤ cnεα +
n
∑

t=1

P

(

̂�2
Nt−1,t ≤ 128 ln t

λNt−1
,Nt−1 > ρt , |�t | ≥ ε

)

= cnεα + (II)

holding for any ε > 0. Putting together we end up with the upper bound cnεα + (I) + (II).
We exploit the bounds in (8) and (10) and again optimize for ε, yielding the claimed bound
on the number of labels.

6.3 Improvements

In this section we make further comments on the technical aspects of our analysis. In partic-
ular, we would like to stress the many improvements one can achieve over the basic proof
we presented in Sect. 6.2. These improvements are interesting in that they allow us to ei-
ther sharpen the bounds of Theorem 2 or extend its applicability. The main reason why we
decided to stick to the simpler analysis leading to Theorem 2, as currently presented, is to
avoid cluttering the bounds with inessential details. In fact, the bounds resulting from the
application of these improvements would be harder to read, and would somehow obscure
the understanding of regret and sampling rate behavior as a function of n.

98 Mach Learn (2011) 83: 71–102

1. The first improvement one can obtain is getting rid of the linear dependence on the
dimension d in Theorem 2. This dependence derives from a direct application of
the concentration results contained in Shawe-Taylor et al. (2005) (also recalled in
Blanchard et al. 2007). In fact, it is possible to take into account in a fairly pre-
cise manner the way the process spectrum decreases (see, e.g., Blanchard et al. 2007;
Braun 2006), thereby extending the analysis to the infinite-dimensional case. This im-
provement should be then combined with the full-rank assumption λ > 0 on the process
correlation matrix E[X1X	

1] we implicitly make in Theorem 2: The way it is presented
now, the proof makes substantial use of the approximation̂λs/s ≈ λ, beinĝλs the smallest
eigenvalue of the current empirical correlation matrix. If λ = 0 (because the underlying
process is not full rank) then the concentration propertŷλs/s ≈ λ would no longer allow
us to argue that the bias and variance upper bounds in (4) and (5) converge to 0 as 1/s;
this is just because if̂λs/s → 0 the quantity 1

1+̂λs
cannot converge to 0 as 1/s. One way

around this (seemingly) degenerate behavior is to directly deal with the concentration
properties of all process eigenvalues at once. For instance, if we consider the quadratic
forms in (2) and (3) as (sharper) bounds on bias and variance, then a standard SVD would
single out all eigenvalues of the empirical correlation matrix along with the correspond-
ing eigenvector projections. One can then apply the results in Blanchard et al. (2007),
Shawe-Taylor et al. (2005) on the concentration properties of projections. This approach
would remove the constraint λ > 0 at the cost of making the proof far more complicated.

2. As anticipated in Sect. 5, it is not hard to adapt the presented analysis to a more time-
efficient (mistake-driven) algorithm that schedules storage of the next example only if the
current prediction is wrong. One can turn the algorithm in Fig. 12 into a mistake-driven
algorithm by replacing line 4 with

4′. Else if (w	xt)
2 ≤ 128 ln t

λN
then query yt . If ytw	xt < 0 then schedule stor-

age of (xt+1,yt+1);

Hence, when a small margin is detected, we query the current label and, only in the case
of sign disagreement, we schedule to store the next example (xt+1,yt+1). In this case yt

is queried but the example (xt ,yt) is not stored. The analysis is very similar to the one in
Sect. 6, and is based on the simple observation that the one-step regret in Lemma 2 can
actually be sharpened as

P(Yt
̂�t < 0) − P(Yt�t < 0) ≤ cε1+α + P(̂�t�t ≤ 0, yt

̂�t < 0, |�t | ≥ ε).

This allows us to propagate the additional condition yt
̂�t < 0 throughout the proof (in

particular, to Term (II)), leading to exactly the same regret bound as the one in Theorem 2.
On the other hand, the counter N would now serve as accumulator for the number of
stored examples, which can be quite smaller than the number of labels queried by the
mistake-driven algorithm. Since N is intimately related to the actual running time of the
algorithm (see Sect. 2.1), this new proof would yield a bound on the (expected) running
time, rather than on the number of queried labels.

7 Conclusions and open problems

We have investigated new selective sampling and filtering algorithms for learning noisy
classifiers. The algorithms use least-squares estimates to learn a classifier, and compare the
margin of this classifier to dynamically adjusted thresholds.

Mach Learn (2011) 83: 71–102 99

We reported on an extensive experimental study on a medium-size text categorization
benchmark. The experimental results show that our selective sampling and filtering algo-
rithms can effectively exploit the additional information provided by small margin examples,
to the extent that our algorithms outperform known competitors. Adding a mistake-driven
mechanism does not have any negative impact on the F -measure obtained by the sampling
algorithm. Rather, it appears to slightly improve the overall performance while reducing
running times.

On the theoretical side, we formulated a probabilistic model for the data-generating
process based on a low-noise assumption combined with linear label noise (sometimes
called cosine label noise). We proved a bound on the expected cumulative regret of a fully-
supervised algorithm, and used this bound as a yardstick for the subsequent analysis. Our
main theoretical result is a regret analysis for an adaptive sampling variant of one of the
algorithms used in the experiments. We showed that both the expected cumulative regret
and the expected number of labels are bounded by quantities depending on the (unknown)
amount of noise in the data. In the case of hard margins, such quantities can be combined
to recover the standard negative exponential behavior of the average regret in terms of the
number of queried labels.

The adaptive sampling algorithm has a deferring mechanism for querying the labels.
This is used to provably learn the amount of noise in the data without querying the most
informative labels (i.e., the algorithm learns how many labels are needed rather than which
ones). As expected, our experiments confirm that the need of deferring queries is an artifact
of the analysis and is detrimental in practice. Still, on our text categorization experiments
the adaptive algorithm significantly outperformed one of the competitors.

We close by mentioning two open questions.

1. Our analysis in Sect. 6.2 works under the assumption that the smallest empirical eigen-
value of the data correlation matrix is close enough to the corresponding process eigen-
value λ. As we already said, this is the reason why the algorithm in Fig. 12 undergoes
an initial regime when it queries all labels. As stated in Theorem 2, the duration of this
regime is independent of the amount of noise in the data (the α exponent), but it does still
depend on both λ and the input dimension d . In fact, the way it is stated, Theorem 2 only
holds in the finite dimensional case. As we explained in Sect. 6.3, the latter issue can be
faced at the cost of shifting to more involved results on the concentration of eigenvalues
in infinite-dimensional spaces. The question whether it is possible to remove the transient
regime in Fig. 12, while still getting the same regret bound, remains open.

2. Analyzing the algorithms we used in the experiments does not seem to be easy, since a
direct concentration analysis does not seem to be applicable. On one hand, it would be
definitely interesting to evolve the current analysis so as to state results similar to the one
given in Theorem 2, regardless of the fact that the samples gathered by the algorithm are
conditionally dependent. However, this entails a technical problem which is not straight-
forward to get around. On the other hand, a possible intermediate step might be to give
up some of the accuracy and/or efficiency of the algorithm of Fig. 12 in order to obtain
theoretical guarantees similar to those contained in Theorem 2. For instance, would it
possible to modify the SS algorithm, without hurting its performance, so as the queried
labels become conditionally independent? Indeed if the query selection criterion depends
only on the past instances, rather than on both past instances and past labels, then the re-
sulting sampling algorithm does clearly rely on conditionally independent labels. A good
starting point to tackle this problem might be the recent paper (Strehl and Littman 2008).

100 Mach Learn (2011) 83: 71–102

Acknowledgements We thank all reviewers for their helpful comments. Thanks to Alex Conconi for his
contributions to earlier versions of this work. Thanks also to Tong Zhang and Nina Balcan for useful com-
ments.

Appendix

This appendix contains the proof of Lemma 4. Before proceeding with the proof, we need a
few definitions and a technical lemma.

An integer-valued random variable T is a stopping time w.r.t. a random process
Z1,Z2, . . . if, for each k ≥ 1, {T = k} belongs to the σ -algebra σ(Z1, . . . ,Zk) generated
by the random variables Z1, . . . ,Zk . A stopping time T is finite if P(T = ∞) = 0. The next
result proves an elementary property of stopping times.

Lemma 5 If T is a finite stopping time w.r.t. the i.i.d. random variables Z1,Z2, . . . , then
ZT +1 is independent of Z1, . . . ,ZT and is distributed as Z1.

Proof Choose any A ∈ σ(Z1, . . . ,ZT) and choose any subset B of the range of ZT +1 such
that {ZT +1 ∈ B} is measurable. We have

P (A ∩ {ZT +1 ∈ B}) =
∞
∑

j=1

P
(

A ∩ {T = j} ∩ {Zj+1 ∈ B})

=
∞
∑

j=1

P (A ∩ {T = j})P(Zj+1 ∈ B)

(since A ∩ {T = j} is σ(Z1, . . . ,Zj)-measurable)

=
∞
∑

j=1

P (A ∩ {T = j})P (Z1 ∈ B) = P(A)P(Z1 ∈ B). (14)

Hence, taking A = �, we get P(ZT +1 ∈ B) = P(Z1 ∈ B), showing that ZT +1 is distributed
as Z1. Consequently, from (14) we get that P(A ∩ {ZT +1 ∈ B}) = P(A)P(ZT +1 ∈ B), as
desired. �

We are now ready to prove Lemma 4 in the main text.
The random variables T1, T2, . . . are finite stopping times with respect to the i.i.d. process

Z1,Z2, . . . according to which the examples are generated. In fact, {Ti = k} is completely
determined by the values taken by Z1, . . . ,Zk . Furthermore, P(Ti = ∞) = 0 since, for each
i ≥ 1 and for t large enough, ̂�2

Nt−1,t ≤ 128 ln t
λNt−1

, where Nt−1 = i − 1, will hold.
Pick any i ≥ 1. By Lemma 5, ZTi+1 is independent of Z1, . . . ,ZTi

and distributed as Z1.
Since the random variables ZT1+1, . . . ,ZTi−1+1 are σ(Z1, . . . ,ZTi

)-measurable (this is guar-
anteed by the fact that Ti−1 < Ti always holds), we get that ZTi+1 is also independent of
ZT1+1, . . . ,ZTi−1+1. As i was chosen arbitrarily, we get that ZT1+1,ZT2+1, . . . are indepen-
dent random variables distributed as Z1.

References

Angluin, D. (2004). Queries revisited. Theoretical Computer Science, 313(2), 175–194.

Mach Learn (2011) 83: 71–102 101

Azoury, K. S., & Warmuth, M. K. (2001). Relative loss bounds for on-line density estimation with the expo-
nential family of distributions. Machine Learning, 43(3), 211–246.

Balcan, M. F., Beygelzimer, A., & Langford, J. (2006). Agnostic active learning. In Proceedings of the 23rd
international conference on machine learning (ICML) (pp. 65–72). Omnipress.

Balcan, M. F., Broder, A., & Zhang, T. (2007). Margin-based active learning. In Proceedings of the 20th
annual conference on learning theory (COLT) (pp. 35–50). Berlin: Springer.

Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. Journal of
the American Statistical Association, 101(473), 138–156.

Blanchard, G., Bousquet, O., & Zwald, L. (2007). Statistical properties of kernel principal component analy-
sis. Machine Learning, 66(2–3), 259–294.

Boucheron, S., Bousquet, O., & Lugosi, G. (2005). Theory of classification: a survey of some recent advances.
ESAIM Probability and Statistics, 9, 323–375.

Braun, M. L. (2006). Accurate error bounds for the eigenvalues of the kernel matrix. Journal of Machine
Learning Research, 7, 2303–2328.

Campbell, C., Cristianini, N., & Smola, A. (2000). Query learning with large margin classifiers. In Pro-
ceedings of the 17th international conference on machine learning (ICML) (pp. 111–118). San Mateo:
Morgan Kaufmann.

Castro, R., & Nowak, R. D. (2008). Minimax bounds for active learning. IEEE Transactions on Information
Theory, 54(5), 2339–2353.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge University
Press.

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A second-order Perceptron algorithm. SIAM Journal
on Computing, 43(3), 640–668.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006a). Incremental algorithms for hierarchical classification.
Journal of Machine Learning Research, 7, 31–54.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006b). Worst-case analysis of selective sampling for linear-
threshold algorithms. Journal of Machine Learning Research, 7, 1205–1230.

Cohn, R., Atlas, L., & Ladner, R. (1990). Training connectionist networks with queries and selective sam-
pling. In Advances in neural information processing systems (NIPS), 1989. New York: MIT Press.

Cohn, R., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning. Machine Learning,
15(2), 201–221.

Dasgupta, S., Kalai, A. T., & Monteleoni, C. (2005). Analysis of Perceptron-based active learning. In Pro-
ceedings of the 18th conference on learning theory (COLT 2005) (pp. 249–263). Berlin: Springer.

Dasgupta, S., Hsu, D., & Monteleoni, C. (2008). A general agnostic active learning algorithm. In Advances
in neural information processing systems (NIPS) (Vol. 21, pp. 353–360). New York: MIT Press.

Freund, Y., Seung, S., Shamir, E., & Tishby, N. (1997). Selective sampling using the query by committee
algorithm. Machine Learning, 28(2/3), 133–168.

Gilad-Bachrach, R., Navot, A., & Tishby, N. (2005). Query by committee made real. In Advances in neural
information processing systems (NIPS) (Vol. 19). New York: MIT Press.

Hanneke, S. (2007). A bound on the label complexity of agnostic active learning. In Proceedings of the 24th
international conference on machine learning (ICML) (pp. 353–360). Omnipress.

Hanneke, S. (2009). Adaptive rates of convergence in active learning. In Proceedings of the 22nd conference
on learning theory (COLT 2009). Omnipress.

Helmbold, D., Littlestone, N., & Long, P. (2000). Apple tasting. Information and Computation, 161(2), 85–
139.

Joachims, T. (1999). Making large-scale support vector machine learning practical. In B. Schölkopf,
C. Burges, & A. Smola (Eds.), Advances in kernel methods: support vector learning. New York: MIT
Press.

Kääriäinen, M. (2006). Active learning in the non-realizable case. In Proceedings of the 17th international
conference on algorithmic learning theory (ALT 2006) (pp. 63–77). Berlin: Springer.

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers. In Proceedings of the
17th annual international ACM-SIGIR conference on research and development in information retrieval
(pp. 3–12). Berlin: Springer.

Monteleoni, C., & Kääriäinen, M. (2007). Practical online active learning for classification. In IEEE com-
puter society conference on computer vision and pattern recognition (pp. 249–263). New York: IEEE
Computer Society.

Muslea, I., Minton, S., & Knoblock, C. A. (2000). Selective sampling with redundant views. In Proceedings
of the national conference on artificial intelligence (AAAI 2000) (pp. 621–626). New York: MIT Press.

NIST (2004). trec.nist.gov/data/reuters/reuters.html.
Sculley, D. (2008). Advances in online learning-based spam filtering. PhD Thesis in Computer Science, Tufts

University. August.

http://trec.nist.gov/data/reuters/reuters.html

102 Mach Learn (2011) 83: 71–102

Shawe-Taylor, J., Williams, C. K. I., Cristianini, N., & Kandola, J. (2005). On the eigenspectrum of the Gram
matrix and the generalization error of kernel-PCA. IEEE Transactions on Information Theory, 51(7),
2510–2522.

Steinwart, I., & Scovel, C. (2007). Fast rates for support vector machines using Gaussian kernels. Annals of
Statistics, 35, 575–560.

Strehl, A. L., & Littman, M. L. (2008). Online linear regression and its application to model-based reinforce-
ment learning. In Advances in neural information processing systems (NIPS) (Vol. 21, pp. 1417–1424).
New York: MIT Press.

Tong, S., & Koller, D. (2000). Support vector machine active learning with applications to text classification.
In Proceedings of the 17th international conference on machine learning (ICML) (pp. 999–1006). San
Mateo: Morgan Kaufmann.

Tsybakov, A. (2004). Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1),
135–166.

Vovk, V. (2001). Competitive on-line statistics. International Statistical Review, 69, 213–248.
Ying, Y., & Zhou, D. X. (2006). Online regularized classification algorithms. IEEE Transactions on Informa-

tion Theory, 52, 4775–4788.

	Learning noisy linear classifiers via adaptive and selective sampling
	Abstract
	Introduction
	Overview of results
	Related work

	The selective sampling and filtering algorithms
	Computational issues

	Experimental results
	Selective sampling
	Filtering

	Probabilistic model, Bayes classifier and regret
	Adaptive sampling
	Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Improvements

	Conclusions and open problems
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

