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Abstract

We study hierarchical classification in the
general case when an instance could belong
to more than one class node in the under-
lying taxonomy. Experiments done in pre-
vious work showed that a simple hierarchy
of Support Vectors Machines (SVM) with a
top-down evaluation scheme has a surpris-
ingly good performance on this kind of task.
In this paper, we introduce a refined eval-
uation scheme which turns the hierarchical
SVM classifier into an approximator of the
Bayes optimal classifier with respect to a sim-
ple stochastic model for the labels. Exper-
iments on synthetic datasets, generated ac-
cording to this stochastic model, show that
our refined algorithm outperforms the simple
hierarchical SVM. On real-world data, how-
ever, the advantage brought by our approach
is a bit less clear. We conjecture this is due
to a higher noise rate for the training labels
in the low levels of the taxonomy.

1. Introduction

In hierarchical classification, class labels are arranged
as nodes in a tree forest to represent a given taxon-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

omy. Each data instance is labelled with a (possibly
empty) set of the nodes which we call a multilabel. It
is assumed that whenever a multilabel contains a cer-
tain node i in a tree of the taxonomy, then it must
also contain all the nodes along the path connecting
the tree root to node i.

The problem of hierarchical classification, especially of
textual information, has been extensively investigated
in past years (Dumais & Chen, 2000; Dekel et al.,
2004a; Dekel et al., 2004b; Granitzer, 2003; Hofmann
et al., 2003; Koller & Sahami, 1997; McCallum et al.,
1998; Mladenic, 1998; Ruiz & Srinivasan, 2002; Sun
& Lim, 2001). On the other hand, the more general
case investigated in this paper, where the multilabel
of an instance can include multiple and partial paths
in the hierarchy forest, has received much less atten-
tion (Cesa-Bianchi et al., 2004; Cesa-Bianchi et al.,
2005; Rousu et al., 2005; Szdemak et al., 2005).

In Cesa-Bianchi et al. (2005) the H-loss function is in-
troduced as performance measure in hierarchical clas-
sification problems. Given a pair of multilabels, the
H-loss is computed by examining the paths where the
two multilabels differ (see Section 2 for a formal def-
inition). As previoulsy noted in the literature, a sim-
ple hierarchical version of the standard Support Vec-
tor Machines (Cortes & Vapnik, 1995; Cristianini &
Shawe-Taylor, 2000; Schölkopf & Smola, 2002), called
h-svm, performs surprisingly well on the H-loss even if
it is not designed to do so. This left open the problem
of improving the classification performance using an
algorithm explicitly designed for the purpose of mini-
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mizing the H-loss.

In this paper, we introduce a new learning algorithm,
called b-svm, that differs from h-svm mainly in the
evaluation phase (namely, in assigning multilabels to
instances). In fact, whereas h-svm assigns labels to
nodes following a top-down procedure, the evaluation
of an instance in b-svm is based on a recursive bottom-
up procedure driven by partial evaluations of the H-
loss in the subtrees of the hierarchy. This procedure
is designed to make the b-svm hierarchical classifier
approximate the Bayes optimal classifier for the H-loss.
The stochastic model we use to define Bayes optimality
follows Cesa-Bianchi et al. (2005): Multilabels are
generated in such a way that child nodes receive labels
that are independent conditioned on the father’s label.

Our Bayesian evaluation mechanism is based on a com-
bination of good local classification power, obtained
through the weights produced by the SVMs sitting at
each node, and good probability estimation power, ob-
tained by fitting sigmoids on the weights, as in Platt
(1999).

It is worth emphasizing that since the Bayesian recur-
sive evaluation is, to a large extent, independent of the
training algorithm, we might replace SVM by other al-
gorithms more geared at probability estimation, such
as regularized logistic regression (Hastie et al., 2001).
Thus, we believe the main contribution of this paper
mainly affects Machine Learning practice: we propose
and investigate a modular architecture for hierarchical
classification based on off-the-shelf techniques.

The paper is organized as follows. In Section 2 we
recall the main definitions, including the H-loss func-
tion. Section 3 presents the stochastic model for the
generation of hierarchically labelled data and the cor-
responding Bayes optimal classifier for this model. In
Section 4 we introduce an approximation of the Bayes
optimal classifier based on SVM, and also recall the
baseline algorithm h-svm employed in previous work
(Cesa-Bianchi et al., 2005; Rousu et al., 2005). Sec-
tion 5 illustrates the datasets used in our experiments
and discusses the empirical performance of the two
algorithms. Section 6 is devoted to conclusions and
ongoing research.

2. Definitions and notation

We assume data elements are encoded as unit-norm
vectors x ∈ Rd, which we call instances. A multilabel
for an instance x is any subset of the set {1, . . . , N}
of all labels, including the empty set. We represent
the multilabel of x with a vector v = (v1, . . . , vN ) ∈
{0, 1}N , where i ∈ {1, . . . , N} belongs to the multil-

abel of x if and only if vi = 1.

A taxonomy G is a forest whose trees are defined over
the set of labels. A multilabel v ∈ {0, 1}N is said to
respect a taxonomy G if and only if v is the union of
one or more paths in G, where each path starts from
a root but need not terminate on a leaf. See Figure 1.
All the algorithms considered in this paper generate
multilabels that respect a given underlying taxonomy.

We assume the data-generating mechanism produces
pairs (x,v) such that v respects some fixed underlying
taxonomy G with N nodes. The set of roots in G
is denoted by root(G). We use par(i) to denote the
unique parent of node i, anc(i) to denote the set of
ancestors of i, subtree(i) to denote the set of nodes
in the subtree rooted at i (including i), and child(i) to
denote the set of children of node i. Finally, we denote
by {φ} the indicator function of predicate φ.

The H-loss

A hierarchical loss function is used to measure the
discrepancy between the predicted multilabel ŷ =
(ŷ1, . . . , ŷN ) and the true multilabel v = (v1, . . . , vN ).
The leading idea underlying our hierarchical loss func-
tion is: if a parent class has been predicted wrongly,
then errors in the children should not be taken into
account.

A loss function with these properties is the H-loss `H

defined in Cesa-Bianchi et al. (2005) as

`H(ŷ,v) =
N∑

i=1

ci {ŷi 6= vi ∧ ŷj = vj , j ∈ anc(i)} ,

where c1, . . . , cN > 0 are fixed cost coefficients. In
words, to compute the H-loss all paths in the taxon-
omy G from a root down to a leaf are examined and,
whenever a node i is encountered such that ŷi 6= vi,
then ci is added to the loss, while all the other loss con-
tributions from the subtree rooted at i are discarded.
Pictorially, this allows us to associate with each error
pattern a contour passing through the nodes contribut-
ing to the H-loss. Figure 1(c) gives an example.

3. A stochastic model for multilabels

The paper Cesa-Bianchi et al. (2005) introduced the
following stochastic model to generate the multilabels
associated with an arbitrary sequence x1,x2, . . . of in-
stances.

A probability distribution fG over the set of multil-
abels is associated with a taxonomy G as follows. Each
node i of G is tagged with a {0, 1}-valued random vari-
able Vi distributed according to a conditional proba-
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(a) (b) (c)

Figure 1. A one-tree forest (repeated three times). Each
node corresponds to a class in the taxonomy G, hence in
this case N = 12. Gray nodes are included in the multilabel
under consideration, white nodes are not. (a), (b) Two
generic multilabels that respect G. (c) Superposition of
multilabel (a) on multilabel (b): Only the checked nodes
contribute to the H-loss between (a) and (b). The H-loss
contour passes through the checked nodes. Observe that,
by definition of H-loss, if i is a contour node for the H-loss,
then no other node in subtree(i) can be a contour node.

bility function P(Vi | Vpar(i), x). To model the depen-
dence between the labels of nodes i and j = par(i)
we assume P (Vi = 1 | Vj = 0, x) = 0 for all nonroot
nodes i and all instances x.

The quantity

fG(v | x) =
N∏

i=1

P (Vi = vi | Vj = vj , j = par(i), x)

defines a joint probability distribution on V1, . . . , VN

conditioned on x being the current instance. This
joint distribution puts zero probability on all multi-
labels v ∈ {0, 1}N which do not respect G.

Through fG we specify an i.i.d. process {V 1,V 2, . . .}
as follows. We assume that an arbitrary and un-
known sequence of instance vectors x1,x2, . . . is fixed
in advance, where ‖xt‖ = 1 for all t. The multilabel
V t is distributed according to the joint distribution
fG(· | xt). We call each pair (xt,vt), where vt is a
realization of V t, an example.

In what follows, when the taxonomy G is understood
from the context, we use pi(x) to denote the proba-
bility P

(
Vi = 1 | Vpar(i) = 1, x

)
. When no ambiguity

arises, we also write pi instead of pi(x).

The Bayes-optimal classifier

We now recall, following Cesa-Bianchi et al. (2005),
the Bayes-optimal classifier (h-bayes) that results af-
ter combining the H-loss function with the stochas-
tic multilabel model defined above. By definition, h-
bayes classifies any instance x with the multilabel

y∗ = argmin
y∈{0,1}N

E[`H(y,V ) | x ] ,

where the expectation is w.r.t. the random draw of V ,
conditioned on x being the current instance.

Fix any unit-length instance x and let y be a multil-
abel that respects G. For each node i in G, recursively
define

Hi,x(y) = ci (pi(1 − yi) + (1 − pi)yi) +

+
∑

k∈child(i)

Hk,x(y) ,

where the sum is zero when child(i) is empty (i.e.,
when i is a leaf node).

The classification y∗ performed by h-bayes can be
computed as follows. Initially, all nodes of G are as-
signed to a set S and then removed one by one. The
value y∗i of a node i is decided when i is removed from
S. Node i can be removed from S only if i is a leaf or
if all nodes j in the subtree rooted at i have already
been removed. When i is removed, its value y∗i is set
to 1 if and only if

pi

2 −
∑

k∈child(i)

Hk,x(y∗)/ci

 ≥ 1 . (1)

If y∗i is set to zero, then all nodes in the subtree rooted
at i are set to zero.

Note that if i is a leaf node then (1) is equivalent
to y∗i = {pi ≥ 1/2}. Also, since each Hi,x only
depends on the nodes in subtree(i), the functions
H1,x, . . . ,HN,x are well defined, and can be computed
in a standard bottom-up fashion. See Figure 2 for an
example.

4. An SVM-based approximation

To implement h-bayes we must derive estimates p̂i(x)
of the probabilities pi(x) for all x and i. We do so by
training an SVM at each node of the taxonomy. The
SVM at node i is trained on the subset of the training
set including all examples (x,v) such that vpar(i) =
1. Let w1, . . . ,wN ∈ Rd be the vectors1 computed
by these SVMs. To obtain the estimates p̂i from the
vectors wi we set

p̂i(x) = 1
/(

1 + eαi w>i x+βi

)
and use Platt’s algorithm (Platt, 1999) to fit the pa-
rameters α1, . . . , αN via cross-validation on the train-
ing set. (To avoid flipping the SVM classifications, we

1These vectors are meant to incorporate the biases com-
puted by each SVM.
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Figure 2. The bottom-up evaluation of h-bayes as a
message-passing procedure. For simplicity, assume ci = 1
for all nodes i. Initially, leaves 1, 2, and 3 compute their
optimal label y∗i = {pi ≥ 1/2} for i = 1, 2, 3. Then, each
leaf i sends to the parent node the message Hi,x = 1 − pi

if y∗i = 1 and the message Hi,x = pi otherwise. The par-
ent node 4 computes the sum Σx = H1,x + H2,x + H3,x

of the children messages and sets y∗4 = 1 if and only if
p4 ≥ 1/(2 − Σx). Finally, if y∗4 = 1, then node 4 sends
up to its parent the message H4,x = 1 − p4 + Σx; oth-
erwise, the node sends the message H4,x = p4 + Σx. In
the figure, y∗1 = 1, y∗2 = 0, and y∗3 = 1 so that we have
Σx = (1− p1) + p2 + (1− p3) and H4,x = (1− p4) + Σx.

slightly modify Platt’s technique and set βi = 0 for
each i = 1, . . . , N .)

We have chosen Platt’s sigmoid fitting algorithm for
two reasons: First, keeping SVM as base classifier
for our algorithms is useful to appreciate the poten-
tial benefit brought to the classification system by our
Bayesian approximation. Second, Platt’s technique,
after all, is known to perform pretty well in prac-
tice (Caruana & Niculescu-Mizil, 2005).

We call b-svm the algorithm that learns w1, . . . ,wN

and p̂1, . . . , p̂N as described above, and then computes
the classication of h-bayes using estimates p̂i in place
of pi.

In order to verify the effectiveness of the Bayesian
evaluation mechanism, we performed an experimental
comparison between b-svm and h-svm. h-svm uses
the same vectors w1, . . . ,wN ∈ Rd as b-svm, but com-
putes the label ŷ = (ŷ1, . . . , ŷN ) assigned to instance
x according to the following top-down procedure:

ŷi =

 {w>
i x ≥ 0} if i ∈ root(G),

{w>
i x ≥ 0} if i 6∈ root(G) ∧ ŷpar(i) = 1,

0 if i 6∈ root(G) ∧ ŷpar(i) = 0,

where root(G) is the set of roots in the given taxon-
omy G. Note that h-svm and b-svm use exactly the
same set of weights. The only difference is in the way
the classifiers are defined in terms of these weights. In

h-svm, the multilabel is constructed via a top-down
evaluation of the tree nodes, where the label ŷi as-
signed to node i (provided ŷpar(i) = 1) just depends
on the sign of the margin w>

i x.

On the other hand, as hinted by Figure 2, b-svm
is a bottom-up procedure, where the label assigned
to i (provided the label assigned to its parent is 1)
depends on the interaction between the (estimated)
node’s probability p̂i and the probabilities of i’s chil-
dren p̂k, k ∈ child(i). (Recall that each p̂i is computed
by passing the margin w>

i x through a fitted sigmoid.)

Inspection of (1) in the definition of h-bayes reveals
that this interaction amounts to use at node i a classi-
fier of the form {w>

i x−τi}, where τi ≥ 0 is a threshold
that depends on the (estimated) child probabilities.

A closer look at how the threshold is defined shows
that τi is large (and positive) when the margins of i’s
children tend to be close to zero. Thus b-svm tends
to assign label 0 to those nodes i whose child nodes
have small margins, independent of i’s margin w>

i x.
On the other hand, if i’s children achieve large margin
(either positive or negative) on the current instance x,
then τi tends to be close to zero. This allows node i
to decide based solely on its own margin, independent
of the sign of the margins of its children.

Finally observe that, due to its bottom-up dynamics,
b-svm needs to compute the margin of each node in
order to build the multilabel of an instance. However
this has to be done only in the evaluation phase (i.e.,
when the algorithm has to assign a multilabel to a
test instance) not in the training phase. Thus, the
additional computational effort of b-svm compared to
h-svm is negligible.

5. Experiments

We tested h-svm and b-svm on four medium-size
datasets, two of which were artificially generated.
These datasets are described in detail below.

A remark about the cost coefficients for the H-loss:
During the evaluation phase b-svm constructed the
multilabel of each instance using rule (1) with coef-
ficients ci set as follows: if i is a root, then ci =
1/|root(G)|; otherwise, ci = 1/|child(j)|, where j =
par(i). This setting normalizes the costs so as to re-
move any incentive towards building multilabels with
short paths. In fact, whenever b-svm decides on the
label of node i, it has to balance the cost ci of making
a false negative on i with the total cost of mistakes
made in the (potentially large) subtree rooted at i,
given that the label of i has been guessed correctly.
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However, since the total cost on the subtree is equal
to the cost of the H-loss contour cutting through this
subtree, the normalized cost setting makes this total
cost not larger than ci.

The synthetic datasets

The synthetic datasets were generated as follows. We
defined a simple taxonomy consisting of three complete
ternary trees each of depth 2, for a total of N = 31 +
32 + 33 = 39 nodes.

Let Ud be the uniform distribution on the surface of
the unit sphere in Rd. A stream of instances xt was
generated via independent draws from Ud. Multilabels
were assigned using N vectors u1, . . . ,uN , also drawn
independently from Ud. However, to give structure
to the learning problem, we introduced some correla-
tions between the vectors ui and the distribution of
instances. These correlations were introduced via the
following filtering rules.

First, we discarded all instances xt such that |u>i xt| <
θ1 for some i = 1, . . . , N , where θ1 > 0 is a threshold
parameter. Second, we constructed the multilabel vt ∈
{0, 1}N associated with an instance xt according to
the following top-down procedure: If i has parent j
and vj,t = 0 then vi,t is set to 0; otherwise, vi,t is set
to 1 with probability 1

/(
1 + e−αu>i xt

)
. However, if

vi,t = 1 and u>i xt < θ2 then the instance is discarded.
(Here α, θ2 > 0 are additional parameters.)

Notice that, in this stochastic label assignment model,
the noise on the label vi,t increases as the margin
achieved by ui on the current instance xt decreases.
Hence, the first margin condition |u>i xt| < θ1 imposes
a uniform upper bound on the noise at each node. The
second margin condition u>i xt < θ2 is used to control
the noise on vi,t conditioned on the event that vi,t = 1.

We generated two datasets, called Synth1 and Synth2:
Synth1 is a rather noisy dataset, with a relatively large
number of paths per multilabel, while Synth2 is less
noisy and has multilabels that span fewer paths. The
two datasets have been generated through the follow-
ing parameter setting:

d θ1 θ2 α
Synth1 100 0.01 0.03 20
Synth2 100 0.001 0.07 25

Synth1 turns out to have on average 2.656 paths per
multilabel, while Synth2 has on average 1.277. Both of
them consist of 40,000 examples divided into 4 ordered
chunks. Each algorithm was trained on 3 consecutive
chunks and tested on the remaining one (where the
fourth chunk is followed by the first one in a circular

way).

The RCV1 dataset

This dataset consists of the first (in chronological or-
der) 100,000 newswire stories from the Reuters Corpus
Collection (Reuters, 2000). The associated taxonomy
of labels, which are the topics of the documents, has
101 nodes organized in a forest of 4 trees. The for-
est is shallow: the longest path has length 3 and the
the distribution of nodes, sorted by increasing path
length, is {0.04, 0.53, 0.42, 0.01}. The average number
of paths per multilabel is 1.5. We divided this dataset
into 5 equally-sized chunks, trained the algorithms on
one chunk, and tested them on the next chunk.

The OHSUMED dataset

This dataset includes the documents classified in the
nodes of the subtree rooted in “Quality of Health
Care” (MeSH code N05.715) of the OHSUMED corpus
of medical abstracts (Hersh, 1994). Since OHSUMED is
not quite a tree but a directed acyclic graph, and since
the H-loss is defined for trees only, we removed from
this OHSUMED fragment the few nodes that did not have
a unique path to the root. This produced a hierarchy
with 94 classes and a data set with 55,503 documents.
The choice of this specific subtree was motivated by
its structure only; in particular: the subtree depth is
4, the distribution of nodes (sorted by increasing path
length) is {0.26, 0.37, 0.22, 0.12, 0.03}, and there is a
reasonable number of partial and multiple path mul-
tilabels (the average number of paths per instance is
1.53). We ran 5 experiments by randomly splitting the
corpus in a training set of 40,000 documents and a test
set of 15,503 documents.

For both the RCV1 and the OHSUMED datasets we used a
standard bag-of-words vectorization with tf-idf, and
then normalized the resulting vectors to unit length.
Finally, in all cases test set performance is measured
as an average over chunk experiments.

Results

The results of our experiments are summarized in Ta-
bles 1, 2, and 3 below.

The results are expressed in terms of the H-loss com-
puted with all cost coefficients ci set to 1. We did not
report H-loss results with the normalized cost coeffi-
cients used in the evaluation phase of b-svm, since
these coefficients compress the range of H-loss val-
ues making it harder to appreciate performance dif-
ferences. In this sense, we view the H-loss with nor-
malized coefficients just as an auxiliary loss function
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that helps b-svm to come up with “balanced” multil-
abels.

Table 1. Average test error (H-loss) and standard deviation
on the four datasets.

Dataset Synth1 Synth2
h-svm 1.454 (±0.007) 0.350 (±0.007)
b-svm 1.269 (±0.008) 0.322 (±0.003)

Dataset RCV1 OHSUMED
h-svm 0.716 (±0.024) 1.171 (±0.005)
b-svm 0.712 (±0.023) 1.158 (±0.005)

Table 1 summarizes the results on the test set for each
algorithm and dataset. These numbers are averages
over four experiments for the synthetic dataset, and
over five experiments for the real-world datasets. Note
that b-svm beats h-svm in all four cases. The differ-
ence in H-loss performance is clear on the two synthetic
experiments, significant on the OHSUMED dataset, but
only marginally significant in the case of RCV1.

Table 2. Test error (H-loss) on each chunk of the RCV1 and
OHSUMED datasets.

RCV1
chunk # 1 2 3 4 5
h-svm 0.702 0.727 0.727 0.741 0.682
b-svm 0.701 0.727 0.712 0.741 0.681

OHSUMED
chunk # 1 2 3 4 5
h-svm 1.176 1.163 1.171 1.170 1.171
b-svm 1.164 1.152 1.158 1.157 1.161

Table 2 reveals that, nonetheless, there is some definite
statistical trend in the performance on the RCV1 and
OHSUMED data. Though the difference in the averages
is small, b-svm is always beating h-svm on the ten
experiments.

Finally, Table 3 shows the distribution of the H-
loss mistakes per test example across hierarchy levels
(again, averaged over four experiments for synthetical
data and over five experiments for real-world ones).
An H-loss mistake at level k means that, along a path
in the taxonomy, the classifier made its first mistake
at level k. For example, the entry 0.432 for depth 0
in the h-svm column of Synth1 means that, averag-
ing over test set chunks and test examples within each
chunk, the number of wrong roots in the Synth1 tax-
onomy (out of the three) was 0.432. The entry 0.572
for depth 1 in the same column means that, on aver-
age, the number of nodes which were wrong at depth
1, given that the corresponding roots were correct, was
0.572.

Table 3. Breakdown of the H-loss performance across hi-
erarchy levels for datasets Synth1, Synth2, RCV1 and
OHSUMED.

Synth1 Synth2
depth # h-svm b-svm h-svm b-svm

0 0.432 0.445 0.123 0.121
1 0.572 0.519 0.184 0.166
2 0.757 0.678 0.187 0.183

RCV1
depth # h-svm b-svm

0 0.190 0.192
1 0.471 0.474
2 0.131 0.126
3 0.097 0.093

OHSUMED
depth # h-svm b-svm

0 1.010 1.018
1 0.316 0.297
2 0.160 0.152
3 0.099 0.101
4 0.413 0.389

The results in Table 3 provide some information about
the differences in the behavior of the two algorithms.
During the evaluation of a test instance, errors prop-
agate following the direction of the evaluation mecha-
nism: top-down for h-svm and bottom-up for b-svm.
At root level, the two algorithms perform very sim-
ilarly, although h-svm does slightly better. Consid-
ering what we said above, we might view this phe-
nomenon as a consequence of the bottom-up propa-
gation of error taking place in b-svm (in fact, b-svm
performs best on Synth2, which is the less noisy of
the two synthetic datasets). One can see that, as the
depth increases, b-svm tends to perform better than
h-svm. However, at depths 3 and 4 of OHSUMED this
advantage turns out to be nearly lost. We suspect that
this is due to the fact that labels assigned by humans
at deep levels of the hierarchy are rather noisy.

In order to reduce the effect of noise propagation,
one could combine top-town and bottom-up evalua-
tion schemes into a hybrid system that works top-down
close to the roots and bottom-up close to the leaves.
We have actually implemented one of them and tested
it on the above mentioned datasets. Though this hy-
brid algorithm tends to be wrong on different test ex-
amples than those observed for h-svm and b-svm, it
has not lead to a significant improvement in H-loss
performance.
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6. Conclusions and ongoing research

We have shown how to improve the performance of
a baseline hierarchical SVM algorithm by replacing
its top-down evaluation procedure with a recursive
bottom-up scheme that arises from the analysis of the
Bayes optimal hierarchical classifier for the H-loss.

Our modular approach is likely to provide new useful
tools for Machine Learning practitioners engaged with
classification problems on taxonomical data.

Although our preliminary experiments show encourag-
ing results, this research leaves open several important
issues. In the following we mention two of them.

• On real-world data (the RCV1 and OHSUMED experi-
ments) b-svm is only slightly better than h-svm. We
do not know exactly why this happens. On the one
hand, it is plausible that in hierarchical data labelled
by humans, labels at deep levels of the taxonomy are
too noisy for the Bayesian mechanism to work well. On
the other hand, the independence assumption, which
stands at the basis of our stochastic model, could be
simply too naive to accurately model real data.

• Our Bayesian evaluation scheme is based on
a blend of good classification power (the weights
w1, . . . ,wN ) and good probability estimation (the es-
timators p̂1, . . . , p̂N obtained by fitting sigmoids on
these weights). Since the Bayesian recursive evalua-
tion tends to be independent of the underlying training
algorithm, it is possible to replace SVM by other algo-
rithms more suitable for probability estimation, such
as the regularized logistic regression of Hastie et al.
(2001).
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