Reinforcement Learning
Temporal Difference Algorithms

Lecturer: Nicolo Cesa-Bianchi version July 17, 2025

This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

We consider the discounted infinite horizon criterion and focus on MDP with finite state space S,
finite action space A such that A(s) = A for all s € S, transition kernel {p(- | s,a) : s € S, a € A},
and time-independent reward function r : S x A — [—1,1].

Fix a stationary deterministic policy m and consider the problem of estimating the state-value
function V™. If the MDP were known, we could simply use fixed-policy value iteration or linear
programming. When the MDP is unknown, we must use samples from the trajectory generated by
7. Recall the system of linear equations that V™ satisfies,

VT(s) =r(s,m(s)) +yE[V™(s') | 5] seS

where s’ ~ p(‘ | s, T['(S)). Now, similarly to what we did in @-learning, we can obtain a sequence

Vo, V1, ... of approximations to V™ by running gradient descent on the square loss
1 , 2
l(x) = 5(.7} —r(st,m(st)) — YE[Vi(s) | s])

for & = Vi(s;), which amounts to the update
Visa(si) = (1= m0)Vilso) + (1 (se, w(s0)) + v E[Vi(s) | 1))

Since, however, E[V;(s) | s] is not directly accessible, we run gradient descent on a perturbed
gradient,

Via(s0) = (1= m)Vals) + 1 (r(se, w(s0)) + 7 Vi)
where s;11 ~ p(- | st, 77(515)). We call temporal difference the quantity
Ay =r(se,m(st)) +v Vilserr) = Vi(se)
and write the above update equivalently as
Viv1(se) = Vi(se) + meAe

The algorithm based on this update is known as TD(0). Similarly to what we did for @-learning,
we can prove the convergence of TD(0) when 7, is a function 7, : S — [0, 1] of the states defined by

n(s) = W where Ni(s) = ZH{ST = s}

7=0

Because we focus on deterministic policies, the learning rate n; can depend only on states rather
than on state-action pairs.



Theorem 1 Assume that TD(0) is run with a stationary deterministic policy m inducing an irre-
ducible Markov chain on the underlying MDP. Then

tlgIolth(S) =V7(s) ses
with probability 1.
The update of TD(0) is based on a 1l-step lookahead Rgl)(st) = (s, at) + v Vi(si41) so that

Ay = REI)(st) — Vi(s¢). Using the identity

ZVTT(ST,W(ST))

T=1

VT(s) =r(s,m(s)) +E

s] seS

where s; ~ p(- | sr—1, Tr(sT_l)) and so = s, TD(0) can be easily generalized to a n-step lookahead

n—1

Rgn)(st) = Z’YTT(SHT, F(St+7)) + " Ve(st4n)
=0

The corresponding updates are Viyi(sy) = Vi(s) + ntAgn) where Al(fn) = Rﬁn)(st) — Vi(st). Note
that

n—1

A =3 A (1)
7=0

Indeed,

Z’YTAt+T Z’Y < Stqrs T(Se4r)) + 7 Vi(Stars1) — Vt(3t+7-)>

n—1

= Z'VT 7 (Seqr m(Star)) + Z (’VTH Vi(st4re1) =7 Vt(3t+7))
7=0 7=0
n—1

= Z’YT T(8t+n W(St+r)) + " Vi(st4n) — Vi(st)
7=0

— R (s) — Vi(s) = Al

It can be shown that if we run TD(0) with a n-step lookahead (for any given n > 1), then Vi(s)
converges to V7 (s) for all s € S.

In case of deterministic 7' (finite horizon), we can choose n = T and set 7 = 1. The resulting
algorithm is known as Monte-Carlo sampling (see Algorithm 1 below here).

Note that the estimate Vi of the state-value function V7 satisfies
1
7*2
where n(s) is the number of episodes in which the state s has been visited at least once. For a > 0,

let S € S the set of states such that the probability that m visits s € S, in any given episode is
at least a. Then we have the following result.



Algorithm 1 Monte-Carlo sampling for MDP with deterministic horizon T’

Input: Stationary deterministic policy w, initial state sg € S, number N of episodes
1: Set Vo(s) =0 and n(s) =0 for all s € S; set 51 = 59
2: fori=1...,N do

3: Use 7 to generate (s1,a1,71),...,(s7,ar,r7)
4: fort=T-1,...,0do

5: if s; does not appear in sg,...,s;—1 then
6: Ri(st) =1+ ---+rp

7: n(s) < n(s)+1

8: Update V;(st) = Vic1(st) + Ri(st)

9: end if

10: end for

11: S1 = ST

12: end for

B:Wﬂ$e—vN@)brﬁls€S

Output: Vy: S — R

Theorem 2 Assume that we execute N episodes using policy m and each episode has length at
most T. Then, with probability at least 1 — 8, for any s € S,, we have ‘VN(S) — V”(s)} <e¢ for

2 2|8 2 2|8

NZ—mlnL and m:—nL

a o g2 )
In the discounted setting, the choice of n may impact the quality of the policy evaluation process.
Instead of choosing a single value for n, we may average over all positive integers. A simple way of
implementing this idea is through exponential averaging with a parameter A € (0,1). This implies
that the weight assigned to each parameter n is (1 — A\)A"~1. This leads to the TD()) algorithm.

Recall A(n) = R(n) s¢) — Vi(st). The TD(A) update is defined by
t t

Virt(se) = Va(se) + (1= Xme Y AIAY

n=1
The problem with this approach is that we have to compute an infinite sum to make a single update.
Luckily, there is an equivalent formulation that avoids this problem. The trick is to use the notion

of eligibility trace
¢

erls) = 3O Fnilfs = i}

k=0
Note that e; can be recursively computed from eg(s) = 0 and e;(s) = (A\y)er—1(s) + nl{s = s;} for
all s € S.

Now recall the definition of temporal difference,
Ay =71(se,m(st)) + v Vi(sea1) — Vilse)

The backward temporal difference is just the standard temporal difference multiplied by the eli-
gibility trace, AP(s) = A;e;(s). See Algorithm 2 for the pseudocode. Note that in the backward



view all states s get updated at each time step t. The backward view solves the temporal assign-
ment problem: how we assign credit or blame to past actions based on the reward obtained for the
current action.

Algorithm 2 TD(A)

Input: Stationary deterministic policy 7, initial state sy € S, parameter A € (0, 1)
1: Set Vo(s) =0 and ep(s) =0 for all s € S
2: fort=0,1,... do

3: Get a; = m(s;) and observe 7(s¢, at), si+1 ~ p(- | S¢, ar)
4 Compute Ay = r(s¢,at) + v Vi(ser1) — Vi(se)

5 for s € S do

6: Compute e;(s) = (Ay)er—1(s) + nl{s = s:}

7: Update Viyi(s) = Vi(s) + er(s)As

8 end for

9: end for

The following result shows that the forward and backward updates
Vira(s) = Vi (s) + (1= N ZA" A and V() =V +AP(s) ses

converge to the same limit.

Theorem 3 Assume

1tlim I{s; = s} =00 and lim V' (s) = V7 (s)
—00

t—o00

for all s € S with probability 1. Let V§ (s) = 0 and VP (s) =0 for all s € S. Then

lim V;B(s) = V7(s) ses

t—o00

PROOF. Fix any s € S. Since V'(s) = 0, s; = s occurs for infinitely many ¢ with probability 1,
and V;:E1(S) = V;¥(s) when s; # s, we have that

o0

Jim V7(s) = 3 (VEi(s) = V¥ (9)) s = s}

t=0

Likewise, using V2 (s) = 0,

Jim V) = 3 (V0 - 720

t=0
Therefore, we are left to prove that
- F F o - B B
S (Vi) = V() Hse = st = Y (Vi (s) = VB ()
t=0 t=0



We have the following chain of equalities

> (Vi) = V() Hse = s} = (1= 1) D mil{se = s} A~ A
t=0 n=1

t=0

[ee) fe’e) n—1
=N ml{si =8} > ATy ATA, (using (1))
t=0 n=1 =0

- ) Z nel{s; = s} Z A" Z o AAY I (change of variable: n < n — 1)
Z n{s; = s} Z Z A YT Ay, (exchanging sums)
T7=0n=1
Z nel{s; = s} Z Z NAFTEAL (change of variable: k <t + 1)
k=t n=k—t
Znt]:[{st _S}Z )\’Y k tAk Z AT k+t
n=k—t
= Z nel{s; = s} Z(/\Py)k_tAk (change of variable: n < n — k + ¢ and geometric sum)
t=0 k=t
00 k
= Z Ay Znt]l{st = s}(\y)k (exchanging sums)
~ .
= Z AE Z (Vk+1 VkB(S)>
k=0 k=0
Since we chose s arbitrarily, the proof is concluded. O

Recall that the actor-critic approach is a method for performing policy iteration without knowning
the MDP.

1. Policy evaluation: Run m; to evaluate V; = V'™

2. Policy improvement: Perform the update my — w41

While we can use TD(\) for the policy evaluation step, the corresponding policy improvement step

mi11(8) € argg‘lax(r(s, a) +~E [V™(s') | s])

requires knowing the transition kernel. Since in a model-free setting policy improvement is easy
when using the state-action function ), we can use the version of SARSA (Algorithm 3) to perform
policy evaluation. The actor-critic approach then takes the following form.

1. Policy evaluation: Run SARSA on 7; to evaluate Q; = Q™
2. Policy improvement: Perform the update

mer1(s) € argmax Q™ (s, a) ses
acA

5



Algorithm 3 (SARSA for policy evaluation)
Input: Policy 7 to evaluate, initial state sy € S

1: Set Qo(s,a) =0 for all (s,a) €S x A

2: Draw ag ~ (- | so)

3: fort=0,1,... do

4: Observe reward ry = r(s¢, a;) and next state sy drawn from p(- | s¢, ar)
5: Draw action a¢11 ~ (- | S¢41)

6: Update Q¢11(s¢,at) = (1 — 1) Q¢ (8¢, ar) + 1 (T(Sn ag) + YQ¢(St41, at+1))
7: end for

Note that the SARSA update step uses a 1-step lookahead: Q;y1(s¢, ar) = Q¢(sy, ar) + mA; where
Ay = 1(st,ar) + v Q(Sey1, ar1) — Qi(se,ar). Using the temporal difference idea to increase the
lookahead, we define

n—1

Rgn) (St’ at) = Z '77—7'(51?+Tv at+7) + 7n Qt(3t+na at+n)
7=0

The corresponding updates then are

Qur1(5t,ar) = Qu(se, ar) + mA§") where Al(tn) = RE”)(st, ar) — Qu(se, ar)

We can now define SARSA()\) using exponential averaging with parameter A,
Qrr1(st, ar) = Qe(se, ar) + (1 — M)y Z APIALY
n=1

Now, similarly to TD(\), we can define a backward view using eligibility traces
eo(s,a) =0 and er(s) = (Ay)e—1(s,a) + nd{s = s¢, a = ar} for all (s,a) € S x A

We can now implement the actor-critic approach using SARSA()) instead of SARSA for policy
evaluation. Alternatively, we can apply the temporal difference technique to the original version
of SARSA to perform on-policy value iteration. The resulting procedure is Algorithm 4 (see next
page). Note that in the backward view all state and action pairs (s,a) get updated at each time
step .

Convergence of SARSA()) to Q* is guaranteed when 741 (- | S¢41, @) is the e-greedy policy, where
¢ is chosen as explained in SARSA convergence theorem.



Algorithm 4 SARSA())

Input: Initial random policy 7, initial state sp € S, parameter A € (0,1)
1: Set Qo(s,a) =0 and ep(s,a) =0 for all (s,a) € S x A
2: Draw ag ~ 7T0<- ‘ So)
3: fort=0,1,... do

4: Play a; and observe r(s¢, at), si+1 ~ p(- | s¢,at)

5: Draw agy1 ~ mr1(- | se41, Q1)

6: Compute Ay = (s, ar) + v Q(St41, ary1) — Qt (S, ar)

7: for (s,a) €e S x Ado

8: Compute e;(s,a) = (A\y)er—1(s,a) + ml{s = s¢, a = ar}
9: Update Qt+1(s,a) = Q+(s,a) + et(s,a)A¢

10: end for

11: end for




