
Reinforcement Learning

Temporal Difference Algorithms

Lecturer: Nicolò Cesa-Bianchi version July 17, 2025

This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

We consider the discounted infinite horizon criterion and focus on MDP with finite state space S,
finite action space A such that A(s) = A for all s ∈ S, transition kernel {p(· | s, a) : s ∈ S, a ∈ A},
and time-independent reward function r : S ×A → [−1, 1].

Fix a stationary deterministic policy π and consider the problem of estimating the state-value
function V π. If the MDP were known, we could simply use fixed-policy value iteration or linear
programming. When the MDP is unknown, we must use samples from the trajectory generated by
π. Recall the system of linear equations that V π satisfies,

V π(s) = r
(
s, π(s)

)
+ γ E

[
V π(s′) | s

]
s ∈ S

where s′ ∼ p
(
· | s, π(s)

)
. Now, similarly to what we did in Q-learning, we can obtain a sequence

V0, V1, . . . of approximations to V π by running gradient descent on the square loss

ℓt(x) =
1

2

(
x− r

(
st, π(st)

)
− γ E

[
Vt(s

′) | s
])2

for x = Vt(st), which amounts to the update

Vt+1(st) = (1− ηt)Vt(st) + ηt

(
r
(
st, π(st)

)
+ γ E

[
Vt(s

′) | st
])

Since, however, E
[
Vt(s

′) | s
]
is not directly accessible, we run gradient descent on a perturbed

gradient,

Vt+1(st) = (1− ηt)Vt(st) + ηt

(
r
(
st, π(st)

)
+ γ Vt(st+1)

)
where st+1 ∼ p

(
· | st, π(st)

)
. We call temporal difference the quantity

∆t = r
(
st, π(st)

)
+ γ Vt(st+1)− Vt(st)

and write the above update equivalently as

Vt+1(st) = Vt(st) + ηt∆t

The algorithm based on this update is known as TD(0). Similarly to what we did for Q-learning,
we can prove the convergence of TD(0) when ηt is a function ηt : S → [0, 1] of the states defined by

ηt(s) =
I{s = st}
Nt(s)

where Nt(s) =

t∑
τ=0

I{sτ = s}

Because we focus on deterministic policies, the learning rate ηt can depend only on states rather
than on state-action pairs.

1

Theorem 1 Assume that TD(0) is run with a stationary deterministic policy π inducing an irre-
ducible Markov chain on the underlying MDP. Then

lim
t→∞

Vt(s) = V π(s) s ∈ S

with probability 1.

The update of TD(0) is based on a 1-step lookahead R
(1)
t (st) = r(st, at) + γ Vt(st+1) so that

∆t = R
(1)
t (st)− Vt(st). Using the identity

V π(s) = r
(
s, π(s)

)
+ E

[∞∑
τ=1

γτr
(
sτ , π(sτ)

) ∣∣∣∣∣ s
]

s ∈ S

where sτ ∼ p
(
· | sτ−1, π(sτ−1)

)
and s0 = s, TD(0) can be easily generalized to a n-step lookahead

R
(n)
t (st) =

n−1∑
τ=0

γτr
(
st+τ , π(st+τ)

)
+ γn Vt(st+n)

The corresponding updates are Vt+1(st) = Vt(st) + ηt∆
(n)
t where ∆

(n)
t = R

(n)
t (st) − Vt(st). Note

that

∆
(n)
t =

n−1∑
τ=0

γτ∆t+τ (1)

Indeed,

n−1∑
τ=0

γτ∆t+τ =

n−1∑
τ=0

γτ
(
r
(
st+τ , π(st+τ)

)
+ γ Vt(st+τ+1)− Vt(st+τ)

)
=

n−1∑
τ=0

γτ r
(
st+τ , π(st+τ)

)
+

n−1∑
τ=0

(
γτ+1 Vt(st+τ+1)− γτ Vt(st+τ)

)
=

n−1∑
τ=0

γτ r
(
st+τ , π(st+τ)

)
+ γn Vt(st+n)− Vt(st)

= R
(n)
t (st)− Vt(st) = ∆

(n)
t

It can be shown that if we run TD(0) with a n-step lookahead (for any given n ≥ 1), then Vt(s)
converges to V π(s) for all s ∈ S.

In case of deterministic T (finite horizon), we can choose n = T and set γ = 1. The resulting
algorithm is known as Monte-Carlo sampling (see Algorithm 1 below here).

Note that the estimate VN of the state-value function V π satisfies

VN (s) =
1

n(s)

N∑
i=1

Ri(s)

where n(s) is the number of episodes in which the state s has been visited at least once. For α > 0,
let Sα ⊆ S the set of states such that the probability that π visits s ∈ Sα in any given episode is
at least α. Then we have the following result.

2

Algorithm 1 Monte-Carlo sampling for MDP with deterministic horizon T

Input: Stationary deterministic policy π, initial state s0 ∈ S, number N of episodes
1: Set V0(s) = 0 and n(s) = 0 for all s ∈ S; set s1 = s0
2: for i = 1 . . . , N do
3: Use π to generate (s1, a1, r1), . . . , (sT , aT , rT)
4: for t = T − 1, . . . , 0 do
5: if st does not appear in s0, . . . , st−1 then
6: Ri(st) = rt + · · ·+ rT
7: n(s)← n(s) + 1
8: Update Vi(st) = Vi−1(st) +Ri(st)
9: end if

10: end for
11: s1 = sT
12: end for

13: VN (s)← VN (s)

n(s)
for all s ∈ S

Output: VN : S → R

Theorem 2 Assume that we execute N episodes using policy π and each episode has length at
most T . Then, with probability at least 1− δ, for any s ∈ Sα, we have

∣∣VN (s)− V π(s)
∣∣ ≤ ε for

N ≥ 2m

α
ln

2|S|
δ

and m =
T 2

ε2
ln

2|S|
δ

In the discounted setting, the choice of n may impact the quality of the policy evaluation process.
Instead of choosing a single value for n, we may average over all positive integers. A simple way of
implementing this idea is through exponential averaging with a parameter λ ∈ (0, 1). This implies
that the weight assigned to each parameter n is (1− λ)λn−1. This leads to the TD(λ) algorithm.

Recall ∆
(n)
t = R

(n)
t (st)− Vt(st). The TD(λ) update is defined by

Vt+1(st) = Vt(st) + (1− λ)ηt

∞∑
n=1

λn−1∆
(n)
t

The problem with this approach is that we have to compute an infinite sum to make a single update.
Luckily, there is an equivalent formulation that avoids this problem. The trick is to use the notion
of eligibility trace

et(s) =
t∑

k=0

(λγ)t−kηkI{s = sk}

Note that et can be recursively computed from e0(s) = 0 and et(s) = (λγ)et−1(s) + ηtI{s = st} for
all s ∈ S.

Now recall the definition of temporal difference,

∆t = r
(
st, π(st)

)
+ γ Vt(st+1)− Vt(st)

The backward temporal difference is just the standard temporal difference multiplied by the eli-
gibility trace, ∆B

t (s) = ∆t et(s). See Algorithm 2 for the pseudocode. Note that in the backward

3

view all states s get updated at each time step t. The backward view solves the temporal assign-
ment problem: how we assign credit or blame to past actions based on the reward obtained for the
current action.

Algorithm 2 TD(λ)

Input: Stationary deterministic policy π, initial state s0 ∈ S, parameter λ ∈ (0, 1)
1: Set V0(s) = 0 and e0(s) = 0 for all s ∈ S
2: for t = 0, 1, . . . do
3: Get at = π(st) and observe r(st, at), st+1 ∼ p(· | st, at)
4: Compute ∆t = r(st, at) + γ Vt(st+1)− Vt(st)
5: for s ∈ S do
6: Compute et(s) = (λγ)et−1(s) + ηtI{s = st}
7: Update Vt+1(s) = Vt(s) + et(s)∆t

8: end for
9: end for

The following result shows that the forward and backward updates

V F
t+1(st) = V F

t (st) + (1− λ)ηt

∞∑
n=1

λn−1∆
(n)
t and V B

t+1(s) = V B
t (s) + ∆B

t (s) s ∈ S

converge to the same limit.

Theorem 3 Assume

lim
t→∞

I{st = s} =∞ and lim
t→∞

V F
t (s) = V π(s)

for all s ∈ S with probability 1. Let V F
0 (s) = 0 and V B

0 (s) = 0 for all s ∈ S. Then

lim
t→∞

V B
t (s) = V π(s) s ∈ S

Proof. Fix any s ∈ S. Since V F
0 (s) = 0, st = s occurs for infinitely many t with probability 1,

and V F
t+1(s) = V F

t (s) when st ̸= s, we have that

lim
t→∞

V F
t (s) =

∞∑
t=0

(
V F
t+1(s)− V F

t (s)
)
I{st = s}

Likewise, using V B
0 (s) = 0,

lim
t→∞

V B
t (s) =

∞∑
t=0

(
V B
t+1(s)− V B

t (s)
)

Therefore, we are left to prove that

∞∑
t=0

(
V F
t+1(s)− V F

t (s)
)
I{st = s} =

∞∑
t=0

(
V B
t+1(s)− V B

t (s)
)

4

We have the following chain of equalities

∞∑
t=0

(
V F
t+1(s)− V F

t (s)
)
I{st = s} = (1− λ)

∞∑
t=0

ηtI{st = s}
∞∑
n=1

λn−1∆
(n)
t

= (1− λ)

∞∑
t=0

ηtI{st = s}
∞∑
n=1

λn−1
n−1∑
τ=0

γτ∆t+τ (using (1))

= (1− λ)
∞∑
t=0

ηtI{st = s}
∞∑
n=0

λn
n∑

τ=0

γτ∆t+τ (change of variable: n← n− 1)

= (1− λ)

∞∑
t=0

ηtI{st = s}
∞∑
τ=0

∞∑
n=τ

λnγτ∆t+τ (exchanging sums)

= (1− λ)
∞∑
t=0

ηtI{st = s}
∞∑
k=t

∞∑
n=k−t

λnγk−t∆k (change of variable: k ← t+ τ)

= (1− λ)
∞∑
t=0

ηtI{st = s}
∞∑
k=t

(λγ)k−t∆k

∞∑
n=k−t

λn−k+t

=
∞∑
t=0

ηtI{st = s}
∞∑
k=t

(λγ)k−t∆k (change of variable: n← n− k + t and geometric sum)

=
∞∑
k=0

∆k

k∑
t=0

ηtI{st = s}(λγ)k−t (exchanging sums)

=
∞∑
k=0

∆B
k (s) =

∞∑
k=0

(
V B
k+1(s)− V B

k (s)
)

Since we chose s arbitrarily, the proof is concluded. □

Recall that the actor-critic approach is a method for performing policy iteration without knowning
the MDP.

1. Policy evaluation: Run πt to evaluate Vt = V πt

2. Policy improvement: Perform the update πt → πt+1

While we can use TD(λ) for the policy evaluation step, the corresponding policy improvement step

πt+1(s) ∈ argmax
a∈A

(
r(s, a) + γE

[
V πt(s′)

∣∣ s])
requires knowing the transition kernel. Since in a model-free setting policy improvement is easy
when using the state-action function Q, we can use the version of SARSA (Algorithm 3) to perform
policy evaluation. The actor-critic approach then takes the following form.

1. Policy evaluation: Run SARSA on πt to evaluate Qt = Qπt

2. Policy improvement: Perform the update

πt+1(s) ∈ argmax
a∈A

Qπt(s, a) s ∈ S

5

Algorithm 3 (SARSA for policy evaluation)

Input: Policy π to evaluate, initial state s0 ∈ S
1: Set Q0(s, a) = 0 for all (s, a) ∈ S ×A
2: Draw a0 ∼ π(· | s0)
3: for t = 0, 1, . . . do
4: Observe reward rt = r(st, at) and next state st+1 drawn from p(· | st, at)
5: Draw action at+1 ∼ π(· | st+1)
6: Update Qt+1(st, at) = (1− ηt)Qt(st, at) + ηt

(
r(st, at) + γQt(st+1, at+1)

)
7: end for

Note that the SARSA update step uses a 1-step lookahead: Qt+1(st, at) = Qt(st, at) + ηt∆t where
∆t = r(st, at) + γ Qt(st+1, at+1) − Qt(st, at). Using the temporal difference idea to increase the
lookahead, we define

R
(n)
t (st, at) =

n−1∑
τ=0

γτr
(
st+τ , at+τ

)
+ γnQt(st+n, at+n)

The corresponding updates then are

Qt+1(st, at) = Qt(st, at) + ηt∆
(n)
t where ∆

(n)
t = R

(n)
t (st, at)−Qt(st, at)

We can now define SARSA(λ) using exponential averaging with parameter λ,

Qt+1(st, at) = Qt(st, at) + (1− λ)ηt

∞∑
n=1

λn−1∆
(n)
t

Now, similarly to TD(λ), we can define a backward view using eligibility traces

e0(s, a) = 0 and et(s) = (λγ)et−1(s, a) + ηtI{s = st, a = at} for all (s, a) ∈ S ×A

We can now implement the actor-critic approach using SARSA(λ) instead of SARSA for policy
evaluation. Alternatively, we can apply the temporal difference technique to the original version
of SARSA to perform on-policy value iteration. The resulting procedure is Algorithm 4 (see next
page). Note that in the backward view all state and action pairs (s, a) get updated at each time
step t.

Convergence of SARSA(λ) to Q∗ is guaranteed when πt+1(· | st+1, Qt) is the ε-greedy policy, where
εt is chosen as explained in SARSA convergence theorem.

6

Algorithm 4 SARSA(λ)

Input: Initial random policy π0, initial state s0 ∈ S, parameter λ ∈ (0, 1)
1: Set Q0(s, a) = 0 and e0(s, a) = 0 for all (s, a) ∈ S ×A
2: Draw a0 ∼ π0(· | s0)
3: for t = 0, 1, . . . do
4: Play at and observe r(st, at), st+1 ∼ p(· | st, at)
5: Draw at+1 ∼ πt+1(· | st+1, Qt)
6: Compute ∆t = r(st, at) + γ Qt(st+1, at+1)−Qt(st, at)
7: for (s, a) ∈ S ×A do
8: Compute et(s, a) = (λγ)et−1(s, a) + ηtI{s = st, a = at}
9: Update Qt+1(s, a) = Qt(s, a) + et(s, a)∆t

10: end for
11: end for

7

