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This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

We consider an MDP with finite state space S, finite action space A such that A(s) = A for
all s ∈ S, transition kernel {p(· | s, a) : s ∈ S, a ∈ A}, and time-dependent reward function rt :
S ×A → [−1, 1].

We now define some quantities that will help us define the notion of optimal policy in an MDP.
Consider the stochastic horizon case (for simplicity, without terminal reward) and an arbitrary
stochastic policy π = (π0, π1, . . .). The state-value function V π

t : S → R ∪ {∞} gives the
expected return obtained by running π from any state st ∈ S at time t ≥ 0,

V π
t (st) = E

[
T∑

τ=t

rτ (sτ , aτ )

]

where aτ ∼ πτ (· | sτ ). The action-value function Qπ
t : S ×A → R ∪ {∞} at time t ≥ 0 is defined

by

Qπ
t (s, a) = rt(s, a) +

∑
s′∈S

V π
t+1(s

′)p(s′ | s, a)

This is the expected return of executing action a in state s at time t and then following policy π.
Hence,

V π
t (s) =

∑
a∈A

(
rt(s, a) +

∑
s′∈S

V π
t+1(s

′)p(s′ | s, a)

)
πt(a | s) =

∑
a∈A

Qπ
t (s, a)πt(a | s) s ∈ S

For deterministic policies, the above equation becomes V π
t (s) = Qπ

t

(
s, πt(s)

)
for any s ∈ A and

t ≥ 0.

Example. Consider the following game with two states, S (the initial state) and G (the goal
state), and two actions, 0 and 1. Action 1 deterministically leads to the goal state with a reward
of b. Action 0 always carries a reward of a with 0 < a < b, leads to the goal state with probability
p, and remains in state S with probability 1− p.

S G

r(S, 0) = a

r(S, 0) = a

r(S, 1) = b
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We consider two deterministic and stationary Markov policies. Since everything is stationary, we
can omit the subscripts t from V π

t and Qπ
t . Policy π keeps on playing action 0 until the goal state

is reached. Policy π′ plays action 1 and immediately reaches the goal state. Clearly, V π′
(S) = b.

On the other hand,

V π(S) = ap

∞∑
k=1

k(1− p)k−1 =
a

p

Hence, V π(S) > V π′
(S) if and only if p < a

b .

The action-value function for π is Qπ(S, 0) = a
p and Qπ(S, 1) = b. Similarly, Qπ′

(S, 0) = a+(1−p)b

and Qπ′
(S, 1) = b.

We now characterize the optimal policy in the finite horizon case. As we have shown, in this case
we do not lose generality by restricting to deterministic policies. To avoid confusion, we use H to
denote the horizon value and we call stage any time step h = 0, . . . ,H. Then, the expected return
(or state-value function) of a deterministic policy π = (π0, . . . , πH) at stage h is

V π
h (sh) = E

[
H∑
t=h

rt
(
st, πt(st)

)]
= rh

(
sh, πh(sh)

)
+
∑
s′∈S

V π
h+1(s

′)p
(
s′ | sh, πh(sh)

)
and the action-value function at stage h is

Qπ
h (s, a) = rh(s, a) +

∑
s′∈S

V π
h+1(s

′)p(s′ | s, a)

Let π∗ be the optimal deterministic policy, satisfying V π∗
h (s) ≥ V π

h (s) for all s ∈ S, h ∈ {0, . . . ,H},
and all deterministic policies π. For brevity, we write V ∗

h and Q∗
h. Note that the optimal policy π∗

h

at stage h is computed as
π∗
h(s) = argmax

a∈A
Q∗

h(s, a) s ∈ S

Using backward induction, it is easy to compute the optimal state-value and action-value functions
for all h = 0, . . . ,H. Let V ∗

H+1 and Q∗
H+1 be constant zero functions. First, observe that

Q∗
H(s, a) = rH(s, a)

V ∗
H(s) = max

a∈A
rH(s, a) = max

a∈A
Q∗

H(s, a)

Now, given Q∗
h and V ∗

h for h ∈ {1, . . . ,H}, we can compute Q∗
h−1 and V ∗

h−1 as follows. By definition
of action-value function,

Q∗
h−1(s, a) = rh−1(s, a) +

∑
s′∈S

V ∗
h (s

′)p(s′ | s, a)

For the state-value function, we compute the optimal expected return from stage h−1 by maximizing
the sum of the optimal reward at stage h − 1 and the optimal expected return V ∗

h from stage h
onwards,

V ∗
h−1(s) = max

a∈A

(
rh−1(s, a) +

∑
s′∈S

V ∗
h (s

′)p(s′ | s, a)

)
= max

a∈A
Q∗

h−1(s, a)
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This is a manifestation of Bellman’s principle of optimality: the tail of an optimal policy is
optimal for the “tail” problem. The system of equations

V ∗
h (s) = max

a∈A

(
rh(s, a) +

∑
s′∈S

V ∗
h+1(s

′)p(s′ | s, a)

)
s ∈ A, h = 0, . . . ,H

is called the Bellman optimality equations.
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